首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used partial 16S rRNA gene (16S DNA) sequencing for the prospective identification of nonfermenting Gram-negative bacilli recovered from patients attending our cystic fibrosis center (h?pital Necker-Enfants malades), which gave problematic results with conventional phenotypic tests. During 1999, we recovered 1093 isolates of nonfermenting Gram-negative bacilli from 702 sputum sampled from 148 patients. Forty-six of these isolates (27 patients) were not identified satisfactorily in routine laboratory tests. These isolates were identified by 16S DNA sequencing as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate) and Ralstonia mannitolilytica (3 isolates, 2 patients). Fifteen isolates (33%) were resistant to all antibiotics in routine testing. Sixteen isolates (39%) resistant to colistin were recovered on B. cepacia-selective medium: 2 P. aeruginosa, 3 A. xylosoxidans, 3 S. maltophilia and the 8 Burkholderia--Ralstonia isolates. The API 20NE system gave no identification for 35 isolates and misidentified 11 isolates (2 P. aeruginosa, 2 A. xylosoxidans and 1 S. maltophilia classified as B. cepacia ). Control measures and/or treatment were clearly improved as a result of 16S DNA sequencing in three of these cases. This study confirms the weakness of phenotypic methods for identification of atypical nonfermenting Gram-negative bacilli recovered from cystic fibrosis patients. The genotypic methods, such as 16S DNA sequencing which allows identification of strains in routine practice, appears to have a small, but significant impact on the clinical management of CF patients.  相似文献   

2.
Cystic fibrosis (CF) patients are predisposed to chronic respiratory infection by nonfermentative gram-negative bacilli, including Stenotrophomonas maltophilia. S. maltophilia is highly resistant to most antibiotics, with the exception of sulfamethoxazole-trimethoprim (SXT). SXT-resistant S. maltophilia has been reported, but the mechanism of resistance is not well defined. Repeated findings of suspected small-colony-variant (SCV) S. maltophilia isolates from the sputa of five CF patients were confirmed by partial 16S rRNA gene sequencing. The SCV S. maltophilia isolates were the only S. maltophilia isolates in these cultures, and none were clonally related. DNA fingerprint analysis confirmed that once established, the SCV S. maltophilia strains persisted. Nutritional studies of SCV S. maltophilia have suggested auxotrophy in hemin, methionine, and thymidine associated with resistance to multiple antibiotics, including SXT. The phenotypic switch from wild-type to SCV S. maltophilia was reproducible in vitro by exposure to SXT, suggesting that prolonged exposure to antibiotics may select for both the SCV S. maltophilia phenotype and SXT resistance by interference with the dihydrofolate reductase pathway. Recovery of SCV S. maltophilia from the sputum of CF patients has implications for both laboratory testing and patient management.  相似文献   

3.
Background: Cystic fibrosis (CF) patients can become persistently colonized with Staphylococcus aureus. This is initiated at an early age and may continue until or sometimes even during adolescence. Little is known about the epidemiology and cross-infectivity of S. aureus in CF patients, whether via the environment or person to person.
Method: S. aureus isolates ( n = 189) from six unrelated CF aptients and six pairs of CF siblings were genetically typed by arbitrary primed polymerase chain reaction (AP-PCR) assays.
Results: This longitudinal study revealed 35 different genotypes among the 189 isolates; the median number of types in a patient was three (range 1–6). One common S. aureus genotype was found in six patients and involved 20% of all isolates analyzed. Ultimately, in most of the patients long-term colonization with a single genotype was observed. In several, but certainly not all, pairs the siblings became persistently colonized with isolates that could not be discriminated by the typing method used; different S. aureus genotypes were isolated on an incidental but relatively frequent basis. Only one pair of siblings never shared identical isolates at any time during the screening period.
Conclusions: In five of six cases, identical isolates were shared by CF siblings at a certain time. This suggests intra-family transmission or the presence of a common environmental source. The fact that in most of the CF sibling pairs different genotypes of S. aureus caused the ultimate long-term colonization indicates that, despite regular cross-colonization, patient characteristics select the S. aureus strain best adapted to the affected lung. Some genotypes may be particularly prevalent in the CF patient population, but additional studies are needed to confirm this.  相似文献   

