首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anticancer drug that promotes apoptosis specifically in tumor cells. Because not all cancer cells are susceptible to Apo2L/TRAIL, the aim of our study was to determine whether non-small cell lung cancer cells can be sensitized by chemotherapeutic agents for Apo2L/TRAIL-induced apoptosis. In addition, endogenous expression levels of the caspase-inhibiting cellular protease caspase-8 inhibitory protein (C-FLIP) were measured to investigate partial resistance to Apo2L/TRAIL. METHODS: Six human lung cancer cell lines (A549, NCI-H358, Calu1, Calu6, SkMes1, and SkLu1) were incubated with soluble Apo2L/TRAIL and two different concentrations each of cisplatin, paclitaxel, doxorubicin, 5-fluorouracil, and camptothecin. After 24 hours the rate of apoptosis was measured by annexin V/propidium iodide staining followed by FACScan analysis. Expression levels of C-FLIP in cell lines and lung cancer biopsy specimens were determined by Western blotting. RESULTS: Treatment of lung cancer cells with Apo2L/TRAIL alone resulted in apoptotic cell death in four cell lines (P <.001). Combining Apo2L/TRAIL and chemotherapeutic agents enhanced the rate of apoptosis significantly. Statistical analysis revealed a synergistic effect of Apo2L/TRAIL in combination with 1.8 mmol/L camptothecin and 100 micromol/L cisplatin, each in four of the six cell lines (P <.002). Western blot analysis showed that sensitization to Apo2L/TRAIL did not correlate with the expression of cellular protease caspase-8 inhibitory protein. Furthermore, no increased cellular protease caspase-8 inhibitory protein levels relative to those in normal lung tissue could be found in non-small cell lung cancer specimens from 12 patients. CONCLUSION: Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cell lines is significantly enhanced by chemotherapeutic agents. Resistance and sensitization to Apo2L/TRAIL are not correlated with the endogenous expression level of cellular protease caspase-8 inhibitory protein, implying that in non-small cell lung cancer other mechanisms are responsible for inhibition of the Apo2L/TRAIL pathway. Even though the molecular mechanism remains unclear, the combination of Apo2L/TRAIL with chemotherapy may be a promising treatment modality for non-small cell lung cancer.  相似文献   

2.

Purpose

Novel treatment strategies for high-risk and disseminated neuroblastoma (NB) are actively sought because of the dismal prognosis of advanced stage disease. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a recently identified member of the tumor necrosis factor family. TRAIL is capable of inducing apoptosis in multiple tumor cell types, with little or no cytotoxicity against normal cells.

Experimental Design

We examined the activation and regulation of TRAIL-induced apoptosis in several human NB cell lines. The effect of TRAIL was examined in the context of TRAIL receptor (TRAIL-R) and survivin (an antiapoptotic protein) expression in the cell lines. The ratio of survivin/TRAIL-R messenger RNA was determined and evaluated as a marker of recurrent disease in patients with NB.

Results

TRAIL induced apoptotic cell death of NB with variable sensitivities among the cell lines tested. Compared with a sensitive cell line (early passage NB16), the resistant cell lines (NB7 and late passage NB16) expressed lesser amounts of the death-inducing TRAIL-R1 and R2, and greater levels of survivin, an inhibitor of apoptosis. TRAIL sensitivity was enhanced in resistant cell lines by treating with etoposide that concomitantly increased TRAIL-R expression and diminished survivin expression. Survivin overexpression in a TRAIL-sensitive NB line (early passage NB16) rendered it less sensitive to treatment with TRAIL. Conversely, inhibiting survivin expression in NB3 by antisense oligonucleotides enhanced TRAIL sensitivity. A high survivin/TRAIL-R ratio accurately predicted risk for recurrent disease in primary tumor specimens tested.

