首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 ± 0.05 mm2/s) were higher compared with the cerebellar hemisphere (1.25 ± 0.06 mm2/s) and lowest in the pons (1.11 ± 0.05 mm2/s). Thalamus and BG showed intermediate values (1.25 ± 0.04 mm2/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies.  相似文献   

2.
We report MRI of the brain in 45 fetuses; the findings were confirmed by pathological examination or postnatal neuroradiological studies. MRI necessitates medication to eliminate fetal motion; curare was injected into the umbilical cord, and MRI is therefore limited to cases in which umbilical cord puncture is indicated. T1-weighted images were obtained in axial, sagittal and coronal planes; the last of these was generally as the most useful as regards morphology. We demonstrated cerebral malformations (n=13), brain haemorrhage (n=1), a facial angioma (n=1), a facial mass (n=1), hydrocephalus (n=5), unilateral ventricular enlargement (n=1), atrophy (n=4), a porencephalic cyst (n=1) and normal appearances of the brain in 18 cases. Twenty-two of the fetuses were born alive, and the clinical and/or neuroradiological examination confirmed the antenatal findings. The diagnosis was also confirmed in 8 cases in which a neuropathological examination was possible.  相似文献   

3.
4.
Cerebral maturation in the normal human fetal brain was investigated by in utero localized proton MR spectroscopy ((1)H MRS). Fifty-eight subjects at 22-39 weeks of gestational age (GA) were explored. A combination of anterior body phased-array coils (four elements) and posterior spinal coils (two to three elements) was used. Four sequences were performed (point-resolved spectroscopy (PRESS) sequence with short and long TEs (30 and 135 ms), with and without water saturation). A significant reduction in myo-inositol (myo-Ins) and choline (Cho) levels, and an increase in N-acetylaspartate (NAA) and creatine (Cr) content were observed with progressing age. A new finding is the detection of NAA as early as 22 weeks of GA. This result is probably related to the fact that oligodendrocytes (whether mature or not) express NAA, as demonstrated by in vitro studies. Cho and myo-inositol were the predominant resonances from 22 to 30 weeks and decreased gradually, probably reflecting the variations in substrate needed for membrane synthesis and myelination. The normal MRS data for the second trimester of gestation (when fetal MRI is usually performed) reported here can help determine whether brain metabolism is altered or not, especially when subtle anatomic changes are observed on conventional images.  相似文献   

5.
Diffusion tensor imaging of the developing mouse brain.   总被引:11,自引:0,他引:11  
It is shown that diffusion tensor MR imaging (DTI) can discretely delineate the microstructure of white matter and gray matter in embryonic and early postnatal mouse brains based on the existence and orientation of ordered structures. This order was found not only in white matter but also in the cortical plate and the periventricular zone, which are precursors of the cerebral cortex. This DTI-based information could be used to accomplish the automated spatial definition of the cortical plate and various axonal tracts. The DTI studies also revealed a characteristic evolution of diffusion anisotropy in the cortex of the developing brain. This ability to detect changes in the organization of the brain during development will greatly enhance morphological studies of transgenic and knockout models of cortical dysfunction. Magn Reson Med 46:18-23, 2001.  相似文献   

6.
7.
Diffusion-weighted MR imaging (DWI) in spinal cord ischemia   总被引:3,自引:0,他引:3  
Thurnher MM  Bammer R 《Neuroradiology》2006,48(11):795-801
Introduction Spinal cord infarction is a rare clinical diagnosis characterized by a sudden onset of paralysis, bowel and bladder dysfunction, and loss of pain and temperature perception, with preservation of proprioception and vibration sense. Magnetic resonance imaging (MRI) usually demonstrates intramedullary hyperintensity on T2-weighted MR images with cord enlargement. However, in approximately 45% of patients, MR shows no abnormality. Diffusion-weighted MR imaging (DWI) has been widely used for the evaluation of a variety of brain disorders, especially for acute stroke. Preliminary data suggest that DWI has the potential to be useful in the early detection of spinal infarction.Methods We performed DWI, using navigated, interleaved, multishot echo planar imaging (IEPI), in a series of six patients with a clinical suspicion of acute spinal cord ischemia.Results In all patients, high signal was observed on isotropic DWI images with low ADC values (0.23 and 0.86×10−3 cm2/s), indicative of restricted diffusion.Conclusion We analyzed the imaging findings from conventional MR sequences and diffusion-weighted MR sequences in six patients with spinal cord infarction, compared the findings with those in published series, and discuss the value of DWI in spinal cord ischemia based on current experience. Although the number of patients with described DWI findings totals only 23, the results of previously published studies and those of our study suggest that DWI has the potential to be a useful and feasible technique for the detection of spinal infarction.  相似文献   

