首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary.  Objectives: Platelets, specialized adhesive cells, play key roles in normal and pathological hemostasis through their ability to rapidly adhere to subendothelial matrix proteins (adhesion) and to other activated platelets (aggregation), functions which are inhibited by nitric oxide (NO). Platelets have been reported to be regulated not only by exogenous endothelium-derived NO, but also by two isoforms of NO synthase, endothelial (eNOS) and inducible (iNOS), endogenously expressed in platelets. However, data concerning expression, regulation and function of eNOS and iNOS in platelets remain controversial. Methods and results: Using important positive (endothelial cells, stimulated macrophages) and negative (eNOS/iNOS knock-out mouse) controls, as well as human platelets highly purified by a newly developed protocol, we now demonstrate that human and mouse platelets do not contain eNOS/iNOS proteins or mRNA. NOS substrate ( l -arginine), NOS inhibitors (L-NAME, L-NMMA), and eNOS/iNOS deficiency did not produce detectable functional effects on human and mouse platelets. von Willebrand factor (VWF)/ristocetin treatment of platelets increased cGMP by NO-independent activation of soluble guanylyl cyclase (sGC) which correlated with Src kinase-dependent phosphorylation of sGC β1-subunit-Tyr192. Conclusions: Human and mouse platelets do not express eNOS/iNOS. VWF/ristocetin-mediated activation of the sGC/cGMP signaling pathway may contribute to feedback platelet inhibition.  相似文献   

2.
In this issue of the JCI, Stasch and colleagues suggest that a novel drug, BAY 58-2667, potently activates a pool of oxidized and heme-free soluble guanylyl cyclase (sGC; see the related article beginning on page 2552). The increased vasodilatory potency of BAY 58-2667 the authors found in a number of animal models of endothelial dysfunction and in human blood vessels from patients with diabetes suggests that there exists a subphenotype of endothelial dysfunction characterized by receptor-level NO resistance. Diseases associated with NO resistance would appear to be ideally suited for therapies directed at restoring redox homeostasis, sGC activity, and NO sensitivity.  相似文献   

3.
Hydroxyurea treatment of patients with sickle-cell disease increases fetal hemoglobin (HbF), which reduces hemoglobin S polymerization and clinical complications. Despite its use in the treatment of myeloproliferative diseases for over 30 years, its mechanism of action remains uncertain. Recent studies have demonstrated that hydroxyurea generates the nitric oxide (NO) radical in vivo, and we therefore hypothesized that NO-donor properties might determine the hemoglobin phenotype. We treated both K562 erythroleukemic cells and human erythroid progenitor cells with S-nitrosocysteine (CysNO), an NO donor, and found similar dose- and time-dependent induction of gamma-globin mRNA and HbF protein as we observed with hydroxyurea. Both hydroxyurea and CysNO increased cGMP levels, and the guanylyl cyclase inhibitors ODQ, NS 2028, and LY 83,538 abolished both the hydroxyurea- and CysNO-induced gamma-globin expression. These data provide strong evidence for an NO-derived mechanism for HbF induction by hydroxyurea and suggest possibilities for therapies based on NO-releasing or -potentiating agents.  相似文献   

4.
Soluble guanylyl cyclase (sGC), a ubiquitously expressed heme-containing receptor for nitric oxide (NO), is a key mediator of NO-dependent processes. In addition to NO, a number of synthetic compounds that target the heme-binding region of sGC and activate it in a NO-independent fashion have been described. We report here that dicyanocobinamide (CN2-Cbi), a naturally occurring intermediate of vitamin B(12) synthesis, acts as a sGC coactivator both in vitro and in intact cells. Heme depletion or heme oxidation does not affect CN2-Cbi-dependent activation. Deletion mutagenesis demonstrates that CN2-Cbi targets a new regulatory site and functions though a novel mechanism of sGC activation. Unlike all known sGC regulators that target the N-terminal regulatory regions, CN2-Cbi directly targets the catalytic domain of sGC, resembling the effect of forskolin on adenylyl cyclases. CN2-Cbi synergistically enhances sGC activation by NO-independent regulators 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY41-2272), 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]-acid (cinaciguat or BAY58-2667), and 5-chloro-2-(5-chloro-thiophene-2-sulfonylamino-N-(4-(morpholine-4-sulfonyl)-phenyl)-benzamide sodium salt (ataciguat or HMR-1766). BAY41-2272 and CN2-Cbi act reciprocally by decreasing the EC(50) values. CN2-Cbi increases intracellular cGMP levels and displays vasorelaxing activity in phenylephrine-constricted rat aortic rings in an endothelium-independent manner. Both effects are synergistically potentiated by BAY41-2272. These studies uncover a new mode of sGC regulation and provide a new tool for understanding the mechanism of sGC activation and function. CN2-Cbi also offers new possibilities for its therapeutic applications in augmenting the effect of other sGC-targeting drugs.  相似文献   