Conclusions

These findings suggest that TRAIL therapy in combination with specific chemotherapeutic agents may represent an effective therapeutic strategy for NB. The cell's sensitivity to TRAIL is at least partially governed by both TRAIL-R and survivin expression, whereas the ratio between these 2 factors appears to have prognostic value in patients with this disease.  相似文献   

3.
4.
Lymphomas associated with post-transplant lymphoproliferative disease (PTLD) represent a significant complication of immunosuppression in transplant recipients. In immunocompetent individuals, EBV-specific cytotoxic T lymphocytes (CTL) prevent the outgrowth of activated B lymphoblasts through apoptosis induction. Soluble versions of TNF-related apoptosis-inducing ligand/Apo2 ligand (TRAIL) can induce apoptosis in numerous tumor cell types. Given the therapeutic potential of TRAIL, we examined the sensitivity of EBV+ spontaneous lymphoblastoid cell lines (SLCL) derived from patients with PTLD to treatment with soluble TRAIL. Despite abundant expression of TRAIL receptors (TRAIL-R), resistance to TRAIL-induced apoptosis was observed in all SLCL examined. This resistance could not be overcome by concomitant treatment with several pharmacological agents. Unlike BJAB positive control cells, for each SLCL tested, cleavage and activation of caspase 8 was inhibited due to failed recruitment of FADD and caspase 8 to TRAIL receptors upon stimulation. Further indicative of a proximal defect, TRAIL receptor aggregation could not be detected on the cell surface of SLCL following ligand engagement. These results suggest that the use of TRAIL for eliminating PTLD-associated tumors may be of limited clinical utility, and illustrate another mechanism by which EBV+ B lymphoma cells can evade tumor surveillance at the level of death receptor signaling.  相似文献   

5.
Rychahou PG  Murillo CA  Evers BM 《Surgery》2005,138(2):391-397
BACKGROUND: The phosphoinositide 3-kinase (PI3K/Akt) pathway transduces signals initiated from growth factors. Previously, we identified an important role for PI3K/Akt in colon cancer progression. The purpose of this study was to determine (1) whether short interfering RNA (siRNA) directed to PI3K/Akt components can render colon cancer cells sensitive to treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and (2) the cellular mechanisms contributing to the enhanced sensitivity. METHODS: Human colon cancer cells KM20 and KM12C (both TRAIL resistant) were transfected with siRNA directed against the PI3K p85alpha regulatory subunit Akt1 or nontargeting control sequence and then treated with TRAIL (100 ng/mL) or vehicle. A ribonuclease protection assay was performed to assess changes in TRAIL receptor expression. Protein was extracted and analyzed by Western blot for expression of cleavage of TRAIL receptors (death receptor (DR) 4 and 5), caspase-3, caspase-8, and BID. Apoptosis was measured by enzyme-linked immunosorbent assay of DNA fragmentation. RESULTS: Combination treatment with p85alpha or Akt1 siRNA and TRAIL increased apoptosis in KM20 and KM12C cells, compared with TRAIL alone; these results were corroborated further by complete inhibition of apoptosis by Z-acetyl-Asp-Glu-Val-Asp-(DEVD)-fmk, a caspase-3 inhibitor. Furthermore, siRNA-mediated PI3K pathway inhibition resulted in increased expression of the TRAIL death receptors 4 and 5. CONCLUSIONS: Inhibition of PI3K/Akt by RNA interference sensitizes resistant colon cancer cells to TRAIL-induced cell death through the induction of TRAIL receptors and activation of caspase-3 and caspase-8. Agents that selectively target the PI3K/Akt pathway may enhance the effects of chemotherapeutic agents and provide novel adjuvant treatment for selected colon cancers.  相似文献   