8.
9.
The purpose of our study was to determine the usefulness of echo-planar diffusion-weighted imaging (EPDI) in the evaluation of watershed hypoxic-ischemic brain injury in pediatric patients. Eighteen patients ranging in age from 3 weeks to 12 years were evaluated for evidence of ischemic/infarction changes on conventional MR and EPDI. Included in the study group were five patients with sickle cell disease, four with congenital heart disease, four with hypotensive episodes with various etiologies, three with sepsis, and two with encephalitis or meningitis. Patients were examined 2 h to 6 days after the initial insult, with follow-up studies in four patients at 1 to 62 days after the initial examination. After conventional MR imaging (T1, FSE T2, and FLAIR), diffusion-weighted MR imaging was performed using high-speed, single-shot EP techniques with TR 6000, TE 144, matrix 96 × 128, FOV 23.3 × 31 and five b values of 0, 160, 360, 640, and 1,000 s/mm2. EPDI demonstrated abnormally increased signal in watershed ischemic/infarction zones in all initial cases. Apparent diffusion coefficients (ADC) were obtained in 59 lesions. When compared with radiographically normal (on EPDI) contralateral brain parenchyma, 45 demonstrated a relatively decreased ADC, while eight had normal ( ± 10 %) and six had increased ADC. In four cases, signal abnormalities on EPDI were not seen or exceeded that seen with conventional MR imaging. In the remaining cases, signal abnormalities were obvious on EPDI and more subtle on conventional MR imaging. Follow-up studies demonstrated resolution of abnormal EPDI signal with persistent abnormalities on conventional imaging in some cases, while others revealed an increase in size or number of EPDI signal abnormalities, suggesting ongoing acute ischemic/infarctive changes. EPDI is a rapid, sensitive technique for detecting watershed ischemic/infarction changes in pediatric patients with hypoperfusion episodes, at times before such changes are apparent on conventional MR images and/or are clinically apparent. Received: 5 January 2001/Accepted: 1 February 2001  相似文献   

10.
To determine the potential value of multimodal MRI for the presurgical management of patients with brain tumors, we performed combined magnetic resonance imaging (MRI) and proton MR spectroscopy (MRS) in 164 patients who presented with tumors of various histological subtypes confirmed by surgical biopsy. Univariate statistical analysis of metabolic ratios carried out on the first 121 patients demonstrated significant differences in between-group comparisons, but failed to provide sufficiently robust classification of individual cases. However, a multivariate statistical approach correctly classified the tumors using linear discriminant analysis (LDA) of combined MRI and MRS data. After initial separation of contrast-enhancing and non-contrast-enhancing lesions, 91% of the former and 87% of the latter were correctly classified. The results were stable when this diagnostic strategy was tested on the additional 43 patients included for validation after the initial statistical analysis, with over 90% of correct classification. Combined MRI and MRS had superior diagnostic value compared to MRS alone, especially in the contrast-enhancing group. This study shows the clinical value of a multivariate statistical analysis based on multimodal MRI and MRS for the noninvasive evaluation of intracranial tumors.  相似文献   

11.
We assess diffusion-weighted MR images in the differential diagnosis of intracranial brain tumors and tumor-like conditions. Heavily diffusion-weighted (b = 1100 or 1200 s/mm2) axial images were obtained with single-shot echo-planar technique in 93 patients with pathologically confirmed various intracranial tumors and tumor-like conditions with diffusion gradient perpendicular to the images. We compared signal intensity of the lesions with those of gray and white matter, and cerebrospinal fluid (CSF). In 29 cases (31.1 %) the lesions were isointense to gray and/or white matter. However, 5 cases (5.4 %) showed extremely increased signal intensity: two epidermoid cysts; two chordomas; and one brain abscess. The entire portion of a tumor was markedly hyperintense in 10 cases (10.8 %): four malignant lymphomas; four medulloblastomas; one germinoma; and one pineoblastoma. A CSF-like hypointense signal was seen in many cystic tumors, and cystic or necrotic portions of tumors. A neurosarcoid granulation was the only solid lesion showing characteristically a hypointense signal like CSF. The combination of markedly hyperintense and hypointense signals was seen generally in hemorrhagic tumors. Diffusion-weighted echo-planar MR imaging is useful in the differential diagnosis of brain tumors and tumor-like conditions, and suggests specific histological diagnosis in some cases. Received: 30 July 1999; Revised: 2 November 1999; Accepted: 9 December 1999  相似文献   

12.
Diffusion tensor spectroscopy (DTS) of human brain.   总被引:1,自引:0,他引:1  
The diffusion tensor of N-acetyl aspartate (NAA), creatine and phosphocreatine (tCr), and choline (Cho) was measured at 3T using a diffusion weighted STEAM (1)H-MRS sequence in the healthy human brain in 6 distinct regions (4 white matter and 2 cortical gray matter). The Trace/3 apparent diffusion coefficient (ADC) of each metabolite was significantly greater in white matter than gray matter. The Trace/3 ADC values of tCr and Cho were found to be significantly greater than NAA in white matter, whereas all 3 metabolites had similar Trace/3 ADC in cortical gray matter. Fractional anisotropy (FA) values for all 3 metabolites were consistent with water FA values in the 4 white matter regions; however, metabolite FA values were found to be higher than expected in the cortical gray matter. The principal diffusion direction derived for NAA was in good agreement with expected anatomic tract directions in the white matter.  相似文献   

