首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Genetics in medicine》2021,23(10):1873-1881
PurposePhosphatidylinositol Glycan Anchor Biosynthesis, class G (PIGG) is an ethanolamine phosphate transferase catalyzing the modification of glycosylphosphatidylinositol (GPI). GPI serves as an anchor on the cell membrane for surface proteins called GPI-anchored proteins (GPI-APs). Pathogenic variants in genes involved in the biosynthesis of GPI cause inherited GPI deficiency (IGD), which still needs to be further characterized.MethodsWe describe 22 individuals from 19 unrelated families with biallelic variants in PIGG. We analyzed GPI-AP surface levels on granulocytes and fibroblasts for three and two individuals, respectively. We demonstrated enzymatic activity defects for PIGG variants in vitro in a PIGG/PIGO double knockout system.ResultsPhenotypic analysis of reported individuals reveals shared PIGG deficiency–associated features. All tested GPI-APs were unchanged on granulocytes whereas CD73 level in fibroblasts was decreased. In addition to classic IGD symptoms such as hypotonia, intellectual disability/developmental delay (ID/DD), and seizures, individuals with PIGG variants of null or severely decreased activity showed cerebellar atrophy, various neurological manifestations, and mitochondrial dysfunction, a feature increasingly recognized in IGDs. Individuals with mildly decreased activity showed autism spectrum disorder.ConclusionThis in vitro system is a useful method to validate the pathogenicity of variants in PIGG and to study PIGG physiological functions.
  1. Download : Download high-res image (86KB)
  2. Download : Download full-size image
  相似文献   

2.
Inherited glycosylphosphatidylinositol (GPI) deficiencies are a group of clinically and genetically heterogeneous conditions belonging to the congenital disorders of glycosylation. PIGW is involved in GPI biosynthesis and modification, and biallelic pathogenic variants in this gene cause autosomal recessive GPI biosynthesis defect 11. Only five patients and two fetuses have been reported in the literature thus far. Here we describe a new patient with a novel homozygous missense variant in PIGW, who presented with hypotonia, severe intellectual disability, early‐onset epileptic seizures, brain abnormalities, nystagmus, hand stereotypies, recurrent respiratory infections, distinctive facial features, and hyperphosphatasia. Our report expands the phenotype of GPI biosynthesis defect 11 to include stereotypies and recurrent respiratory infections. A detailed and long‐term analysis of the electroclinical characteristics and review of the literature suggest that early‐onset epileptic seizures are a key manifestation of GPI biosynthesis defect 11. West syndrome and focal‐onset epileptic seizures are the most common seizure types, and the fronto‐temporal regions may be the most frequently involved areas in these patients.  相似文献   

3.
We identified an individual with a homozygous missense variant (p.Ser103Pro) in a conserved residue of the glycosylphosphatidylinositol (GPI) biosynthesis gene PIGH. This gene encodes an essential component of the phosphatidylinositol N‐acetylglucosaminyltransferase complex, in the first step of the biosynthesis of GPI, a glycolipid anchor added to more than one hundred human proteins, several being critical for embryogenesis and neurological functions. The affected individual had hypotonia, moderate developmental delay, and autism. Unlike other reported individuals with GPI deficiency, the proband did not have epilepsy; however, he did have two episodes of febrile seizures. He had normal alkaline phosphatase and no brachytelephalangy. Upon analysis of the surface expression of GPI‐anchored proteins on granulocytes, he was demonstrated to have GPI deficiency. This suggests that PIGH mutations may cause a syndrome with developmental delay and autism, but without an epileptic encephalopathy, and should increase the awareness of the potentially deleterious nature of biallelic variants in this gene.  相似文献   

4.
Defective glycosylphosphatidylinositol (GPI)‐anchor biogenesis can cause a spectrum of predominantly neurological problems. For eight genes critical to this biological process, disease associations are not yet reported. Scanning exomes from 7,833 parent–child trios and 1,792 singletons from the DDD study for biallelic variants in this gene‐set uncovered a rare PIGH variant in a boy with epilepsy, microcephaly, and behavioral difficulties. Although only 2/2 reads harbored this c.1A > T transversion, the presence of ~25 Mb autozygosity at this locus implied homozygosity, which was confirmed using Sanger sequencing. A similarly‐affected sister was also homozygous. FACS analysis of PIGH‐deficient CHO cells indicated that cDNAs with c.1A > T could not efficiently restore expression of GPI‐APs. Truncation of PIGH protein was consistent with the utilization of an in‐frame start‐site at codon 63. In summary, we describe siblings harboring a homozygous c.1A > T variant resulting in defective GPI‐anchor biogenesis and highlight the importance of exploring low‐coverage variants within autozygous regions.  相似文献   