6.
7.
BACKGROUND: Tumor necrosis factor related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo-2L) is a novel anticancer agent, capable of inducing apoptosis preferentially in tumor and transformed cells. TRAIL-R1/death receptor (DR)4 and TRAIL-R2/DR5 are members of the tumor necrosis factor (TNF) receptor family, and can be activated by the TRAIL. We examined the clinical potential of chemotherapeutic drugs and TRAIL for the treatment of prostate cancer. METHODS: Prostate and bladder cancer cells were exposed to chemotherapeutic drugs (paclitaxel, vincristine, vinblastine, etoposide, doxorubicin, and camptothecin) and TRAIL. Cell viability was measured by sodium 3'[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) assay; expressions of death receptors and Bcl-2 family members were measured by Western blotting, ELISA and ribonuclease protection assay. PC-3 tumor cells xenografted athymic nude mice were exposed to chemotherapeutic drugs and TRAIL, either alone or in combination, to measure tumor growth and survival of mice. Apoptosis was measured by annexin V-FITC/propidium iodide staining, and terminal deoxynucleotidyltransferase-mediated nick end labeling assay. Caspase-3 activity was measured by the Western blotting and immunohistochemistry. RESULTS: TRAIL induced apoptosis with varying sensitivity. Chemotherapeutic drugs (paclitaxel, vincristine, vinblastine, etoposide, doxorubicin, and camptothecin) significantly augmented TRAIL-induced apoptosis in cancer cells through up-regulation of DR4, DR5, Bax, and Bak, and induction of caspase activation. Mitochondrial pathway enhanced the synergistic interactions between drugs and TRAIL. The sequential treatment of mice with chemotherapeutic drugs followed by TRAIL induced caspase-3 activity, and apoptosis, inhibited angiogenesis, completely eradicated the established tumors, and enhanced survival of mice. CONCLUSIONS: Chemotherapeutic drugs can be used to enhance the therapeutic potential of TRAIL in prostate cancer.  相似文献   

8.
Most tumor cells are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis but sparing to normal cells, thus providing therapeutic potential for clinical use. Some tumor cells are resistant to TRAIL-induced cell death while the sensitivity could be recruited with the existence of some chemical agents. In this study, human prostatic cancer cell line LNCaP was found to be resistant to TRAIL-induced apoptosis while it could be restored to TRAIL sensitivity with combination treatment of low concentration of doxorubicin. TRAIL receptor-1 (DR4) and TRAIL receptor-2 (DR5) were upregulated under the treatment of doxorubicin and verified to be responsible for TRAIL-mediated signal transduction. Furthermore, caspase-8 and caspase-3 were activated and drove their autocleavage into programmed cell death. Interestingly, apoptosis-inhibitory protein c-FLIP, but not Bcl-2 and XIAP was downregulated after doxorubicin treatment. Taken together, these findings suggested that the pathway of cell apoptosis induced by TRAIL was intact but under negative control. Subtoxic concentration of doxorubicin effectively boosted TRAIL sensitivity via depletion of antiapoptotic protein. These findings support the new strategies for killing tumors with TRAIL and chemical agents.  相似文献   

9.
Molecular mechanisms underlying chemotherapeutic agent-induced apoptosis in sarcoma cells are not well known. Induction of apoptosis is regulated by several components including mitogen-activated protein kinases (MAPKs) comprising ERK, p38MAPKs, and c-Jun N-terminal kinase (JNK). In the present study, we examined whether activation of JNK is induced by the chemotherapeutic agents cis-diaminedichloroplatinum (cisplatin, CDDP) or doxorubicin (DXR), and whether the ectopic expression of constitutively active (MKK7-JNK1) or dominant-negative form of JNK (dnJNK) influenced apoptosis in response to the CDDP or DXR in sarcoma cell lines MG-63 and SaOS-2. The CDDP or DXR induced JNK activation in the both cell lines, as assessed by Western blotting using phosphospecific antibodies. A transient expression of the activated form of JNK sensitized the MG-63 and SaOS-2 cells to the drug-induced apoptosis, while dnJNK1 reduced the proportion of apoptotic cell death. Apoptosis was determined by flow cytometry using annexin-V Cy5. Collectively, our results indicate that JNK activation is involved in apoptotic cell death in sarcoma cell lines following stimulation with CDDP or DXR.  相似文献   