4.
In the past decade, potential pathogens, including Alcaligenes species, have been increasingly recovered from cystic fibrosis (CF) patients. Accurate identification of multiply antibiotic-resistant gram-negative bacilli is critical to understanding the epidemiology and clinical implications of emerging pathogens in CF. We examined the frequency of correct identification of Alcaligenes spp. by microbiology laboratories affiliated with American CF patient care centers. Selective media, an exotoxin A probe for Pseudomonas aeruginosa, and a commercial identification assay, API 20 NE, were used for identification. The activity of antimicrobial agents against these clinical isolates was determined. A total of 106 strains from 78 patients from 49 CF centers in 22 states were studied. Most (89%) were correctly identified by the referring laboratories as Alcaligenes xylosoxidans. However, 12 (11%) strains were misidentified; these were found to be P. aeruginosa (n = 10), Stenotrophomonas maltophilia (n = 1), and Burkholderia cepacia (n = 1). Minocycline, imipenem, meropenem, piperacillin, and piperacillin-tazobactam were the most active since 51, 59, 51, 50, and 55% of strains, respectively, were inhibited. High concentrations of colistin (100 and 200 microg/ml) inhibited 92% of strains. Chloramphenicol paired with minocycline and ciprofloxacin paired with either imipenem or meropenem were the most active combinations and inhibited 40 and 32%, respectively, of strains. Selective media and biochemical identification proved to be useful strategies for distinguishing A. xylosoxidans from other CF pathogens. Standards for processing CF specimens should be developed, and the optimal method for antimicrobial susceptibility testing of A. xylosoxidans should be determined.  相似文献   

5.
A series of 256 Aspergillus fumigatus isolates, recovered from eight patients with cystic fibrosis (CF), were genotyped using microsatellite-based typing. Only a limited number of genotypes were shared between patients and co-colonisation with multiple strains was indicated for all patients. Additionally, some genotypes were isolated recurrently, indicating that they are capable of prolonged colonisation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Aspergillus terreus is a common soil saprophyte. After Aspergillus fumigatus and Scedosporium apiospermum it ranks third amongst the filamentous fungi colonizing the airways of patients with cystic fibrosis. In this context, the clinical presentation of A. terreus infection mainly corresponds to allergic broncho-pulmonary aspergillosis. In the work presented here, we studied colonization patterns of A. terreus in CF patients by genotyping using nine short tandem repeat markers. A total of 115 clinical isolates from respiratory secretions collected from five French CF patients were studied. The number of isolates varied from 15 to 39 per patient, and the duration of the follow-up period ranged from 2 months to 7.5 years. Seventeen genotypes were identified, corresponding to three distinct colonization patterns. The first colonization pattern consisted of a chronic colonization by one dominant genotype associated with few other genotypes found only incidentally. The second colonization pattern consisted of a prolonged colonization by two distinct genotypes detected simultaneously. The last pattern was characterized by multiple different genotypes that were present only transiently. These results demonstrate the importance of genotyping clinical isolates before making conclusions about chronic colonization of the airways in CF patients in the case of repeated isolation of the fungus.  相似文献   

7.
Stenotrophomonas maltophilia has recently emerged as an important nosocomial pathogen in immunocompromised patients, in transplant recipients, and in persons with cystic fibrosis (CF). While this organism is nonpathogenic in healthy individuals, it is increasingly associated with morbidity and mortality in susceptible populations. Recent studies have indicated that for approximately 10% of CF patients with moderate lung disease, S. maltophilia can be cultured from respiratory tract secretions. Identification of S. maltophilia can be problematic, and analysis of isolates from the Burkholderia cepacia Research Laboratory and Repository showed that several isolates presumptively identified as B. cepacia by clinical microbiology laboratories were in fact S. maltophilia. To overcome the problems associated with definitive identification, we developed species-specific PCR (SS-PCR) primers, designated SM1 and SM4, directed to the 23S rRNA gene, and tested their utility to accurately identify S. maltophilia directly from sputum. The SS-PCR was developed and tested against a panel of 112 S. maltophilia isolates collected from diverse geographic locations. To test for specificity, 43 isolates from 17 different species were analyzed. PCR with the SM1-SM4 primer pair and isolated genomic DNA as a template resulted in amplification of a band from all S. maltophilia isolates and was uniformly negative for all other species tested, yielding a sensitivity and a specificity of 100% for the SS-PCR. The utility of the SS-PCR to directly identify S. maltophilia in sputum was examined. Thirteen expectorated sputum samples from CF patients were analyzed by SS-PCR. Three samples were PCR positive, in complete concordance with the conventional laboratory culture. Thus, we have developed an SS-PCR protocol that can rapidly and accurately identify S. maltophilia isolates and which can be used for the direct detection of this organism in CF patient sputum.  相似文献   

