首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examined the effects of a variety of ligands/activators of the peroxisome proliferator-activated receptor (PPAR) on the expression of the superoxide scavenger enzyme, Cu2+,Zn2+-superoxide dismutase (CuZn-SOD), and the superoxide generating enzyme nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) oxidase in primary cultures of human umbilical vein endothelial cells (HUVEC) and human aorta endothelial cells (HAEC). Our data show that 3 types of PPARs, PPARalpha, PPARbeta/delta/Nuc1, and PPARgamma are expressed in endothelial cells. Bezafibrate, which is a ligand/activator for PPARalpha, increased the CuZn-SOD gene expression and protein levels in endothelial cells. Troglitazone and pioglitazone, which are ligands/activators for PPARgamma, also induced PPARalpha gene and protein expression and increased CuZn-SOD gene expression and protein levels in addition to increasing PPARgamma gene and protein expression in endothelial cells. Moreover, with treatment of monounsaturated and polyunsaturated fatty acids (PUFA), the CuZn-SOD mRNA levels were positively correlated with PPARalpha mRNA levels (r = .872, P < .0001) in primary endothelial cells. In addition, the phorbol myristate acetate (PMA)-stimulated or PMA-nonstimulated 22-kd a-subunit (p22phox) mRNA levels and 47-kd a-subunit (p47phox) protein levels in NADPH oxidase were decreased by treatment with PPARalpha and PPARgamma ligands/activators. These results suggest that PPARalpha and PPARgamma gene and protein expression in endothelial cells may play a physiologic role as radical scavengers, although the details of these mechanisms remain to be established.  相似文献   

3.
Vascular endothelial growth factor receptor-2 kinase insert domain receptor (VEGFR2/KDR) is critical for angiogenesis, and VEGFR2 mRNA and protein are expressed in ZR-75 breast cancer cells and induced by 17beta-estradiol (E2). Deletion analysis of the VEGFR2 promoter indicates that the proximal GC-rich region is required for both basal and hormone-induced transactivation, and mutation of one or both of the GC-rich motifs at -58 and -44 results in loss of transactivation. Electrophoretic mobility shift and chromatin immunoprecipitation assays show that Sp1, Sp3, and Sp4 proteins bind the GC-rich region of the VEGFR2 promoter. Results of the chromatin immunoprecipitation assay also demonstrate that ERalpha is constitutively bound to the VEGFR2 promoter and that these interactions are not enhanced after treatment with E2, whereas ERalpha binding to the region of the pS2 promoter containing an estrogen-responsive element is enhanced by E2. RNA interference studies show that hormone-induced activation of the VEGFR2 promoter constructs requires Sp3 and Sp4 but not Sp1, demonstrating that hormonal activation of VEGFR2 involves a nonclassical mechanism in which ERalpha/Sp3 and ERalpha/Sp4 complexes activate GC-rich sites where Sp proteins but not ERalpha bind DNA. These results show for the first time that Sp3 and Sp4 cooperatively interact with ERalpha to activate VEGFR2 and are in contrast to previous results showing that several hormone-responsive genes are activated by ERalpha/Sp1 in breast cancer cell lines.  相似文献   

4.
5.
6.
7.
8.
Peroxisome proliferator-activated receptors (PPARs) are essential in glucose and lipid metabolism and are implicated in metabolic disorders predisposing to atherosclerosis, such as diabetes and dyslipidemia. Conversely, antidiabetic glitazones and hypolipidemic fibrate drugs, known as PPARgamma and PPARalpha ligands, respectively, reduce the process of atherosclerotic lesion formation, which involves chronic immunoinflammatory processes. Major histocompatibility complex class II (MHC-II) molecules, expressed on the surface of specialized cells, are directly involved in the activation of T lymphocytes and in the control of the immune response. Interestingly, expression of MHC-II has recently been observed in atherosclerotic plaques, and it can be induced by the proinflammatory cytokine interferon-gamma (IFN-gamma) in vascular cells. To explore a possible role for PPAR ligands in the regulation of the immune response, we investigated whether PPAR activation affects MHC-II expression in atheroma-associated cells. In the present study, we demonstrate that PPARgamma but not PPARalpha ligands act as inhibitors of IFN-gamma-induced MHC-II expression and thus as repressors of MHC-II-mediated T-cell activation. All different types of PPARgamma ligands tested inhibit MHC-II. This effect of PPARgamma ligands is due to a specific inhibition of promoter IV of CIITA and does not concern constitutive expression of MHC-II. Thus, the beneficial effects of antidiabetic PPARgamma activators on atherosclerotic plaque development may be partly explained by their repression of MHC-II expression and subsequent inhibition of T-lymphocyte activation.  相似文献   

9.
10.
The antiinflammatory action of glucocorticoids is mediated partly by the inhibition of the expression of several cytokines and adhesion molecules. Some activators for nuclear receptors other than the GR have also been shown to inhibit the expression of these inflammatory molecules, although their molecular mechanisms remain unidentified. We therefore examined the effects of the PPARalpha activator fenofibrate and the GR activator dexamethasone on TNFalpha-stimulated expression of IL-6 and vascular cell adhesion molecule-1 in vascular endothelial cells. Both fenofibrate and dexamethasone reduced TNFalpha-induced IL-6 production in human vascular endothelial cells, but only fenofibrate reduced TNFalpha-stimulated vascular cell adhesion molecule-1 expression in these cells. Transient transfection of bovine aortic endothelial cells with an IL-6 promoter construct or a vascular cell adhesion molecule-1 promoter construct revealed that fenofibrate inhibited TNFalpha-induced IL-6 promoter as well as vascular cell adhesion molecule-1 promoter activities, whereas dexamethasone inhibited only the former. EMSA demonstrated that both fenofibrate and dexamethasone reduced nuclear factor-kappaB binding to its recognition site on the IL-6 promoter, but only fenofibrate reduced such binding to the vascular cell adhesion molecule-1 promoter. Thus, down-regulation of nuclear factor-kappaB activity by PPARalpha occurs in both the IL-6 and vascular cell adhesion molecule-1 genes, whereas that by GR occurs only in the IL-6 gene in vascular endothelial cells. These results strongly suggest the existence of a target gene-specific mechanism for the nuclear receptor-mediated down-regulation of nuclear factor-kappaB activity.  相似文献   

