首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Previous studies have demonstrated that the intrastriatal implantation of human retinal pigment epithelial cells attached to gelatin microcarriers (hRPE-GM) ameliorates behavioral deficits in animal models of Parkinson disease. However, there are only sparse data on cell survival in the host. In this study, we characterized a variety of retinal pigment epithelial (RPE)-specific markers in vitro and used these markers to investigate the long-term survival of hRPE-GM implants. Sprague-Dawley rats (n = 22) were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) and implanted with hRPE-GM without immunosuppression. Rats were euthanized at 48 hours, 7 days, 4 weeks, and 5 months postimplant and immunohistochemically processed using the following antibodies: 1) human-specific nuclear mitotic apparatus protein (NuMA-Ab2), 2) epithelial-specific extracellular matrix metalloproteinase inducer (EMMPRIN), 3) RPE cell-specific RPE65, and the inflammation markers 4) glial fibrillary acidic protein and 5) ED1 (rat CD68). Our analysis revealed NuMA-, EMMPRIN-, and RPE65-immunoreactive cells at different times postimplant. The morphologic features of hRPE cell implants (at 48 hours and 5 months) were confirmed by electron microscopy. Furthermore, despite evidence of chronic inflammation at the later time point, there is an appreciable number of surviving hRPE cells. This study suggests that hRPE-GM implants can survive in the absence of immunosuppression and can be potentially used as an alternative for treating Parkinson disease.  相似文献   

2.
Human retinal pigment epithelial (hRPE) cells are dopaminergic support cells in the neural retina. Stereotaxic intrastriatal implantation of hRPE cells attached to gelatin microcarriers (Spheramine) in rodent and non-human primate models of Parkinson's disease (PD) produces long term amelioration of motor and behavioral deficits, with histological and PET evidence of cell survival without immunosuppression. Long-term safety in cynomologous monkeys has also been demonstrated. Six H&Y stage III/IV PD patients were enrolled in a one-year, open-label, single center study to evaluate the safety and efficacy of Spheramine (approximately 325,000 cells) implanted in the most affected post-commissural putamen. All patients tolerated the implantation of Spheramine well and demonstrated improvement. At 6, 9, and 12 months post-operatively, the mean UPDRS-Motor score "off", the primary outcome measure, improved 33%, (n = 6), 42% (n = 6), and 48% (n = 3), respectively. No "off-state" dyskinesias have been observed. Based on these preliminary results, Spheramine appears to show promise in treating late stage PD patients.  相似文献   

3.
4.
Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspase-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.  相似文献   

5.
Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspase-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.  相似文献   

6.
目的 观察微囊化人视网膜色素上皮(RPE)细胞移植治疗帕金森病(PD)大鼠的疗效. 方法 采用机械分离法和酶消化法原代培养人RPE细胞,传代后用高压静电微胶囊成型装置制作海藻酸钠-多聚赖氨酸-海藻酸钠微囊化细胞,将其立体定向移植人6-羟基多巴胺(6-OHDA)所致的PD模型大鼠的右侧纹状体.实验分为模型组、裸细胞(RPE)组、空囊对照(APA)组以及微囊化细胞(APA-RPE)组.检测各组大鼠移植前后阿朴吗啡诱导的旋转行为变化和移植后8周纹状体中多巴胺(DA)的含量. 结果 APA-RPE组大鼠在移植后4周阿朴吗啡诱发的旋转次数[(6.25±1.04)r/min]开始减少,与移植前[(12.88±7.34)r/min]相比减少幅度为51.48%,至第8周[(5.87±2.03)r/min]减少更加明显,减少幅度为54.43%,差异均有统计学意义(P<0.05);与模型组[(108.14±1.89)mol/L]比较,APA-RPE组移植后8周[(342.63±28.32)mol/L]大鼠纹状体DA含量明显增加,差异有统计学意义(P<0.05),而RPE组和APA组未见明显变化. 结论 微囊化人RPE细胞对PD大鼠模型有治疗作用,可作为一种前景良好的治疗PD的方法 进一步研究.  相似文献   

7.
Intrastriatal transplantation of gelatin microcarrier-attached human retinal pigment epithelial cells (hRPE-GM) may represent an alternative source for cell therapy in Parkinson disease (PD). The use of human retinal pigment epithelial (hRPE) cells in PD relies on the capacity of these cells to produce l-dopa as an intermediate product in the eumelanin synthesis pathway. We investigated the behavioral effects of hRPE-GM implants on forelimb use asymmetries and hindlimb motor deficits in unilateral and bilateral 6-hydroxydopamine (6-OHDA) rat models of PD. We report that intrastriatal unilateral implantation of hRPE-GM in rats with 6-OHDA nigrostriatal lesions produce an amelioration of the contralateral forelimb disuse and the contralateral hindlimb deficits. These results further support the possibility that implantation of cultured hRPE cells may be a promising therapeutic option for patients with PD.  相似文献   