10.
Ng CP  Zisman A  Bonavida B 《The Prostate》2002,53(4):286-299
BACKGROUND: Tumors have an inherent immunogenicity that can be exploited by immunotherapy. However, often tumors develop mechanisms that render them resistant to most immunologic cytotoxic effector mechanisms. This study examines the underlying mechanism of resistance to Apo2L/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-mediated apoptosis. METHODS: We studied prostate tumor cell lines for their sensitivity to Apo2L/TRAIL-mediated apoptosis in the presence and absence of the sensitizing agent actinomycin D (Act D). Apoptosis was determined by flow cytometry and signaling for apoptosis by Western blot. RESULTS: Treatment with subtoxic concentrations of Act D significantly sensitizes the tumor cells (CL-1, DU-145, and PC-3 prostate tumor cells) to Apo2L/TRAIL-mediated apoptosis. The cytotoxicity of Act D-sensitized prostate tumor cells was a result of synergistic activation of caspases (caspase-3, -9, and -8), detectable after 6 hr of treatment. Treatment with Apo2L/TRAIL alone, although it was insufficient to induce apoptosis, resulted in the loss of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytoplasm in the absence of significant caspases activation. These findings suggested that a major apoptosis resistance factor blocking the Apo2L/TRAIL apoptotic signaling events is present downstream of the mitochondrial activation. The expression of receptors and anti-apoptotic proteins were examined in Act D-sensitized CL-1 cells. The earliest and the most pronounced change induced by Act D was down-regulation of X-linked inhibitor of apoptosis (XIAP) and up-regulation of Bcl-xL/-xS proteins. The role of XIAP in resistance was demonstrated by overexpression of Smac/DIABLO, which inhibited inhibitors of apoptosis (IAPs) and sensitized the cells to Apo2L/TRAIL. Apo2L/TRAIL receptors (DR4, DR5, DcR1, and DcR2), c-FLIP, Bcl-2, and other IAP members (c-IAP1 and c-IAP2) were marginally affected at later times in the cells sensitized by Act D. CONCLUSION: This study suggests that the combination of Act D-induced down-regulation of XIAP (Signal I) and Apo2L/TRAIL-induced release of cytochrome c (Signal II) leads to the reversal of resistance to Apo2L/TRAIL-mediated apoptosis in the tumor cells. The sensitization of tumor cells to Apo2L/TRAIL by Act D is of potential clinical application in the immunotherapy of drug/Apo2L/TRAIL refractory tumors.  相似文献   

11.
BACKGROUND: The differential sensitivity of tumor cells to TRAIL-induced apoptosis may be mediated by different intracellular inhibitors of apoptosis, and only a few reports have described the pathway(s) that are activated in response to TRAIL in prostate cells. METHODS: LNCaP was transfected with a dominant-negative form of FADD (FADD-DN) and cells were selected in the presence of hygromycin. Cell viability was estimated by calcein assay. Apoptosis was estimated by caspase activation using both fluorogenic substrates and Western blot analysis of activated caspases. To detect cytochrome c release, mitochondria-free cytosol was prepared and Western blot analysis was performed. RESULTS: LNCaP is resistant to TRAIL but TRAIL transiently induces DEVDase activity and activation of caspase-8; caspase-2, -3, -7, and -9 were not activated. Wortmannin, an inhibitor of the PI3K/Akt pathway, converted the phenotype of LNCaP from TRAIL-resistant to -sensitive. In the presence of wortmannin TRAIL induced activation of caspase-2, -3, -7, -8, and -9, as well as dissipation of mitochondrial transmembrane potential and release of cyto-chrome c from mitochondria into the cytosol. In addition, combined TRAIL and wortmannin treatment resulted in cleavage of several proteins: PARP, Akt, p21/WAF1, and MDM2 as well as dephosphorylation of Akt. The proteolysis of p21/WAFI and Akt, which are known survival factors, presumably amplify the apoptotic cascade in LNCaP. Transfection of FADD-DN in LNCaP resulted in inhibition of caspase activation as well as in resistance to combined treatment with TRAIL and wortmannin. CONCLUSIONS: These results suggest that caspase-8 activation is necessary but not sufficient for TRAIL-mediated apoptosis and is presumably blocked downstream of caspase-8 by the PI3K/Akt pathway.  相似文献   

