首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnts are a large family of growth factors that mediate fundamental biological processes like embryogenesis, organogenesis and tumorigenesis. These proteins bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor (GPCRs) and a low-density lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of intracellular signaling cascades that includes the canonical/β-catenin pathway, as well as several GPCR-mediated noncanonical pathways. In recent years, canonical Wnt signaling has been shown to play a substantial role in the control of bone formation. Clinical investigations have found that mutations in LRP-5 are associated with bone mineral density and fractures. For example, loss-of-function mutations in LRP-5 cause osteoporosis pseudoglioma syndrome, while gain-of-function mutations lead to high bone mass phenotypes. Studies of knockout and transgenic mouse models for Wnt pathway components like Wnt-10b, LRP-5/6, secreted frizzled-related protein-1, dickkopf-2, Axin-2 and β-catenin have demonstrated that canonical signaling modulates most aspects of osteoblast physiology including proliferation, differentiation, bone matrix formation/mineralization and apoptosis as well as coupling to osteoclastogenesis and bone resorption. Future studies in this rapidly growing area of research should focus on elucidating Wnt/FZD specificity in the control of bone cell function, the role of noncanonical pathways in skeletal remodeling, and direct effects of Wnts on cells of the osteoclast lineage.  相似文献   

2.
3.
4.
Abstract: Adipogenesis and osteogenesis, a reciprocal relationship in bone marrow, are complex processes including proliferation of precursor cells, commitment to the specific lineage, and terminal differentiation. Accumulating evidence from in vitro and in vivo studies suggests that melatonin affects terminal differentiation of osteoblasts and adipocytes, but little is known about the effect of melatonin on the process of adipogenesis and osteogenesis, especially adipogenesis. This study was performed to determine the effect of melatonin on adipogenesis and osteogenesis in human mesenchymal stem cells (hMSCs). Cell proliferation assays demonstrated that melatonin had no apparent effect on the proliferation of hMSCs. When melatonin was added to the adipogenic/osteogenic medium, it directly inhibited adipogenesis and simultaneously promoted osteogenesis of hMSCs in a dose‐dependent manner. Furthermore, quantitative RT‐PCR demonstrated that melatonin significantly suppressed peroxisome proliferator‐activated receptor gamma (PPARγ) expression (day 3, 25% decrease; day 6, 47% decrease), but promoted Runx2 expression (day 3, 87% increase; day 6, 56% increase) in the early stages of adipogenesis and osteogenesis of hMSCs. Moreover, melatonin down‐regulated several markers of terminal adipocyte differentiation, including leptin (30%), lipoprotein lipase (LPL, 41%), adiponectin (51%), and adipocyte protein 2 (αP2, 45%). Meanwhile, melatonin up‐regulated several markers of osteoblast differentiation, including alkaline phosphatase (110%), osteopontin (218%), and osteocalcin (310%). These results suggest that melatonin directly inhibits hMSCs adipogenic differentiation and significantly enhances hMSCs osteogenic differentiation by suppressing PPARγ expression and enhancing Runx2 expression; this provides further evidence for melatonin as an anti‐osteoporosis drug.  相似文献   

5.
骨髓间充质干细胞(BMSCs)移植治疗冠状动脉粥样硬化性心脏病、慢性心力衰竭等已经成为心脏病治疗学的热门课题,但细胞疗法依赖于干细胞向心肌细胞的定向分化,目前对BMSCs分化为心肌细胞的分子机制了解不多。Wnt信号系统与器官的分化和形成密切相关,大量研究表明,Wnt信号系统对干细胞向心肌细胞的定向分化有重要作用,对该信号系统的控制,在心脏病的细胞疗法中显得尤其重要。本文将就Wnt信号系统在BMSCs的增殖、迁移及心肌定向分化中的调控作用展开论述。  相似文献   

