首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urine storage ability of the urinary bladder is markedly impaired following inflammation of the urinary bladder and spinal cord injury because of a hyperexcitability of micturition reflexes. Using two rat models of inflammation-induced bladder overactivity and detrusor hyper-reflexia following spinal cord injury we investigated changes in the neuronal pathways to the urinary bladder which may underlie the development of this instability. Our results suggest that among the factors involved in inflammation-induced bladder instability are significant changes in the expression of the neuropeptides substance P, calcitonin gene-related peptide and galanin at the primary afferent level, as well as of the enzyme neuronal nitric oxide synthase (nNOS) at the afferent and postganglionic efferent level. In the lumbar and sacral spinal cord nNOS-immunoreactivity was depleted from dorsal horn neurones in both cystitis and spinal cord injured rats and from preganglionic parasympathetic neurones after spinal cord injury. Distension of the bladder in chronically spinalized rats elicited c-Fos expression in a significantly greater number of neurones throughout the lumbar and sacral segments than in rats with an intact neuraxis. Thus, under pathological conditions rather complicated changes in the synthesis of neuropeptides and nNOS occur at the primary afferent, spinal cord and postganglionic efferent level that together control the activity of the urinary bladder. Further mechanisms like unmasking of silent synapses and axonal sprouting in the spinal cord might further contribute to an increase in activity in micturition reflex pathways. Local cooling of the dorsal spinal cord at the level L6/S1 with temperatures between 14 and 20 degrees C proved a simple technique to control the unstable bladder and restore continence in both inflammation-induced detrusor overactivity and detrusor hyperreflexia following spinal cord injury. The effects of cooling are probably the result of a blockade of synaptic transmission within the dorsal cord which eliminates neuronal overactivity. Thus, local spinal cord cooling could offer a new method to treat bladder instability and reflex incontinence.  相似文献   

2.
Nitric oxide (NO), a neurotransmitter in autonomic reflex pathways, plays a role in functional neuroregulation of the lower urinary tract. Upregulation of the levels of neuronal nitric oxide synthase (nNOS), the enzyme system responsible for NO synthesis, has been documented in the peripheral, spinal and supraspinal segments of the micturition reflex in diseases such as cystitis, bladder/sphincter dyssynergia following spinal cord injury and bladder overactivity after cerebral infarction. These observations suggest that NO might play a role in the development of bladder overactivity. In this study, nNOS-immunoreactivity (IR) was evaluated in bladder afferent and spinal neurons following bladder outflow obstruction (BOO) in male and female rats. Chronic BOO was induced by placing lumen reducing ligatures around the proximal urethra. Six weeks following the obstructive or sham surgery, bladder function was evaluated by awake cystometry. Bladder afferent neurons in L1, L2, L6 and S1 dorsal root ganglia (DRG) were identified by retrograde neuronal labeling with injection of Fast Blue into the bladder smooth muscle. A differential distribution of nNOS-IR was subsequently evaluated in bladder afferent neurons in the DRG and in the associated spinal cord segments. The percentage of bladder afferent neurons expressing nNOS-IR was increased in L6 (1.8-fold in males and 1.9-fold in females) and S1 (2.8-fold in males and 5.3-fold in females) DRG. In contrast, no changes in nNOS-IR in neurons or fiber distribution were observed in any spinal cord segments examined.  相似文献   

3.
Gabapentin treatment of neurogenic overactive bladder   总被引:2,自引:0,他引:2  
OBJECTIVE: Detrusor overactivity is a well-recognized and distressing medical condition affecting both men and women, with a significant prevalence in the population and with a higher incidence rate in people older than 70 years. This pathological condition is characterized by irritative symptoms: urinary urgency, with or without incontinence, and urinary frequency, often seriously compromising the quality of life of the people who have it. The complaint of these symptoms is defined by the International Continence Society (www.continet.org) as "overactive bladder." Many neurological patients experience irritative symptoms of the lower urinary tract related to their disease, and this condition drastically limits their social life. Various drugs have been introduced in therapy protocols to treat neurogenic detrusor overactivity; however, in many cases, the outcomes of these treatments have proven to be unsatisfactory. This fact is probably related to the incomplete understanding of the pathophysiological aspects of detrusor overactivity. Recent studies suggest the possible role in the detrusor overactivity pathogenesis of bladder receptors, afferent pathways, and spinal cord interneurons; consequently, the modulation of bladder receptor and/or spinal cord centers activity has been proposed as a possible approach to control involuntary detrusor contractions, using drugs capable of acting on bladder afferent pathways.The aim of this study was to evaluate the efficacy of gabapentin, an anticonvulsive agent used by neurologists in the treatment of epilepsy and neurogenic pain, in the treatment of detrusor overactivity of neurogenic origin. METHODS: Sixteen patients affected by neurogenic overactive bladder were enrolled in the study. The clinical outcomes were assessed by symptomatic score evaluations, voiding diary, and urodynamic test before and after 31 days of gabapentin treatment. RESULTS: The preliminary results showed significant modifications of urodynamic indexes, particularly of the detrusor overactivity, whereas the symptomatic score evaluation and the voiding diary data demonstrated a significant lowering of the irritative symptoms. Furthermore, we did not record significant adverse effects and no patient interrupted the drug treatment. CONCLUSIONS: These data support the rationale that detrusor overactivity may be controlled by modulating the afferent input from the bladder and the excitability of the sacral reflex center and suggest a novel method to treat overactive bladder patients.  相似文献   