8.
Stenotrophomonas maltophilia is a multiple-antibiotic-resistant opportunistic pathogen that is being isolated with increasing frequency from patients with health-care-associated infections and especially from patients with cystic fibrosis (CF). While clinicians feel compelled to treat infections involving this organism, its potential for virulence is not well established. We evaluated the immunostimulatory properties and overall virulence of clinical isolates of S. maltophilia using the well-characterized opportunistic pathogen Pseudomonas aeruginosa PAO1 as a control. The properties of CF isolates were examined specifically to see if they have a common phenotype. The immunostimulatory properties of S. maltophilia were studied in vitro by stimulating airway epithelial and macrophage cell lines. A neonatal mouse model of pneumonia was used to determine the rates of pneumonia, bacteremia, and mortality, as well as the inflammatory response elicited by S. maltophilia infection. Respiratory and nonrespiratory S. maltophilia isolates were highly immunostimulatory and elicited significant interleukin-8 expression by airway epithelial cells, as well as tumor necrosis factor alpha (TNF-alpha) expression by macrophages. TNF-alpha signaling appears to be important in the pathogenesis of S. maltophilia infection as less than 20% of TNFR1 null mice (compared with 100% of wild-type mice) developed pneumonia and bacteremia following intranasal inoculation. The S. maltophilia isolates were weakly invasive, and low-level bacteremia with no mortality was observed. Despite the lack of invasiveness of S. maltophilia, the immunostimulatory properties of this organism and its induction of TNF-alpha expression specifically indicate that it is likely to contribute significantly to airway inflammation.  相似文献   

9.
Since nonfermenting, Gram negative bacilli recovered from patients with cystic fibrosis could be misidentified with phenotypic procedures, we used partial 16S ribosomal RNA gene (16S gene) sequencing to identify these "Pseudomonas-like" isolates. 473 isolates were recovered from 66 patients in 2003. Sequencing was used to identify 29 (from 24 patients) of the 473 isolates, showing unclear results with routine tests. PCR with specific primers was carried out to amplify a 995 bp fragment, which was then sequenced. The sequences were analyzed with GenBank database for species assignment. Phenotypic and genotypic results were concordant for 20/29 isolates (10 Pseudomonas aeruginosa, 5 Burkholderia cepacia, 3 Stenotrophomonas maltophilia, 2 Achromobacter xylosoxidans). However, 3 of the 5 B. cepacia isolates were then identified as Burkholderia multivorans with a PCR-RFLP procedure. Phenotypic misidentification was observed for 9/29 isolates: 4 A. xylosoxidans, 1 P. aeruginosa, 1 Bordetella petrii, 1 Bordetella bronchiseptica, 1 Ralstonia respiraculi and 1 Ralstonia mannitolilytica. Partial 16S gene sequencing improved the identification of "Pseudomonas-like" isolates from cystic fibrosis patients, but the accuracy to distinguish between genomovars of the B. cepacia complex was inadequate.  相似文献   