8.
Human retinal pigment epithelial (hRPE) cells produce L-dopa, are easily harvested and expanded in culture, and, attached to microcarriers, can survive in the brain without immunosuppression. Studies in rats, primates, and parkinsonian patients have demonstrated that striatally implanted hRPE cells attached to gelatin microcarriers (RPE-GM) are able to improve parkinsonian symptoms and are well tolerated for extended periods. In moderately to severely impaired monkeys with bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced parkinsonism receiving a unilateral RPE-GM implant in the putamen, there was a 39% improvement in clinical scores over the first 2 months post-implant. Positron emission tomography (PET) with [18F]fluoro-L-dopa (FDOPA) showed increased accumulation in the implanted putamen and a concomitant decrease in [11C]raclopride binding in the same area, suggesting increased dopamine release compared to the contralateral putamen. We report the first in vivo visualization of hRPE cells and their effects, implicating a dopaminergic mechanism of action.  相似文献   

9.
10.
11.
12.
Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by‐product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine‐rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide–treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin‐exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha‐v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Human retinal pigment epithelial (RPE) cells in culture demonstrated saturable specific binding of [3H]quinuclidinyl benzilate (QNB). Specific binding represents about 75% of total binding. Scatchard analysis yields a Kd of 0.178 nM and Bmax of 42 fmol/mg protein. Atropine and carbachol show typical displacement curves, and a Hill plot has a slope of 0.96, suggesting a homogeneous population of receptors. Muscarinic agonists have no effect on intracellular cyclic adenosine monophosphate levels in RPE cells measured by radioimmunoassay, nor do they alter the isoproterenol-induced stimulation of adenylate cyclase. However, both acetylcholine and carbachol cause a rapid increase in intracellular calcium concentration measured by the fluorescent indicator quin 2. Atropine reverses the calcium rise when added after agonist and prevents the rise when added prior to agonist. These data suggest that human RPE cells possess muscarinic receptors coupled to calcium mobilization.  相似文献   

14.
15.
16.
目的 观察人羊膜上皮细胞在帕金森病鼠移植后的存活情况,以及它对帕金森病鼠旋转行为的改善作用.方法 采用6-羟多巴胺立体定向纹状体注射制作帕金森病鼠模型;51只大鼠随机分三组:人羊膜上皮细胞移植组、假手术PBS对照组以及空白模型对照组.制模成功后第5周用人特异性抗体Nestin和Vimentin检测人羊膜细胞的存活情况,第10周切片观察黑质部TH阳性神经元的变化情况,高效液相色谱--电化学仪测定纹状体多巴胺(DA),高香草酸(HVA),3,4-二羟基苯乙酸(DOPAC)等浓度以及脑脊液DA的含量.结果 人羊膜上皮细胞帕金森病鼠侧脑室内移植可以存活达10周;移植组大鼠旋转数较对照组明显降低(P≤0.01);黑质部TH阳性神经元数量较对照组升高(P≤0.01),纹状体区DA、HVA和DOPAC含量较PBS对照组明显升高(P<0.01~0.05),移植组脑脊液DA含量较PBS对照组也显著增加(P<0.01).结论 人羊膜上皮细胞侧脑室移植可以改善帕金森病鼠的旋转行为,其机制可能与其增加纹状体区多巴胺等递质水平有关.  相似文献   