4.
Electrical stimulation of peripheral nerves can be used to cause muscle contraction, to activate reflexes, and to modulate some functions of the central nervous system (neuromodulation). If applied to the spinal cord or nerves controlling the lower urinary tract, electrical stimulation can produce bladder or sphincter contraction, produce micturition, and can be applied as a medical treatment in cases of incontinence and urinary retention. This article first reviews the history of electrical stimulation applied for treatment of bladder dysfunction and then focuses on the implantable Finetech-Brindley stimulator to produce bladder emptying, and on external and implantable neuromodulation systems for treatment of incontinence. We conclude by summarizing some recent research efforts including: (a) combined sacral posterior and anterior sacral root stimulator implant (SPARSI), (b) selective stimulation of nerve fibers for selective detrusor activation by sacral ventral root stimulation, (c) microstimulation of the spinal cord, and (d) a newly proposed closed-loop bladder neuroprosthesis to treat incontinence caused by bladder overactivity.  相似文献   

5.
The most common lower urinary tract symptoms (LUTS) in multiple sclerosis (MS) are irritative, obstructive or mixed (association of irritative and obstructive LUTS). Generally irritative LUTS are typical in patients with cortical, brainstem or mild spinal cord lesions; obstructive symptoms are frequent in patients with spinal cord lesions (below the pontine micturition centre) or at the level of the sacral micturition centre. Irritative LUTS are often associated with detrusor overactivity, whereas obstructive LUTS are associated with detrusor sphincter dyssynergia or detrusor areflexia/hypocontractility. Proper management of these LUTS often could be planned without specialised assessment, in accordance with the algorithms proposed by International Consultation on Incontinence.  相似文献   

6.
Alterations in the expression of the neuropeptide galanin were examined in micturition reflex pathways 6 weeks after complete spinal cord transection (T8). In control animals, galanin expression was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the superficial dorsal horn; (3) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1); and (4) the lateral collateral pathway in lumbosacral spinal segments. Densitometry analysis demonstrated significant increases (P < or = 0.001) in galanin immunoreactivity (IR) in these regions of the S1 spinal cord after spinal cord injury (SCI). Changes in galanin-IR were not observed at the L4-L6 segments except for an increase in galanin-IR in the dorsal commissure in the L4 segment. In contrast, decreases in galanin-IR were observed in the L1 segment. The number of galanin-IR cells increased (P < or = 0.001) in the L1 and S1 dorsal root ganglia (DRG) after SCI. In all DRG examined (L1, L2, L6, and S1), the percentage of bladder afferent cells expressing galanin-IR significantly increased (4-19-fold) after chronic SCI. In contrast, galanin expression in nerve fibers in the urinary bladder detrusor and urothelium was decreased or eliminated after SCI. Expression of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was altered in the spinal cord after SCI. A significant increase in BDNF expression was present in spinal cord segments after SCI. In contrast, NGF expression was only increased in the spinal segments adjacent and rostral to the transection site (T7-T8), whereas spinal segments (T13-L1; L6-S1), distal to the transection site exhibited decreased NGF expression. Changes in galanin expression in micturition pathways after SCI may be mediated by changing neurotrophic factor expression, particularly BDNF. These changes may contribute to urinary bladder dysfunction after SCI.  相似文献   