10.
The opportunistic human pathogen Achromobacter (Alcaligenes) xylosoxidans has been recovered with increasing frequency from respiratory tract culture of persons with cystic fibrosis (CF). However, confusion of this species with other closely related respiratory pathogens has limited studies to better elucidate its epidemiology, natural history, and pathogenic role in CF. Misidentification of A. xylosoxidans as Burkholderia cepacia complex is especially problematic and presents a challenge to effective infection control in CF. To address the problem of accurate identification of A. xylosoxidans, we developed a PCR assay based on a 16S ribosomal DNA sequence. In an analysis of 149 isolates that included 47 A. xylosoxidans and several related glucose-nonfermenting species recovered from CF sputum, the sensitivity and specificity of this PCR assay were determined to be 100 and 97%, respectively. The availability of this assay will enhance identification of A. xylosoxidans, thereby facilitating study of the pathogenic role of this species and improving infection control efforts in CF.  相似文献   

11.
During 1999, we used partial 16S rRNA gene sequencing for the prospective identification of atypical nonfermenting gram-negative bacilli isolated from patients attending our cystic fibrosis center. Of 1,093 isolates of nonfermenting gram-negative bacilli recovered from 148 patients, 46 (4.2%) gave problematic results with conventional phenotypic tests. These 46 isolates were genotypically identified as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate), and Ralstonia mannitolilytica (3 isolates, 2 patients), a recently recognized species.  相似文献   

12.
A controlled clinical evaluation comparing the Isolator system (Wampole Laboratories, Cranbury, N.J.) and the ESP 80A blood culture bottle in the automated ESP system (Difco Laboratories, Detroit, Mich.) was performed with 10,535 blood culture sets from patients with suspected septicemia. Of 1,150 positive cultures, 844 positive cultures from 285 patients with 394 septic episodes fulfilled the study criteria for minimum blood sample requirements in each system and clinical significance of isolates. The Isolator system detected statistically significantly more positive cultures of Staphylococcus aureus (P < 0.001), Enterococcus spp. (P = 0.007), Escherichia coli (P = 0.001), Alcaligenes xylosoxidans (P = 0.02), Xanthomonas maltophilia (P = 0.01), Candida albicans (P < 0.001), and Candida glabrata (P = 0.05). The Isolator system detected significantly more septic episodes due to S. aureus (P < 0.001), X. maltophilia (P = 0.02), and C. albicans (P = 0.004) than did the ESP 80A bottle; however, the two systems did not otherwise significantly differ in their abilities to detect septic episodes due to other organisms.  相似文献   

13.
Despite its limited pathogenicity, Stenotrophomonas maltophilia is an emerging nosocomial pathogen. This study investigated the isolation frequency, antimicrobial resistance and genotypic relationships of 205 S. maltophilia isolates from 188 patients in a university hospital between 1998 and 2003. Susceptibility profiles for 11 antimicrobial agents were determined by the NCCLS agar dilution method for non-fermentative bacteria, while enterobacterial repetitive intergenic consensus sequence (ERIC)-PCR and pulsed-field gel electrophoresis (PFGE) were used for genotyping of the isolates. Of the 205 isolates, 56.1% were isolated in the last 2 years of the study. The risk of S. maltophilia isolation was higher in intensive care units, S. maltophilia was isolated mostly (86.8%) after hospitalisation for >or= 48 h, and 90.4% of the patients had underlying diseases. Resistance levels were>60% for all antimicrobial agents tested except co-trimoxazole. High genetic diversity was found among the S. maltophilia isolates, and cross-infection with S. maltophilia was not common. Although ERIC-PCR revealed fewer genotypes than PFGE, it proved to be a rapid and easy method for S. maltophilia genotyping, and was more economical than PFGE.  相似文献   