6.
Bone remodelling is severely affected in myeloma bone disease as a consequence of skeletal metastatization of malignant plasma cells. We investigated whether defective bone replacement is dependent on increased osteoblast apoptosis and/or on deregulated events within the bone microenvironment. Circulating tumour necrosis factor (TNF)-alpha, interferon-gamma, interleukin (IL)-1beta, and IL-6 levels were higher in myeloma patients with overt bone disease, whose osteoblasts constitutively overexpressed Fas, DR4/DR5 complex as receptors to TNF-related apoptosis inducing ligand, intercellular adhesion molecule-1 (ICAM-1), and monocyte chemotactic protein-1 (MCP-1). They were functionally exhausted and promptly underwent apoptosis in vitro, in contrast to the minor tendency to death detected in control osteoblasts from patients without bone involvement and normal donors. Osteoblasts dramatically enhanced their apoptosis in co-cultures with MCC-2 myeloma cells and upregulated both ICAM-1 and MCP-1 in a manner similar to control osteoblasts. Pretreating MCC-2 cells with soluble ICAM-1 led to a striking inhibition of their adhesion to osteoblasts, suggesting that the ICAM-1/lymphocyte function-associated antigen-1 system plays a role in the reciprocal membrane contact to trigger apoptogenic signals. Our data suggest that, in the myeloma bone microenvironment, both high cytokine levels and physical interaction of malignant plasma cells with osteoblasts drive the accelerated apoptosis in these cells leading to defective new bone formation.  相似文献   

7.
Nitric oxide (NO) is produced by NO synthase (NOS) and plays an important role in the regulation of bone cell function. The endothelial NOS isoform is essential for normal osteoblast function, whereas the inducible NOS isoform acts as a mediator of cytokine effects in bone. The role of the neuronal isoform of NOS (nNOS) in bone has been studied little thus far. Therefore, we investigated the role of nNOS in bone metabolism by studying mice with targeted inactivation of the nNOS gene. Bone mineral density (BMD) was significantly higher in nNOS knockout (KO) mice compared with wild-type controls, particularly the trabecular BMD (P < 0.01). The difference in BMD between nNOS KO and control mice was confirmed by histomorphometric analysis, which showed a 67% increase in trabecular bone volume in nNOS KO mice when compared with controls (P < 0.001). This was accompanied by reduced bone remodeling, with a significant reduction in osteoblast numbers and bone formation surfaces and a reduction in osteoclast numbers and bone resorption surfaces. Osteoblasts from nNOS KO mice, however, showed increased levels of alkaline phosphatase and no defects in proliferation or bone nodule formation in vitro, whereas osteoclastogenesis was increased in nNOS KO bone marrow cultures. These studies indicate that nNOS plays a hitherto unrecognized but important physiological role as a stimulator of bone turnover. The low level of nNOS expression in bone and the in vitro behavior of nNOS KO bone cells indicate that these actions are indirect and possibly mediated by a neurogenic relay.  相似文献   

8.
Melatonin (MLT) plays a role in preserving bone health, a function that may depend on homeostatic effects on both mature osteoblasts and mesenchymal stem cells (MSCs) of the bone tissue. In this study, these functions of MLT have been investigated in rat bone (femur) and in human adipose MSC (hMSC) during chronic exposure to low‐grade cadmium (Cd) toxicity, a serious public health concern. The in vivo findings demonstrate that MLT protects against Cd‐induced bone metabolism disruption and accumulation of bone marrow adipocytes, a cue of impaired osteogenic potential of skeletal MSC niches. This latter symptom was recapitulated in hMSCs in which Cd toxicity stimulated adipogenic differentiation. MLT was found to rescue, at least in part, the osteogenic differentiation properties of these cells. This study reports on a new bone cytoprotection function of MLT pertinent to Cd toxicity and its interfering effect on skeletal MSC differentiation properties that is worth investigating for its possible impact on human bone pathophysiology.  相似文献   

9.
10.
11.
12.
13.
Neural crest stem cells can be isolated from differentiated cultures of human pluripotent stem cells, but the process is inefficient and requires cell sorting to obtain a highly enriched population. No specific method for directed differentiation of human pluripotent cells toward neural crest stem cells has yet been reported. This severely restricts the utility of these cells as a model for disease and development and for more applied purposes such as cell therapy and tissue engineering. In this report, we use small-molecule compounds in a single-step method for the efficient generation of self-renewing neural crest-like stem cells in chemically defined media. This approach is accomplished directly from human pluripotent cells without the need for coculture on feeder layers or cell sorting to obtain a highly enriched population. Critical to this approach is the activation of canonical Wnt signaling and concurrent suppression of the Activin A/Nodal pathway. Over 12-14 d, pluripotent cells are efficiently specified along the neuroectoderm lineage toward p75(+) Hnk1(+) Ap2(+) neural crest-like cells with little or no contamination by Pax6(+) neural progenitors. This cell population can be clonally amplified and maintained for >25 passages (>100 d) while retaining the capacity to differentiate into peripheral neurons, smooth muscle cells, and mesenchymal precursor cells. Neural crest-like stem cell-derived mesenchymal precursors have the capacity for differentiation into osteocytes, chondrocytes, and adipocytes. In sum, we have developed methods for the efficient generation of self-renewing neural crest stem cells that greatly enhance their potential utility in disease modeling and regenerative medicine.  相似文献   