7.
The value of sacral magnetic stimulation (SMS) in neurophysiological evaluation of the sacral efferent pathways of the lower urinary tract was assessed during urodynamic examination in 10 men with chronic suprasacral spinal cord injury (SCI) and in 7 healthy volunteers. Investigated parameters included latency and amplitude of the urodynamic pressure response of the external urethral sphincter and detrusor to different stimulation strengths (50-100%) and single or repetitive (20 and 30 Hz) stimuli. Following SMS, reproducible external urethral sphincter pressure responses (mean latency, 13 ms) were recorded in all subjects. In contrast, a detrusor pressure increase was recorded only in SCI patients after repetitive SMS, with a latency of 1-2 s. This implies the appearance of a polysynaptic spinal reflex due to changes in organization of the sacral micturition reflex after SCI. The method of SMS may be helpful for the evaluation of cases in which urodynamic studies remain inconclusive.  相似文献   

8.
Viscero-sympathetic reflex responses to mechanical stimulation of urinary bladder and colon were studied in cutaneous vasoconstrictor (CVC) neurones supplying hairy skin, in muscle vasoconstrictor (MVC) neurones supplying skeletal muscle and in sudomotor (SM) neurones supplying the sweat glands of the central paw pad of the cat hindlimb. The cats were anaesthetized, paralysed and artificially ventilated. The vasoconstrictor activity was recorded from the axons of the postganglionic fibres that were isolated in filaments from the respective peripheral hindlimb nerves. The activity in the sudomotor neurones was monitored by recording the fast skin potential changes occurring on the surface of the central paw pad. Afferents from the urinary bladder and from the colon were stimulated by isotonic distension and isovolumetric contraction of the organs. Most CVC neurones with ongoing activity were inhibited by these stimuli; only a few CVC neurones were excited. The MVC and SM neurones were generally excited by the visceral stimuli, yet the size of the evoked skin potential changes was variable. The reflex responses elicited in the sympathetic outflow to the cat hindlimb by stimulation of visceral afferents from the pelvic organs are uniform with respect to the different types of afferent input system but differentiated with respect to the efferent output systems. Graded stimulation of the visceral afferents from the urinary bladder by isotonic pressure steps elicited graded reflex responses in CVC (threshold less than 30 mmHg) and MVC neurones (threshold less than 20 mmHg) and a graded increase of the arterial blood pressure (threshold less than 20 mmHg). These graded reflex responses are closely related to the quantitative activation of sacral afferent neurones with thin myelinated axons innervating the urinary bladder that are also responsible for eliciting the micturition reflex, but not to the quantitative activation of sacral afferent neurones with unmyelinated axons. The latter have thresholds of 40-50 mmHg intravesical pressure at which the size of the vesico-sympathetic reflexes in the vasoconstrictor neurones was about 50% of maximal size. This does not exclude the fact that activation of unmyelinated vesical afferents contributes to the vesico-sympathetic reflexes.  相似文献   

9.
The lower urinary tract has two main functions, storage and periodic expulsion of urine, that are regulated by a complex neural control system in the brain and lumbosacral spinal cord. This neural system coordinates the activity of two functional units in the lower urinary tract: (1) a reservoir (the urinary bladder) and (2) an outlet (consisting of bladder neck, urethra and striated muscles of the external urethra sphincter). During urine storage the outlet is closed and the bladder is quiescent to maintain a low intravesical pressure. During micturition the outlet relaxes and the bladder contracts to promote efficient release of urine. This reciprocal relationship between bladder and outlet is generated by reflex circuits some of which are under voluntary control. Experimental studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through a coordination center (the pontine micturition center) located in the rostral brainstem. This reflex pathway is in turn modulated by higher centers in the cerebral cortex that are involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary control of voiding as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. However the bladder does not empty efficiently because coordination between the bladder and urethral outlet is lost. Studies in animals indicate that dysfunction of the lower urinary tract after spinal cord injury is dependent in part on plasticity of bladder afferent pathways as well as reorganization of synaptic connections in the spinal cord. Reflex plasticity is associated with changes in the properties of ion channels and electrical excitability of afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and/or the peripheral target organs.  相似文献   