14.
We examined the patterns of strain relatedness among pathogenic yeasts from within and among groups of women to determine whether there were significant associations between genotype and host condition or body site. A total of 80 yeast strains were isolated, identified, and genotyped from 49 female volunteers, who were placed in three groups: (i) 19 women with AIDS, (ii) 11 pregnant women without human immunodeficiency virus (HIV) infection, and (iii) 19 women who were neither pregnant nor infected with HIV. Seven yeast species were recovered, including 59 isolates of Candida albicans, 9 isolates of Candida parapsilosis, 5 isolates of Candida krusei, 3 isolates of Candida glabrata, 2 isolates of Saccharomyces cerevisiae, and 1 isolate each of Candida tropicalis and Candida lusitaniae. Seventy unique genotypes were identified by PCR fingerprinting with the M13 core sequence and by random amplified polymorphic DNA analysis. Of the nine shared genotypes, isolates from three different hosts were of one genotype and pairs of strains from different body sites of the same host shared each of the other eight genotypes. Genetic similarities among groups of strains were calculated and compared. We found no significant difference in the patterns of relatedness of strains from the three body sites (oral cavity, vagina, and rectum), regardless of host conditions. The yeast microflora of all three host groups had similar species and genotypic diversities. Furthermore, a single host can be colonized with multiple species or multiple genotypes of the same species at the same or different body sites, indicating dynamic processes of yeast colonization on women.  相似文献   

15.
The recently described genus Pandoraea contains five named species (Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis) and four unnamed genomospecies. Pandoraea spp. have mainly been recovered from the respiratory tracts of cystic fibrosis (CF) patients. Accurate genus- and species-level identification by routine clinical microbiology methods is difficult, and differentiation from Burkholderia cepacia complex organisms may be especially problematic. This can have important consequences for the management of CF patients. On the basis of 16S ribosomal DNA sequences, PCR assays for the identification of Pandoraea spp. were developed. A first PCR assay was developed for the identification of Pandoraea isolates to the genus level. PCR assays for the identification of P. apista and P. pulmonicola as a group, P. pnomenusa, P. sputorum, and P. norimbergensis were also developed. All five assays were evaluated with a panel of 123 bacterial isolates that included 69 Pandoraea sp. strains, 24 B. cepacia complex strains, 6 Burkholderia gladioli strains, 9 Ralstonia sp. strains, 5 Alcaligenes xylosoxidans strains, 5 Stenotrophomonas maltophilia strains, and 5 Pseudomonas aeruginosa strains. The use of these PCR assays facilitates the identification of Pandoraea spp. and avoids the misidentification of a Pandoraea sp. as a B. cepacia complex isolate.  相似文献   

16.
A multilocus sequence analysis (MLSA) scheme was developed for characterization of strains and species from the genus Achromobacter, which are increasingly recovered from patients with cystic fibrosis (CF). Five conserved housekeeping genes were selected for the MLSA, which was applied to a diverse collection of 77 strains originating from Europe, Asia, and South America and including type strains of the seven recognized Achromobacter species, six environmental strains, eight non-CF clinical strains, and 56 CF clinical strains. The discriminatory power of MLSA, based on 2,098 nucleotides (nt), was much superior to a 16S rRNA gene comparison based on 1,309 nt. Congruence was observed between single-gene trees and a concatenated gene tree. MLSA differentiated all seven current Achromobacter species and also demonstrated the presence of at least four novel potential species within the genus. CF isolates were predominantly Achromobacter xylosoxidans (64%), an undescribed Achromobacter species (18%), and Achromobacter ruhlandii (7%). A clone of Achromobacter, which has spread among patients from Danish CF centers in Aarhus and Copenhagen, was identified as Achromobacter ruhlandii. MLSA facilitates the specific identification of isolates of Achromobacter necessary for describing their role in clinical infections.  相似文献   

17.
The genetic relatedness of 52 Stenotrophomonas maltophilia strains, collected from various environmental and clinical sources, including cystic fibrosis (CF) patients, as well as the presence and the expression of some virulence-associated genes were studied. Pulsed-field gel electrophoresis (PFGE) analysis identified 47 profiles and three clusters of isolates with an identical PFGE pattern considered to be indistinguishable strains. Restriction fragment length polymorphism of the gyrB gene grouped the 52 strains into nine different profiles. Most CF clinical isolates (29 out of 41) showed profile 1, while the analysis of the hypervariable regions of the 16S rRNA gene revealed five distinct allelic variations, with the majority of CF isolates (23 out of 41) belonging to sequence group 1. Furthermore, the strains were characterized for motility and expression of virulence-associated genes, including genes encoding type-1 fimbriae, proteases (StmPr1 and StmPr2) and esterase. All S. maltophilia strains exhibited a very broad range of swimming and twitching motility, while none showed swarming motility. A complete smf-1 gene was PCR-amplified only from clinically derived S. maltophilia strains. Finally, the virulence of representative S. maltophilia strains impaired in the expression of proteases and esterase activities was evaluated by infecting larvae of the wax moth Galleria mellonella. The results obtained strongly indicate that the major extracellular protease StmPr1 may be a relevant virulence factor of S. maltophilia.  相似文献   