12.
BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in a wide variety of tumor cells, while it has no toxicity for the majority of normal cells.Therefore, TRAIL may be a suitable agent for anticancer therapy. We previously reported that a number of pancreatic cancer cell lines show resistance to TRAIL-induced apoptosis via overexpression of XIAP and FLIP. The present study was conducted to further examine TRAIL-based therapeutic strategies by aiming to restore functional apoptotic pathways in resistant pancreatic cancer cells. METHODS: In various pancreatic cancer cell lines, TRAIL-induced apoptosis was evaluated in the presence or absence of an XIAP-inhibitor (Smac peptide). Second, TRAIL-induced apoptosis was evaluated in TRAIL-resistant AsPC-1 cells with or without FLIP antisense. Third, the combined effect of Smac peptide and FLIP antisense was tested, and the activation of apoptosis-related caspases and poly (ADP-ribose) polymerase was evaluated. Finally, TRAIL-induced apoptosis was evaluated in the presence or absence of FLIP antisense and an XIAP inhibitor (embelin). RESULTS: Smac peptide enhanced TRAIL-induced apoptosis in a dose-dependent manner for several pancreatic cancer cell lines, but showed no effect on TRAIL-resistant AsPC-1 cells. Smac peptide alone had no influence on cell viability. TRAIL-induced apoptosis was restored in TRAIL-resistant AsPC-1 cells by exposure to FLIP antisense, which suppressed the expression of FLIP. The effect of TRAIL was augmented by the combination of FLIP antisense and Smac peptide. Similarly, TRAIL-induced apoptosis was restored by the combination of FLIP antisense and embelin. Activation of apoptotic caspases and cleavage of poly (ADP-ribose) polymerase was observed after sensitization of TRAIL-resistant pancreatic cancer cells. CONCLUSIONS: Pancreatic cancer cells gain resistance to TRAIL-induced apoptosis via expression of the antiapoptotic proteins XIAP and FLIP. Smac peptide and FLIP antisense could restore the apoptotic effect of TRAIL. An XIAP inhibitor, embelin, enhanced the effect of TRAIL in the presence of FLIP antisense. These findings may provide useful information for the development of TRAIL-based therapeutic strategies by restoring functional apoptotic pathways in resistant pancreatic cancer cells. In addition, a low molecular weight XIAP inhibitor like embelin could be a lead compound for the development of effective XIAP inhibitors.  相似文献   