10.
Vera PL  Nadelhaft I 《Brain research》2000,883(1):107-118
We labeled interneurons in the L1-L2 and L6-S1 spinal cord segments of the rat that are involved in bladder innervation using transneuronal retrograde transport of pseudorabies virus (PRV) in normal animals and in animals with selected nerve transections. Preganglionic neurons were identified using antisera against choline acetyltransferase (ChAT). In some experiments we labelled parasympathetic preganglionic neurons (PPNs) in the L6-S1 spinal cord by retrograde transport of Fluorogold from the major pelvic ganglion. We identified bladder afferent terminals using the transganglionic transport of the anterograde tracer cholera toxin subunit b. We present anatomical evidence for two spinal pathways involved in innervation of the bladder. First, in the intact rat, afferent information from the bladder connects, via interneurons in L6-S1, to the PPNs that provide the efferent innervation of the bladder. The afferent terminals were located mainly in close apposition to interneurons located dorsal to the retrogradely labeled PPNs. Second, using L6-S1 ganglionectomies or L6-S1 ventral root rhizotomies we limited viral transport to the sympathetic pathways innervating the bladder. This procedure also labelled interneurons (but not PPNs) with PRV in the L6-S1 spinal cord in a location very similar to those described in the intact rat. These interneurons also receive bladder afferent terminals but we propose that they project to sympathetic preganglionic neurons, most of which are in the L1-L2 spinal segments. Based on this anatomical evidence, we propose the existence of two spinal reflex pathways involved in micturition: a pathway limited to a reflex arc in the pelvic nerve (presumably excitatory to the detrusor muscle); and a pathway involving the pelvic nerve and sympathetic nerve fibers, some of which may travel in the hypogastric (presumably inhibitory to the detrusor muscle).  相似文献   

11.
We labeled interneurons in the L1–L2 and L6–S1 spinal cord segments of the rat that are involved in bladder innervation using transneuronal retrograde transport of pseudorabies virus (PRV) in normal animals and in animals with selected nerve transections. Preganglionic neurons were identified using antisera against choline acetyltransferase (ChAT). In some experiments we labelled parasympathetic preganglionic neurons (PPNs) in the L6–S1 spinal cord by retrograde transport of Fluorogold from the major pelvic ganglion. We identified bladder afferent terminals using the transganglionic transport of the anterograde tracer cholera toxin subunit b. We present anatomical evidence for two spinal pathways involved in innervation of the bladder. First, in the intact rat, afferent information from the bladder connects, via interneurons in L6–S1, to the PPNs that provide the efferent innervation of the bladder. The afferent terminals were located mainly in close apposition to interneurons located dorsal to the retrogradely labeled PPNs. Second, using L6–S1 ganglionectomies or L6–S1 ventral root rhizotomies we limited viral transport to the sympathetic pathways innervating the bladder. This procedure also labelled interneurons (but not PPNs) with PRV in the L6–S1 spinal cord in a location very similar to those described in the intact rat. These interneurons also receive bladder afferent terminals but we propose that they project to sympathetic preganglionic neurons, most of which are in the L1–L2 spinal segments. Based on this anatomical evidence, we propose the existence of two spinal reflex pathways involved in micturition: a pathway limited to a reflex arc in the pelvic nerve (presumably excitatory to the detrusor muscle); and a pathway involving the pelvic nerve and sympathetic nerve fibers, some of which may travel in the hypogastric (presumably inhibitory to the detrusor muscle).  相似文献   

12.
Persistent detrusor acontractility despite normal somatic reflex activity in some patients with high spinal cord injury is an enigma. Previous work has suggested disordered integration of afferent activity in sacral roots or the sacral spinal cord. Forty male patients with chronic stable suprasacral cord lesions were studied by filling and voiding videocystometrography, and recording lumbosacral evoked potentials from posterior tibial nerve stimulation. Only five of 15 patients with decreased detrusor contractility had abnormal lumbosacral evoked potentials. Similar abnormalities were found in four of 11 patients with efficient hyperreflexic bladders. The finding of normal lumbosacral evoked potentials in the majority of patients with suprasacral cord injuries and decreased detrusor contractility supports the argument that the pathophysiology of this specific form of neurogenic bladder dysfunction is multifactorial.  相似文献   

13.
Alterations in the expression of growth-associated protein 43 (GAP-43) were examined in lower urinary tract micturition reflex pathways in a chronic model of cyclophosphamide (CYP)-induced cystitis. In control animals, expression of GAP-43 was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the dorsal horn and (3) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1) and (4) in the lateral collateral pathway of Lissauer in L6-S1 spinal segments. Densitometry analysis has demonstrated significant increases (p相似文献   