18.
Chronic lung infection with Pseudomonas aeruginosa is primarily responsible for pulmonary deterioration of cystic fibrosis patients. The purpose of this study was to type the P. aeruginosa isolates collected sequentially from cystic fibrosis patients, chronically colonized with P. aeruginosa, by random amplified polymorphic DNA fingerprinting-PCR (RAPD-PCR). Sequential P. aeruginosa isolates (n: 130) that had been collected from 20 CF patients over at least 9 years were investigated. The isolates were analyzed by RAPD-PCR using two arbitrary primers. Antimicrobial susceptibility testing of all isolates was performed by the disc diffusion method. RAPD-PCR typing demonstrated that strains dissimilar in colony morphotype and of different antibiotic susceptibility patterns could be of the same genotype. Some CF patients were colonized with a rather constant P. aeruginosa flora, with strains of different phenotypes but of one genotype. However, some patients may be colonized with more than one genotype. The results also demonstrated that there might be a risk of cross-colonization between CF patients followed-up at the same center.  相似文献   

19.
This study identified subgenic PCR amplimers from 18S rDNA that were (i) highly specific for the genus Acanthamoeba, (ii) obtainable from all known genotypes, and (iii) useful for identification of individual genotypes. A 423- to 551-bp Acanthamoeba-specific amplimer ASA.S1 obtained with primers JDP1 and JDP2 was the most reliable for purposes i and ii. A variable region within this amplimer also identified genotype clusters, but purpose iii was best achieved with sequencing of the genotype-specific amplimer GTSA.B1. Because this amplimer could be obtained from any eukaryote, axenic Acanthamoeba cultures were required for its study. GTSA.B1, produced with primers CRN5 and 1137, extended between reference bp 1 and 1475. Genotypic identification relied on three segments: bp 178 to 355, 705 to 926, and 1175 to 1379. ASA.S1 was obtained from single amoeba, from cultures of all known 18S rDNA genotypes, and from corneal scrapings of Scottish patients with suspected Acanthamoeba keratitis (AK). The AK PCR findings were consistent with culture results for 11 of 15 culture-positive specimens and detected Acanthamoeba in one of nine culture-negative specimens. ASA.S1 sequences were examined for 6 of the 11 culture-positive isolates and were most closely associated with genotypic cluster T3-T4-T11. A similar distance analysis using GTSA.B1 sequences identified nine South African AK-associated isolates as genotype T4 and three isolates from sewage sludge as genotype T5. Our results demonstrate the usefulness of 18S ribosomal DNA PCR amplimers ASA.S1 and GTSA.B1 for Acanthamoeba-specific detection and reliable genotyping, respectively, and provide further evidence that T4 is the predominant genotype in AK.  相似文献   

20.
Burkholderia cepacia has been involved in outbreaks of pulmonary infection among patients with cystic fibrosis (CF), and the spread of a highly transmissible clone has been reported throughout the United Kingdom and Canada. These data prompted a DNA-based typing study of the strains recovered in French CF centers. Ninety-five isolates recovered from 71 patients attending 13 CF centers in 9 regions of France were characterized by randomly amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE). Twenty-one genotypes were identified among the 95 isolates, and the results of RAPD and PFGE were concordant for 89 isolates (94%). Cross-colonization was demonstrated in 7 of the 13 CF centers. The investigation of serial isolates showed that most chronically colonized patients harbored a single B. cepacia strain. A geographically clustered distribution of B. cepacia genotypes was observed, except for one genotype, which was detected in four regions but was proven to be different from the genotype of the British-Canadian highly transmissible strain. The present study confirms the ability of B. cepacia to spread among CF communities in France and the importance of epidemiological surveys in the institution of prevention policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号