17.
This study demonstrates the effects of conditioned media from transformed neonatal rat retinal pigment epithelial cells (tnrRPE-CM) in a culture system consisting of neonatal rat retinal explants. For this study, retinal explants from postnatal day 2 (PN2) normal rats were cultured for over 3 weeks on a poly-D -L -ornithine-coated surface in RPE-CM only, 10% serum, or a serum-free defined media, and then examined by phase-contrast and scanning electron microscopy and immunocytochemistry. After 2 days in vitro, long ganglion cell-like neurites projected from retinal explants grown in tnrRPE-CM. These neurites increased in number and length with prolonged time in culture. In addition, by 5 days, round cells were observed adjacent to neonatal explants grown in tnrRPE-CM. By day 10, these round cells had increased in number and were seen along the neurites, in massive clusters immediately adjacent to these explants and dispersed throughout the culture-plate surface. Media conditioned by primary cultures of normal neonatal rat RPE cells caused a similar, but less robust, cellular response in retinal explants when compared to tnrRPE-CM. At 10 days, retinal explants grown in 10% serum showed only a few short processes, but no round cells, while those explants grown in defined media appeared to be degenerating. The round migrating cells are classified as retinal progenitor cells since they immunostained for opsin and interphotoreceptor retinoid-binding protein (IRBP), two photoreceptor cell markers, and a few for cellular retinaldehyde binding protein (CRALBP), a Muller cell marker. Neurite outgrowth and retinal progenitor cell production from explants were eliminated when the tnrRPE-CM was subjected to trypsin or heat treatment, indicating that the factor(s) responsible for promoting these cellular events was most likely proteinaceous. Growth factors, including basic fibroblast growth factor, were unable to generate long neurite outgrowth or progenitor cell production as observed in RPE-CM-supplemented explant cultures. We report that CM from cultures of primary and transformed neonatal rat RPE cells promoted ganglion cell-like neurites and the production of migrating retinal progenitor cells that primarily expressed photoreceptor-specific markers, from neonatal rat retinal explants. This evidence further confirms the important role of RPE in retinal development. The production of large numbers of progenitor cells by an RPE-secreted factor(s) may have important implications for possible therapeutic approaches to help correct retinal disease states by replacing lost cells through transplantation technology. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Adenosine agonists cause a marked stimulation in cyclic AMP accumulation in whole human retinal pigment epithelial (RPE) cells in the presence of adenosine deaminase and papaverine, a phosphodiesterase inhibitor. N-Ethylcarboxamidoadenosine (NECA) stimulates cyclic AMP accumulation 16.1-fold above basal with an EC50 of 2.5 x 10(-7) M. It is also an effective (1.9-fold) stimulator of adenylate cyclase activity in RPE membrane preparations and a modest (1.22-fold) stimulator in the presence of forskolin in RPE cell membranes prepared from freshly isolated porcine RPE. N6-Cyclopentyladenosine (CPA) and N6-phenylisopropyladenosine (PIA) also increase cyclic AMP levels with EC50s of 4.9 x 10(6) M (8.9-fold above basal) and 3.5 x 10(-6) M (8.0-fold above basal) respectively. This potency order (NECA greater than PIA greater than CPA) is typical of A2-adenosine receptors. The relatively A1-selective agonists 10(-7) M indicating that RPE cells do not have A1-receptors which inhibit adenylate cyclase. Three adenosine receptor antagonists, BW-A1433U, 8-cyclopentyltheophylline and 8-sulfophenyltheophylline, blocked the NECA-induced stimulation of cyclic AMP accumulation with IC50s of 0.36 microM, 1.5 microM, and 75 microM respectively. Since alteration of cAMP levels has been demonstrated to affect several RPE functions, including cell migration, resorption of subretinal fluid, and phagocytosis, adenosine may play a significant regulatory role in RPE.  相似文献   

19.
20.
Neuropeptide-induced mobilization of cytosolic free Ca2+ concentration ([Ca2+]i) and phosphatidylinositol (PI) turnover in cultured human retinal pigment epithelial (RPE) cells were studied and their temporal relationship was compared. After RPE cells were loaded with fura-2/AM, [Ca2+]i was analyzed using a digital imaging microscopy system. Bombesin-related peptides which include bombesin, neuromedin B, and neuromedin C induced significant [Ca2+]i transients in RPE cells, whereas other neuropeptides, neuropeptide Y, vasoactive intestinal polypeptide (VIP), and substance P were not effective to produce [Ca2+]i transients. The percentage of reactive cells which showed positive [Ca2+]i transients induced by bombesin-related peptides was around 50%. Bombesin (1 microM) showed a peak concentration of 663 +/- 27.0 nM (mean +/- S.E.M., n = 61), neuromedin B (1 microM), 327 +/- 28.7 nM (mean +/- S.E.M., n = 38), and neuromedin C (1 microM), 357 +/- 22.7 nM (mean +/- S.E.M., n = 32). Ca2+ transients occurred within 30 s and lasted less than 5 min after the application of the neuropeptides. Chelation of the extracellular Ca2+ by EGTA significantly shortened the total time of [Ca2+]i transients induced by the above. The measurements of phosphoinositides in RPE cells revealed that neuropeptide-induced PI turnover was as quick as [Ca2+]i transients. Inositol biphosphate (IP2) and inositol triphosphate (IP3) in RPE cells showed transient increases at 15 s after the stimulation by bombesin-related peptides. These data show that changes in [Ca2+]i and PI turnover are directly linked and both are important in the signal transduction system of bombesin-related peptides in RPE cells. The data also suggest that bombesin-related peptides may play some possible roles in RPE cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号