14.
Objectives. Sacral nerve stimulation (SNS) (Medtronic, Inc., Minneapolis, MN) is an exciting new treatment for refractory voiding disorders including urinary incontinence, retention, and voiding dysfunction. It is known that both voiding and continence reflex mechanisms are organized in the sacral spinal cord and that pathologic conditions can alter the balance between these two opposing mechanisms. Methods. The background and surgical technique of SNS will be presented. This will be followed by a discussion of hypotheses on how SNS works. Results. The beneficial effects of SNS are most reasonably attributed to activation of somatic afferent axons in the sacral spinal roots. This evoked afferent activity in turn modulates sensory processing and micturition reflex pathways in the spinal cord. Hyperactive voiding can be suppressed by direct inhibition of bladder preganglionic neurons as well as inhibition of interneuroneal transmission in the afferent limb of the micturition reflex. On the other hand, voiding in patients with urinary retention can be facilitated by inhibition of reflex pathways to the urethral outlet (guarding reflexes). Conclusions. SNS, a nonablative, minimally invasive technique for urologists, holds great promise for a large number of patients who suffer debilitating and refractory urinary symptoms.  相似文献   

15.
Bladder symptoms in patients with multiple sclerosis (MS) are common and usually arise as a result of spinal lesions which interrupt the neural pathways connecting the pontine micturition centre to the sacral spinal cord. Thus these symptoms are particularly likely to occur in those with lower limb neurological deficits. Fortunately bladder dysfunction in MS is rarely associated with serious upper tract disease so that the problem is usually one of symptomatic management. Lower urinary tract symptoms may be both "irritative" or "obstructive" in nature and can be explained in terms of underlying detrusor hyperreflexia and incomplete bladder emptying. Treatment is aimed at minimising both these effects. Oral anticholinergic medication can be effective in reducing detrusor hyperreflexia and intermittent catheterisation is used to reduce abnormally high post micturition residual volumes. With this simple treatment, often used in combination, many less severely affected patients with MS can gain considerable improvement in controlling urinary continence.  相似文献   

16.
The spinal cord origin and peripheral pathways of the sensory and motor nerves to the urinary bladder were delineated in the cat by stimulating the appropriate nerves near the urinary bladder and recording from the dorsal and ventral rootlets near the spinal cord. The parasympathetic preganglionic neurons originated in the sacral segments of the spinal cord and reached the bladder by way of the pelvic nerve. The preganglionic parasympathetic perikarya to the urinary bladder were distributed over a length of approximately 1.5 segments, centered near the junction of segments S-2 and S-3 in cats with a median arrangement of the lumbosacral plexus. Conduction velocities in preganglionic parasympathetic fibers to the bladder ranged from 46 to 2 M/sec with a mean maximal velocity of 18.2 M/sec. The major sympathetic pathway to the bladder was in the hypogastric nerve. Preganglionic sympathetic fibers originated in the lumbar spinal cord and traveled through the caudal mesenteric ganglion and hypogastric nerve to the urinary bladder. There were both ipsilateral and contralateral preganglionic and afferent fibers in this pathway. The preganglionic sympathetic neurons originated in segments L-2 and L-5. They were usually distributed over approximately 2 full segments centered near the junction of L-3 and L-4 in cats with a median arrangement of the lumbosacral plexus. Neurons involved in the micturition reflex may extend from the rostral end of the L-2 segment to the caudal end of the S-3 segment. The sympathetic preganglionic neurons were usually separated from the somatic and parasympathetic columns by segments L-5 to L-7.  相似文献   

17.
In order to clarify the functional role of the isolectin B4 (IB4)-binding afferent pathway in the micturition reflex, we investigated the effects on bladder activity of intrathecal application of the IB4-saporin conjugate, a targeting cytotoxin that destroys neurons binding IB4. In rats, IB4-saporin (2.5 micro m) or vehicle was administered through an intrathecal catheter implanted at the level of the L6-S1 spinal cord. Three weeks after IB4-saporin administration, cystometry in conscious animals revealed a reduction in bladder overactive responses induced by intravesical capsaicin or ATP infusion without affecting normal voiding function. In histochemical studies, double staining for IB4 and saporin was detected in L6 dorsal root ganglia (DRG) neurons 2 days after the treatment. Three weeks after the treatment, the area in lamina II of the L6 spinal cord stained with IB4 was significantly reduced compared with the area stained in control rats. The staining in the L1 spinal cord was not affected. The percentage of neurons in the L6 DRG intensely labeled with IB4 was also reduced in IB4-saporin-treated rats. These results indicate that intrathecal treatment with the IB4-saporin conjugate at the level of L6-S1 spinal cord, which reduces IB4 afferent nerve terminal staining in lamina II of the L6 spinal cord as well as the number of IB4-binding neurons in L6 DRG, suppressed bladder overactivity induced by bladder irritation without affecting normal micturition. Thus targeting IB4-binding, non-peptidergic afferent pathways sensitive to capsaicin and adenosine 5'-triphosphate may be an effective treatment for overactivity and/or pain responses in the bladder.  相似文献   