5.
Rare pathogenic EIF2S3 missense and terminal deletion variants cause the X-linked intellectual disability (ID) syndrome MEHMO, or a milder phenotype including pancreatic dysfunction and hypopituitarism. We present two unrelated male patients who carry novel EIF2S3 pathogenic missense variants (p.(Thr144Ile) and p.(Ile159Leu)) thereby broadening the limited genetic spectrum and underscoring clinically variable expressivity of MEHMO. While the affected male with p.(Thr144Ile) presented with severe motor delay, severe microcephaly, moderate ID, epileptic seizures responsive to treatments, hypogenitalism, central obesity, facial features, and diabetes, the affected male with p.(Ile159Leu) presented with moderate ID, mild motor delay, microcephaly, epileptic seizures resistant to treatment, central obesity, and mild facial features. Both variants are located in the highly conserved guanine nucleotide binding domain of the EIF2S3 encoded eIF2γ subunit of the heterotrimeric translation initiation factor 2 (eIF2) complex. Further, we investigated both variants in a structural model and in yeast. The reduced growth rates and lowered fidelity of translation with increased initiation at non-AUG codons observed for both mutants in these studies strongly support pathogenicity of the variants.  相似文献   

6.
Identification of rare genetic variants in patients with intellectual disability (ID) has been greatly accelerated by advances in next generation sequencing technologies. However, due to small numbers of patients, the complete phenotypic spectrum associated with pathogenic variants in single genes is still emerging. Among these genes is ZBTB18 (ZNF238), which is deleted in patients with 1q43q44 microdeletions who typically present with ID, microcephaly, corpus callosum (CC) abnormalities, and seizures. Here we provide additional evidence for haploinsufficiency or dysfunction of the ZBTB18 gene as the cause of ID in five unrelated patients with variable syndromic features who underwent whole exome sequencing revealing separate de novo pathogenic or likely pathogenic variants in ZBTB18 (two missense alterations and three truncating alterations). The neuroimaging findings in our cohort (CC hypoplasia seen in 4/4 of our patients who underwent MRI) lend further support for ZBTB18 as a critical gene for CC abnormalities. A similar phenotype of microcephaly, CC agenesis, and cerebellar vermis hypoplasia has been reported in mice with central nervous system‐specific knockout of Zbtb18. Our five patients, in addition to the previously described cases of de novo ZBTB18 variants, add to knowledge about the phenotypic spectrum associated with ZBTB18 haploinsufficiency/dysfunction.  相似文献   

7.
Mabry syndrome is a glycophosphatidylinositol (GPI) deficiency characterized by intellectual disability, distinctive facial features, intractable seizures, and hyperphosphatasia. We expand the phenotypic spectrum of inherited GPI deficiencies with novel bi-allelic phosphatidylinositol glycan anchor biosynthesis class O (PIGO) variants in a neonate who presented with intractable epilepsy and complex gastrointestinal and urogenital malformations.  相似文献   

8.
To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID‐associated genes using targeted next‐generation sequencing. Likely pathogenic rare variants were found in ~11% of the cases (113 variants in 107/986 individuals: ~8% of the individuals had a likely pathogenic loss‐of‐function [LoF] variant, whereas ~3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%–15% yield from array CGH alone.  相似文献   

9.
10.
Mutations in the MBOAT7 gene have been described in 43 patients, belonging to 18 families, showing nonspecific clinical features (intellectual disability [ID], seizures, microcephaly or macrocephaly, and mild to moderate cerebellar atrophy) that make the clinical diagnosis difficult. Here we report the first Italian patient, a 22.5‐year‐old female, one of the oldest reported, born to apparently consanguineous parents. She shows severe ID, macrocephaly, seizures, aggressive outbursts, hyperphagia. We also documented progressive atrophy of the cerebellar vermis, that appeared not before the age of 7. The whole‐exome sequencing of the trio identified a novel homozygous variant c.1057_1058delGCinsCA (p.Ala353His) in the MBOAT7 gene. The variant is considered to be likely pathogenic, since it is absent from population database and it lies in a highly conserved amino acid residue. This disorder has a neurometabolic pathogenesis, implicating a phospholipid remodeling abnormalities. A brain hydrogen‐magnetic resonance spectroscopy (H‐MRS) examination in our patient disclosed a peculiar neurometabolic profile in the cerebellar hemispheric region. This new finding could address the clinical suspicion of MBOAT7‐related disorder, among the wide range of genetic conditions associated with ID and cerebellar atrophy. Moreover, the documented progression of cerebellar atrophy and the worsening of the disease only after some years open to the possibility of a therapeutic window after birth.  相似文献   