13.
BACKGROUND: Tumor necrosis factor-related, apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in a wide variety of tumor cells, but it does not cause toxicity in the majority of normal cells. Therefore, TRAIL could become a suitable agent for anticancer therapies. However, a number of tumor cell lines are known to be resistant to TRAIL-induced apoptosis. The purpose of this study was to determine the mechanisms of resistance to TRAIL in pancreatic cancer cells. METHODS: In human pancreatic cancer cell lines, the sensitivity to TRAIL-induced apoptosis was tested. The expression of TRAIL receptors (DR4, DR5, DcR1, and DcR2) and the expression of death signal-transducing proteins were investigated. In the TRAIL-resistant pancreatic cancer cells, effects of cycloheximide, a protein synthesis inhibitor, on death signal-transducing proteins were tested. Finally, the effects of the combined treatment with cycloheximide and TRAIL on the induction of apoptosis and on the expression of death signal-transducing proteins were examined. RESULTS: Pancreatic cancer cells responded to TRAIL in a different way. Resistant cell lines, AsPC-1, Suit-2, and CFPAC-1, expressed higher levels of FLIP-S protein, one of the splice variants of FLIP. Cycloheximide reduced the expression of FLIP in the resistant cells. Combined treatment with cycloheximide and TRAIL induced cleaved forms of caspases and simultaneously restored the sensitivity to TRAIL-induced apoptosis in the resistant cells. CONCLUSIONS: Pancreatic cancer cells are resistant to TRAIL-induced apoptosis via strong expression of the anti-apoptotic protein FLIP-S. Suppression of FLIP-S by cycloheximide restored sensitivity to TRAIL-induced apoptosis in resistant cancer cells. These findings may provide useful information for the development of TRAIL-based therapeutic strategies aimed at restoring the functionality of apoptotic pathways in pancreatic cancer cells.  相似文献   

14.
TRAIL受体在人骨肉瘤组织中的表达   总被引:7,自引:3,他引:4  
目的 研究肿瘤坏死因子相关凋亡诱导配体(TRAIL)受体在骨肉瘤细胞中的表达情况。方法 应用逆转录—聚合酶链反应(RT—PCR)对22例骨肉瘤组织标本、MG—63骨肉瘤细胞株、U251脑胶质瘤细胞株以及正常人外周血淋巴细胞TRAILR1—R4 mRNA表达进行检测。结果 22例骨肉瘤组织标本中15例同时表达TRAILR1、-R2和-R3,4例同时表达TRAIL-R1和-R2,只表达TRAIL-R1或-R2者3例,所有标本中均未检测到TRAIL,-R4表达;MG-63骨肉瘤细胞株、U251脑胶质瘤细胞株以及正常人外周血淋巴细胞则均检测到TRAILR1、-R2和-R3的联合表达。结论 死亡受体TRAIL-R1,R2在骨肉瘤中的普遍表达,是TRAIL诱导骨肉瘤细胞凋亡的分子基础;死亡受体和诱骗受体的差异性分布,并非TRAIL对选择性杀伤肿瘤细胞的关键性因素,可能还受其它因子调控。  相似文献   

15.
BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a new member of the tumor necrosis factor family. The present study investigated whether anthracyclines enhance TRAIL-induced apoptosis and cytotoxicity in renal cell carcinoma (RCC) cells. METHODS: Cytotoxicity was measured using the microtiter assay. Apoptosis was monitored using DNA ladder analysis. Caspase activity was determined using a quantitative colorimetric assay. RESULTS: Treatment of ACHN and Caki-1 human RCC lines with TRAIL, in combination with subtoxic concentrations of epirubicin (EPI) or pirarubicin (THP), enhanced induction of apoptosis and cytotoxicity. Sequential treatment with EPI followed by TRAIL induced significantly more cytotoxicity than the inverse treatment. The combined cytotoxicity of TRAIL and EPI was significantly inhibited by the TRAIL-neutralizing fusion protein DR5:Fc, although EPI did not affect the mRNA expression of DR4, DR5, DcR1 or DcR2. The combination treatment with TRAIL and EPI activated caspase-6 and -3, which were downstream molecules of the death receptor. Furthermore, the combined cytotoxicity of TRAIL and EPI was almost completely inhibited by Z-VAD-FMK, and partly inhibited by Ac-DMQD-CHO. CONCLUSION: These findings indicate that anthracyclines sensitize RCC cells to TRAIL-induced apoptosis and cytotoxicity through activation of caspases, suggesting that TRAIL, in combination with anthracyclines, has a therapeutic potential in the treatment of RCC.  相似文献   