13.
14.
Magnetic resonance (MR) diffusion tensor imaging (DTI) can resolve the white matter fiber orientation within a voxel provided that the fibers are strongly aligned. However, a given voxel may contain a distribution of fiber orientations due to, for example, intravoxel fiber crossing. The present study sought to test whether a geodesic, high b-value diffusion gradient sampling scheme could resolve multiple fiber orientations within a single voxel. In regions of fiber crossing the diffusion signal exhibited multiple local maxima/minima as a function of diffusion gradient orientation, indicating the presence of multiple intravoxel fiber orientations. The multimodality of the observed diffusion signal precluded the standard tensor reconstruction, so instead the diffusion signal was modeled as arising from a discrete mixture of Gaussian diffusion processes in slow exchange, and the underlying mixture of tensors was solved for using a gradient descent scheme. The multitensor reconstruction resolved multiple intravoxel fiber populations corresponding to known fiber anatomy. Ma  相似文献   

15.
Diffusion-weighted MR imaging of thyroid nodules   总被引:1,自引:0,他引:1  
Introduction  The purpose of our study was to determine the diagnostic role of diffusion-weighted imaging (DWI) in the differentiating of malignant and benign thyroid nodules by using fine needle aspiration biopsy cytology criteria as a reference standard. The apparent diffusion coefficient (ADC) values of the normal-looking thyroid parenchyma were also evaluated both in normal patients and in patients with nodules. Methods  Between March 2007 and February 2008, 76 consecutive patients with ultrasound-diagnosed thyroid nodules and 20 healthy subjects underwent diffusion-weighted MR imaging by using single-shot spin echo, echo planar imaging. A total of 93 nodules were included in the study using the following b factors 100, 200, and 300 mm2/s. ADC values of thyroid nodules and normal area in all subjects were calculated and compared using suitable statistical analysis. Results  Mean ADC values for malignant and benign nodules were and for b-100 factor, and for b-200, and and , for b-300, respectively. Mean ADC values of malignant nodules were lower than benign nodules. There were significant differences in ADC values between benign and malignant nodules. ADC values among normal-appearing thyroid parenchyma of patients and normal-appearing thyroid parenchyma of healthy subjects were insignificant at all b factors. Conclusion  Benign nodules have higher ADC values than malignant ones. DWI may be helpful in differentiating malign and benign thyroid nodules.  相似文献   

16.
17.
Diffusion-weighted imaging (DWI) techniques have shown potential to differentiate between benign and malignant neoplasms. However, the diagnostic significance of using DWI under routine conditions remains unclear. This study investigated the use of echo planar imaging (EPI) and half-Fourier acquired single-shot turbo spin echo (HASTE)-DWI with respect to the three parameters: lesion visibility, apparent diffusion coefficient (ADC) measurements, and size estimation. Following MRM (1.5 T), EPI- and HASTE-DWI were applied in 65 patients. Lesion visibility on DWI was compared with lesion visibility on subtracted contrast-enhanced T1w images (CE-T1w). Statistical tests were applied to diameter, visibility, and ADC value measurements. Seventy-four lesions were identified. ADC value measurements did not differ significantly between the two DWI sequences. The sensitivity and specificity of routine diagnostics (97.4% and 85.7%) were superior to EPI-DWI (87.2% and 82.9%) and HASTE-DWI (76.9% and 88.6%). Selecting only nonmass lesions, DWI did not prove to be of diagnostic value. Lesion demarcation by DWI was significantly lower compared with that by CE-T1w, with EPI-DWI showing the better performance (p < 0.001). No significant differences were found for size measurements between CE-T1w and DWI. Although clearly inferior compared with CE-T1w imaging, both DWI techniques are applicable for lesion assessment and size measurements.  相似文献   

18.
19.
20.
PURPOSE: To determine differences in diffusion measurements in white matter (WM) and gray matter (GM) regions of the rat cervical, thoracic, and cauda equina spinal cord using in vivo diffusion tensor imaging (DTI) with a 9.4T MR scanner. MATERIALS AND METHODS: DTI was performed on seven rats in three slices at the cervical, thoracic, and cauda equina regions of the spinal cord using a 9.4T magnet. Axial diffusion weighted images (DWIs) were collected at a b-value of 1000 seconds/mm(2) in six directions. Regions of interest were identified via T2-weighted images for the lateral, dorsal, and ventral funiculi, along with GM regions. RESULTS: Analysis of variance (ANOVA) results indicated significant differences between every WM funiculus compared to GM for longitudinal apparent diffusion coefficient (lADC), transverse apparent diffusion coefficient (tADC), fractional anisotropy (FA), measured longitudinal anisotropy (MA1), and anisotropy index (AI). A significant difference in mean diffusivity (MD) between regions of the spinal cord was not found. Diffusion measurements were significantly different at each spinal level. In general, GM regions were significantly different than WM regions; however, there were few significant differences between individual WM regions. CONCLUSION: In vivo DTI of the rat spinal cord at 9.4T appears sensitive to the architecture of neural structures in the rat spinal cord and may be a useful tool in studying trauma and pathologies in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号