14.
15.
16.
One of the well characterized cell biologic actions of lithium is the inhibition of glycogen synthase kinase-3beta and the consequent activation of canonical Wnt signaling. Because deficient Wnt signaling has been implicated in disorders of reduced bone mass, we tested whether lithium could improve bone mass in mice. We gavage-fed lithium chloride to 8-week-old mice from three different strains (Lrp5(-/-), SAMP6, and C57BL/6) and assessed the effect on bone metabolism after 4 weeks of therapy. Lrp5(-/-) mice lack the Wnt coreceptor low-density lipoprotein receptor-related protein 5 and have markedly reduced bone mass. Lithium, which is predicted to act downstream of this receptor, restored bone metabolism and bone mass to near wild-type levels in these mice. SAMP6 mice have accelerated osteoporosis due to inadequate osteoblast renewal. Lithium significantly improved bone mass in these mice and in wild-type C57BL/6 mice. We found that lithium activated canonical Wnt signaling in cultured calvarial osteoblasts from Lrp5(-/-) mice ex vivo and that lithium-treated mice had increased expression of Wnt-responsive genes in their bone marrow cells in vivo. These data lead us to conclude that lithium enhances bone formation and improves bone mass in mice and that it may do so via activation of the canonical Wnt pathway. Lithium has been used safely and effectively for over half a century in the treatment of bipolar illness. Prospective studies in patients receiving lithium should determine whether it also improves bone mass in humans.  相似文献   

17.
There is both cellular and physiological evidence demonstrating that both Activins and Inhibins regulate osteoblastogenesis and osteoclastogenesis, and regulate bone mass in vivo. Although Activins and Inhibins were initially isolated from the gonad, Activins are also produced and stored in bone, whereas Inhibins exert their regulation on bone cell differentiation and metabolism via endocrine effects. The accumulating data provide evidence that reproductive hormones, distinct from classical sex steroids, are important regulators of bone mass and bone strength. Given the well described dominant antagonism of Inhibin over Activin, as well as over BMPs and TGFβ, the gonadally derived Inhibins are important regulators of locally produced osteotrophic factors. Thus, the cycling Inhibins in females and diurnal changes in Inhibin B in males elicit temporal shifts in Inhibin levels (tone) that de-repress the pituitary. This fundamental action has the potential to de-repress locally stimulated changes in osteoblastogenesis and osteoclastogenesis, thereby altering bone metabolism.  相似文献   

18.
19.
The Wnt signaling pathway is essential for the development of diverse tissues during embryogenesis. Signal transduction is activated by the binding of Wnt proteins to the type I receptor low-density lipoprotein receptor-related protein 5/6 and the seven-pass transmembrane protein Frizzled (Fzd), which contains a Wnt-binding site in the form of a cysteine-rich domain. Known extracellular antagonists of the Wnt signaling pathway can be subdivided into two broad classes depending on whether they bind primarily to Wnt or to low-density lipoprotein receptor-related protein 5/6. We show that the secreted protein Tsukushi (TSK) functions as a Wnt signaling inhibitor by binding directly to the cysteine-rich domain of Fzd4 with an affinity of 2.3 × 10(-10) M and competing with Wnt2b. In the developing chick eye, TSK is expressed in the ciliary/iris epithelium, whereas Wnt2b is expressed in the adjacent anterior rim of the optic vesicle, where it controls the differentiation of peripheral eye structures, such as the ciliary body and iris. TSK overexpression effectively antagonizes Wnt2b signaling in chicken embryonic retinal cells both in vivo and in vitro and represses Wnt-dependent specification of peripheral eye fates. Conversely, targeted inactivation of the TSK gene in mice causes expansion of the ciliary body and up-regulation of Wnt2b and Fzd4 expression in the developing peripheral eye. Thus, we uncover a crucial role for TSK as a Wnt signaling inhibitor that regulates peripheral eye formation.  相似文献   

20.
Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies. After 10 d in culture, new sensory cells formed and displayed specific hair cell markers (myo7a, calretinin, parvalbumin, myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells, Lgr5(+) cells were enriched precursors to myo7a(+) cells, most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely, small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a(+) cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5(+) cells give rise to myo7a(+) hair cells in the neonatal Lgr5(EGFP-CreERT2/+) cochlea. In addition, overexpression of β-catenin initiated proliferation and led to transient expansion of Lgr5(+) cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号