11.
12.
Intensive preclinical investigations have delineated a role for peroxisome proliferator-activated receptors (PPARs) in energy metabolism and inflammation. PPARs are activated by natural lipophilic ligands such as fatty acids and their derivatives. Normalization of lipid and glucose metabolism is achieved via pharmacological modulation of PPAR activity. PPARs may also alter atherosclerosis progression through direct effects on the vascular wall. PPARs regulate genes involved in the recruitment of leukocytes to endothelial cells, in vascular inflammation, in macrophage lipid homeostasis, and in thrombosis. PPARs therefore modulate metabolic and inflammatory perturbations that predispose to cardiovascular diseases and type 2 diabetes. The hypolipidemic fibrates and the antidiabetic thiazolidinediones are drugs that act via PPARalpha and PPARgamma, respectively, and are used in clinical practice. PPARbeta/delta ligands are currently in clinical evaluation. The pleiotropic actions of PPARs and the fact that chemically diverse PPAR agonists may induce distinct pharmacological responses have led to the emergence of new concepts for drug design. A more precise understanding of the molecular pathways implicated in the response to chemically distinct PPAR agonists should provide new opportunities for targeted therapeutic applications in the management of the metabolic syndrome, type 2 diabetes, and cardiovascular diseases.  相似文献   

13.
Peroxisome proliferator-activated receptors (PPARs) are implicated in several metabolic disorders with altered glucose and lipid metabolism, including atherosclerosis and diabetes. In the present study, we evaluated the in vitro and ex vivo effects of high glucose concentrations on macrophage PPAR mRNA expression. Exposition of monocyte-derived macrophages isolated from healthy donors to a high glucose environment led to an increase in PPARalpha and PPARbeta mRNA expression. In contrast, this treatment significantly decreased human macrophage PPARgamma mRNA expression. Overexpression of PPARalpha and PPARbeta mRNA and inhibition of PPARgamma mRNA expression were also observed in monocyte-derived macrophages isolated from patients with type 2 diabetes. Because high glucose and PPARalpha agonists increase lipoprotein lipase (LPL) gene expression, the role of PPARalpha in the glucose-mediated upregulation of macrophage LPL gene expression was next evaluated. Incubation of murine J774 macrophages with high glucose concentrations increased the expression of PPARalpha at the mRNA and protein levels and enhanced nuclear protein binding to the peroxisome proliferator responsive element of the LPL promoter. Incubation of nuclear extracts in the presence of anti-PPARalpha and anti-PPARbeta antibodies decreased glucose-stimulated nuclear protein binding to the peroxisome proliferator responsive element. These results demonstrate that glucose is an important regulator of macrophage PPAR expression and suggest a role of PPARalpha and PPARbeta in the upregulation of macrophage LPL by glucose. Dysregulation of macrophage PPAR expression in type 2 diabetes may contribute, by altering arterial lipid metabolism and inflammatory response, to the accelerated atherosclerosis associated with diabetes.  相似文献   

14.
15.
16.
17.
18.
Long-chain fatty acids (FA) coordinately induce the expression of a panel of genes involved in cellular FA metabolism in cardiac muscle cells, thereby promoting their own metabolism. These effects are likely to be mediated by peroxisome proliferator-activated receptors (PPARs). Whereas the significance of PPARalpha in FA-mediated expression has been demonstrated, the role of the PPARbeta/delta and PPARgamma isoforms in cardiac lipid metabolism is unknown. To explore the involvement of each of the PPAR isoforms, neonatal rat cardiomyocytes were exposed to FA or to ligands specific for either PPARalpha (Wy-14,643), PPARbeta/delta (L-165041, GW501516), or PPARgamma (ciglitazone and rosiglitazone). Their effect on FA oxidation rate, expression of metabolic genes, and muscle-type carnitine palmitoyltransferase-1 (MCPT-1) promoter activity was determined. Consistent with the PPAR isoform expression pattern, the FA oxidation rate increased in cardiomyocytes exposed to PPARalpha and PPARbeta/delta ligands, but not to PPARgamma ligands. Likewise, the FA-mediated expression of FA-handling proteins was mimicked by PPARalpha and PPARbeta/delta, but not by PPARgamma ligands. As expected, in embryonic rat heart-derived H9c2 cells, which only express PPARbeta/delta, the FA-induced expression of genes was mimicked by the PPARbeta/delta ligand only, indicating that FA also act as ligands for the PPARbeta/delta isoform. In cardiomyocytes, MCPT-1 promoter activity was unresponsive to PPARgamma ligands. However, addition of PPARalpha and PPARbeta/delta ligands dose-dependently induced promoter activity. Collectively, the present findings demonstrate that, next to PPARalpha, PPARbeta/delta, but not PPARgamma, plays a prominent role in the regulation of cardiac lipid metabolism, thereby warranting further research into the role of PPARbeta/delta in cardiac disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号