11.
12.
13.
Pathogenic variants in polynucleotide kinase 3′‐phosphatase (PNKP) gene have been associated with two distinct clinical presentations: autosomal recessive microcephaly, seizures, and developmental delay (MCSZ; MIM 613402) and ataxia with oculomotor apraxia type 4 (AOA4; MIM 616267). More than 40 patients have been reported so far, and their clinical presentations revealed a continuum phenotypic spectrum ranging from congenital microcephaly and early‐onset intractable seizures, to adult onset slowly progressive sensory‐motor neuropathy and cerebellar ataxia. We describe three unrelated Italian patients with different phenotypes and novel or recurrent pathogenic variants in PNKP gene. Patient 1, homozygous for the recurrent frameshift variant (p.Thr424Glyfs*49), had an early‐onset MCSZ phenotype. Late in the disease progression, cerebellar ataxia and peripheral neuropathy were recognized. Patient 2, homozygous for a frameshift variant (p.Ala429Thrfs*42), presented a phenotype partially consistent with MCSZ including microcephaly and developmental delay, but without seizures. Patient 3 is one of the oldest patients described to date and presented polyneuropathy, and cerebellar signs. Biochemical tests showed abnormalities of cholesterol, albumin, or alpha‐fetoprotein plasma levels. The clinical presentation of our patients encompassed early‐to‐adult‐onset manifestations. For these cases, the long clinical follow‐up allowed an in‐depth phenotypic characterization and a better delineation of the natural history of patients carrying PNKP pathogenic variants.  相似文献   

14.
Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile‐onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17‐related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early‐onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late‐onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.  相似文献   

15.
16.
17.
Developmental and Epileptic encephalopathies (DEE) describe heterogeneous epilepsy syndromes, characterized by early‐onset, refractory seizures and developmental delay (DD). Several DEE associated genes have been reported. With increased access to whole exome sequencing (WES), new candidate genes are being identified although there are fewer large cohort papers describing the clinical phenotype in such patients. We describe 6 unreported individuals and provide updated information on an additional previously reported individual with heterozygous de novo missense variants in YWHAG. We describe a syndromal phenotype, report 5 novel, and a recurrent p.Arg132Cys YWHAG variant and compare developmental trajectory and treatment strategies in this cohort. We provide further evidence of causality in YWHAG variants. WES was performed in five patients via Deciphering Developmental Disorders Study and the remaining two were identified via Genematcher and AnnEX databases. De novo variants identified from exome data were validated using Sanger sequencing. Seven out of seven patients in the cohort have de novo, heterozygous missense variants in YWHAG including 2/7 patients with a recurrent c.394C > T, p.Arg132Cys variant; 1/7 has a second, pathogenic variant in STAG1. Characteristic features included: early‐onset seizures, predominantly generalized tonic–clonic and absence type (7/7) with good response to standard anti‐epileptic medications; moderate DD; Intellectual Disability (ID) (5/7) and Autism Spectrum Disorder (3/7). De novo YWHAG missense variants cause EE, characterized by early‐onset epilepsy, ID and DD, supporting the hypothesis that YWHAG loss‐of‐function causes a neurological phenotype. Although the exact mechanism of disease resulting from alterations in YWHAG is not fully known, it is possible that haploinsufficiency of YWHAG in developing cerebral cortex may lead to abnormal neuronal migration resulting in DEE.  相似文献   

18.
The IQSEC2‐ related disorders represent a spectrum of X‐chromosome phenotypes with intellectual disability (ID) as the cardinal feature. Here, we review the increasing number of reported families and isolated cases have been reported with a variety of different pathogenic variants. The spectrum of clinical features is expanding with early‐onset seizures as a frequent comorbidity in both affected male and female patients. There is a growing number of female patients with de novo loss‐of‐function variants in IQSEC2 have a more severe phenotype than the heterozygous state would predict, particularly if IQSEC2 is thought to escape X‐inactivation. Interestingly, these findings highlight that the classical understanding of X‐linked inheritance does not readily explain the emergence of these affected females, warranting further investigations into the underlying mechanisms.  相似文献   

19.
20.
METTL23 belongs to a family of methyltransferase like proteins (METTL) that transfer methyl group to various substrates. Recently, pathogenic homozygous variants in METTL23 were identified in patients from three families who presented with intellectual disability (ID) and variable dysmorphic features. In this report, we present unpublished phenotypic data from the original family as well as six new subjects from four families who also presented with mild to moderate ID and dysmorphic features, and were found to harbor four previously unpublished homozygous or compound heterozygous variants in METTL23. Our report further supports the role of this gene in autosomal recessive ID and emphasizes the mild but consistent facial features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号