16.
BACKGROUND: As advanced prostate cancers are resistant to currently available chemotherapies, we evaluated the cytotoxic effect of TNF-related apoptosis-inducing ligand (TRAIL) and characterized the involvement of its five receptors DR4, DR5, DcR1, DcR2, and osteoprotegerin (OPG) and of the death-inducing signaling complex (DISC)-forming proteins caspase 8 and c-FLIP in prostate cell lines. METHODS: We used six prostate cell lines, each corresponding to a particular stage in prostate tumorigenesis, and analyzed TRAIL sensitivity in relation to TRAIL receptors' expression. RESULTS: TRAIL sensitivity was correlated with tumor progression and DR5 expression levels and apoptosis was exclusively mediated by DR5. DcR2 was significantly more abundant in tumor cells than in non-neoplastic ones and may contribute to partial resistance to TRAIL in some prostate tumor cells. Conversely, non-tumoral cells secreted high levels of OPG, which can protect them from apoptosis. Finally, caspase 8 expression levels were as DR5 directly correlated to TRAIL sensitivity in prostate tumor cells. CONCLUSION: TRAIL-induced apoptosis is closely related to the balanced expression of its different receptors in prostate cancer cells and their modulation could be of potential clinical value for advanced tumor treatment.  相似文献   

17.
BACKGROUND: We assessed the influence of sequential treatment of ionizing radiation followed by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on intracellular mechanisms of apoptosis of prostate tumor cells in vitro and in vivo. METHODS: Prostate normal and cancer cells were exposed to irradiation and TRAIL. Four- to 6-week-old athymic nude mice were injected s.c. with PC-3 tumor cells. Tumor bearing mice were exposed to irradiation and TRAIL, either alone or in combination (TRAIL after 24 hr of irradiation), and tumor growth, apoptosis, and survival of mice were examined. Expressions of death receptors, Bcl-2 family members, and caspase were measured by Western blotting, ELISA, and ribonuclease protection assay; tumor cellularity was assessed by H&E staining; inhibition of p53 was performed by RNA interference (RNAi) technology, and apoptosis was measured by annexin V/propidium iodide staining, and terminal deoxynucleotidyltransferase-mediated nick end labeling assay. RESULTS: Irradiation significantly augmented TRAIL-induced apoptosis in prostate cancer cells through upregulation of DR5, Bax, and Bak, and induction of caspase activation. Dominant negative FADD and p53 siRNA inhibited the synergistic interaction between irradiation and TRAIL. The pretreatment of cells with irradiation followed by TRAIL significantly enhanced more apoptosis than single agent alone or concurrent treatment. Furthermore, irradiation sensitized TRAIL-resistant LNCaP cells to undergo apoptosis. The sequential treatment of xenografted mice with irradiation followed by TRAIL-induced apoptosis through activation of caspase-3, induction of Bax and Bak, and inhibition of Bcl-2, and completely eradicated the established tumors with enhanced survival of nude mice. CONCLUSION: The sequential treatment with irradiation followed by TRAIL can be used as a viable option to enhance the therapeutic potential of TRAIL in prostate cancer.  相似文献   