18.
Immunohistochemical and pharmacological studies were conducted to examine the origin and function of peptidergic nerves in the sacral autonomic system of the cat. Leucine-enkephalin (L-Enk) immunoreactivity was identified in nerve terminals in peripheral ganglia on the surface of the urinary bladder and in the parasympathetic nucleus in the sacral spinal cord. In colchicine-treated animals L-Enk was also detected in sacral preganglionic neurons (sPGN) identified by retrograde transport of a fluorescent dye. L-Enk terminals in bladder ganglia are believed to arise from sPGN since the terminals were eliminated by transection of the sacral ventral roots. Pharmacological studies indicated that exogenous as well as endogenously released enkephalins have an inhibitory action at both ganglionic and spinal sites in the sacral outflow to the urinary bladder. Peptides were also associated with afferents nerves in the sacral autonomic system. The distribution of substance P, VIP and cholecystokinin in the sacral dorsal horn paralleled the distribution of visceral afferent projections as demonstrated with HRP techniques. Dye labeling combined with immunohistochemistry revealed that some dorsal root ganglion cells projecting to the pelvic viscera contain substance P or VIP.  相似文献   

19.
The distribution of NADPH-d staining and neuronal nitric oxide synthase (nNOS)-immunoreactivity in the spinal cord of the guinea pig was studied to evaluate the potential role of nitric oxide in lumbosacral afferent and spinal autonomic pathways and to compare the distribution of these two markers to that observed in other species. NADPH-d staining and nNOS-immunoreactivity were present in neurons and fibers in the superficial dorsal horn, dorsal commissure and in neurons around the central canal in all levels of the spinal cord examined. Sympathetic preganglionic neurons in the thoracic and rostral lumbar segments identified by choline acetyl transferase (ChAT) immunoreactivity exhibited prominent NADPH-d staining and nNOS-immunoreactivity; whereas the ChAT-immunoreactive parasympathetic preganglionic neurons in the sacral segments were not stained. The most prominent NADPH-d staining in the sacral segments occurred in fibers extending from Lissauer's tract through laminae I along the lateral edge of the dorsal horn to the region of the sacral parasympathetic nucleus (lateral collateral pathway of Lissauer). These fibers were prominent in the S1-S3 segments but not in adjacent (L5-L7 and Cx1) or thoracolumbar segments. These NADPH-d fibers were, for the most part, not nNOS-immunoreactive, but did overlap with a prominent fiber bundle containing vasoactive intestinal polypeptide immunoreactivity in the sacral spinal cord. These results indicate that nitric oxide may function as a transmitter in thoracolumbar sympathetic preganglionic neurons, but not in sacral parasympathetic preganglionic neurons. Although the functional significance of the NADPH-d positive, nNOS-negative fiber bundle on the lateral edge of the sacral dorsal horn remains to be determined, this fiber tract may represent, in part, visceral afferent projections to the sacral parasympathetic nucleus.  相似文献   

20.
The conduction velocities of individual afferent fibers innervating the rat urinary bladder were determined by the antidromic stimulation of dorsal roots while recording from bladder postganglionic nerves. Conduction velocities ranged from 0.5 to 21.0 m/s; 70% of the velocities were less than 2.5 m/s. The distribution within the dorsal roots was ipsilateral with 84% in L6 and 16% in S1. Neuroanatomical tracing with horseradish peroxidase applied to individual bladder postganglionic nerves resulted in ipsilateral labeling of dorsal root ganglion cells with 77% in L6, 20% in S1, and 3% in L1–L2. Ultrastructural examination of bladder postganglionic nerves revealed some myelinated fibers (average diameter: 2.6 μm) and many unmyelinated fibers. Therefore, in the rat, most of the bladder afferent fibers appear to be unmyelinated, although a population of myelinated afferent fibers is also present. Bladder afferent fibers enter the spinal cord mainly in segment L6 with a minor fraction entering in S1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号