18.
Human osteoblasts are resistant to Apo2L/TRAIL-mediated apoptosis   总被引:3,自引:0,他引:3  
Apo2 ligand (Apo2L/TRAIL) is a member of the tumor necrosis factor (TNF) cytokine family. Apo2L/TRAIL can selectively induce programmed cell death in transformed cells, although its wide tissue distribution suggests potential physiological roles. We have investigated the expression, in human osteoblast-like cells (NHBC), of Apo2L/TRAIL and the known Apo2L/TRAIL death receptors, DR4 and DR5, and the Apo2L/TRAIL decoy receptors, DcR-1, DcR-2, and osteoprotegerin (OPG). NHBC expressed abundant mRNA corresponding to each of these molecular species. Immunofluorescence staining demonstrated that Apo2L/TRAIL protein was abundant within the cytoplasm of NHBC and OPG was strongly expressed at the cell surface. DR5 and DcR-2 were present in the cell membrane and cytoplasm and DcR-1 was confined to the nucleus. DR4 staining was weak. Neither Apo2L/TRAIL alone, nor in combination with chemotherapeutic agents of clinical relevance to treatment of osteogenic sarcoma, induced cell death in NHBC, as assessed morphologically and by activation of caspase-3. In contrast, the human osteogenic sarcoma cell lines, BTK-143 and G-292, were sensitive to exogenous Apo2L/TRAIL alone, and to the combined effect of Apo2L/TRAIL/cisplatin and Apo2L/TRAIL/doxorubicin treatments, respectively. In NHBC, we observed strong associations between the levels of mRNA corresponding to the pro-apoptotic molecules, Apo2L/TRAIL, DR4, and DR5, and those corresponding to pro-survival molecules, DcR-1, DcR-2, OPG, and FLIP, suggesting that the balance between pro-survival and pro-apoptotic molecules is a mechanism by which NHBC can resist Apo2L/TRAIL-mediated apoptosis. In contrast, osteogenic sarcoma cells had low or absent levels of DcR-1 and DcR-2. These results provide a foundation to explore the role of Apo2L/TRAIL in osteoblast physiology. In addition, they predict that therapeutic use of recombinant Apo2L/TRAIL, in combination with chemotherapeutic agents to treat skeletal malignancies, would have limited toxic effects on normal osteoblastic cells.  相似文献   

19.
目的探讨喜树碱增加TRAIL诱导肝癌细胞HepG2和Hep3B凋亡能力的分子机制。方法应用流式细胞仪分析TRAIL单独或联合应用喜树碱对肝癌细胞系HepG2和Hep3B细胞凋亡的影响;Western blot检测HepG2和Hep3B细胞在处理前后凋亡信号传导蛋白caspase-8,caspase-3,caspase-9,DR4,DR5,DcRl,c—FLIP,RIP,cytc,Smac和Bid表达的变化。结果喜树碱能增强TRAIL诱导肝癌细胞凋亡的能力,两者联用具有明显的协同作用。喜树碱预先处理能下调c—FLIP及RIP的表达及增加cytc,Smac,Bid的表达,但对DR4,DR5,DcRl的表达无明显影响。结论TRAIL联合喜树碱可以诱导肝癌细胞凋亡;其机制是下调c—FLIP及RIP的表达,活化凋亡发生的死亡受体通路,上调Bid的表达激活线粒体通路。死亡受体的表达不参与这一变化过程。  相似文献   

20.
OBJECT: Death receptor targeting is an attractive approach in experimental treatment for tumors such as malignant gliomas, which are resistant to radiation and chemotherapy. Among the family of cytokines referred to as death li gands, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted clinical interest. The aim of this study was to assess whether TRAIL can be used as an adjuvant to temozolomide (TMZ) for apoptosis induction in malignant glioma cell lines. METHODS: Six human malignant glioma cell lines (A172, U87, U251, T98, U343, and U373) were exposed to human (h)TRAIL, TMZ, or an hTRAIL/TMZ combined treatment. Cell viability was assayed using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide and phase-contrast microscopy. Cell apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique and quantified using flow cytometric analysis. The apoptosis signaling cascade was studied with Western blotting. The additive effects of hTRAIL and TMZ resulted in a significant decrease in cell viability and an increased apoptotic rate. Expression of the death receptors DR5 and DR4 in two cell lines (A172 and U251) upregulated significantly when they were used in combination hTRAIL/TMZ treatment (p < 0.05 compared with baseline control), leading to activation of caspase-8 and caspase-3 (p < 0.05 compared with baseline control) and confirming an extrinsic apoptotic pathway. A cell intrinsic pathway through mitochondrial cytochrome c was not activated. CONCLUSIONS: Based on this work, one may infer that hTRAIL should be considered as an adjuvant treatment for TMZ-resistant human malignant gliomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号