5.
6.
In gastrointestinal smooth muscle, cGMP levels in response to relaxant agonists are regulated by activation of phosphodiesterase 5 and inhibition of soluble guanylyl cyclase (sGC) in a feedback mechanism via cGMP-dependent protein kinase. The aim of the present study was to determine whether contractile agonists modulate cGMP levels by cross-regulating sGC activity. In gastric muscle cells, acetylcholine (ACh) stimulated Src activity and induced sGC phosphorylation. Concurrent stimulation of cells with ACh attenuated sGC activity and cGMP formation in response to the nitric oxide (NO) donor, S-nitrosoglutathione (GSNO). The effect of ACh on Src activity, sGC phosphorylation, and on GSNO-stimulated sGC activity and cGMP formation were blocked by the m2 receptor antagonist (methoctramine), pertussis toxin, and by inhibitors of phosphatidylinositol 3 kinase, LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride], or Src kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, in dispersed muscle cells and in cells expressing Galpha(i) minigene or Gbetagamma-scavenging peptide, whereas the m3 receptor antagonist, N-(2-chloroethyl)-4-piperidinyl diphenylacetate, or expression of the Galpha(q) minigene had no effect. ACh also attenuated sGC activity and cGMP formation in response to the NO-independent activator, YC-1 [3-(5'-hydroxymethyl-2'furyl)-1-benzylindazole]. The pattern implied that phosphorylation of sGC by c-Src kinase inhibits NO-sensitive sGC activity, and the inhibition was not due to a decrease in the binding of NO but probably due to decrease in catalytic activity. We conclude that cGMP levels are cross-regulated by contractile agonists via a mechanism that involves c-Src-dependent phosphorylation of sGC, leading to inhibition of sGC activity and cGMP formation. The finding highlights a novel mechanism for attenuation of the NO/sGC/cGMP signal by G(i)-coupled contractile agonists, in addition to their inhibitory effect on adenylyl cyclase and cAMP formation.  相似文献   

7.
Activation of soluble guanylyl cyclase (sGC) might occur early during septic shock and play a role in the regulation of vascular tone and the redistribution of blood flow. The aim of this study was to assess the effects of sGC inhibition with oxadiazoloquinoxalinone (ODQ) on global and regional hemodynamic parameters in a clinically relevant model of septic shock. Fifteen anesthetized adult mongrel dogs were equipped with femoral and pulmonary artery catheters and ultrasonic flow probes around the mesenteric, femoral and renal arteries. The animals were randomized to receive Escherichia coli endotoxin (2 mg/kg, i.v.) alone, endotoxin followed by ODQ (1 mg/kg i.v.), or ODQ alone. Endotoxin administration was followed by decreases in mean arterial pressure, cardiac index, mesenteric, renal and femoral blood flows (MBF, RBF and FBF), and increases in systemic and pulmonary vascular resistances. Fluid resuscitation restored cardiac index, systemic vascular resistance, pulmonary vascular resistance, MBF, RBF and FBF to pre-endotoxin levels. In the presence of endotoxin, ODQ administration increased MBF and prevented the restoration of FBF. Hence, selective inhibition of sGC may increase splanchnic blood flow in septic shock.  相似文献   

8.
See also Gordge MP. Nitric oxide: a one‐trick pony? This issue, pp 1340–2. Summary. Background: The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling cascade is involved in the precise regulation of platelet responses. NO released from the endothelium is known to activate NO‐sensitive guanylyl cyclase (NO‐GC) in platelets. By the generation of cGMP and subsequent activation of cGMP‐dependent protein kinase (PKG), NO‐GC mediates the reduction of the intracellular calcium and inhibits platelet adhesion and aggregation. However, NO has been postulated to influence these platelet functions also via cGMP‐independent mechanisms. Objective: We studied the effect of NO on platelets lacking NO‐sensitive guanylyl cyclase with regards to aggregation, adhesion, calcium mobilization and bleeding time. Methods and results: Here, we show that NO signaling leading to inhibition of agonist‐induced platelet aggregation is totally abrogated in platelets from mice deficient in NO‐GC (GCKO). Even at millimolar concentrations none of the several different NO donors inhibited collagen‐induced aggregation of GCKO platelets. In addition, NO neither affected adenosine 5′‐diphosphate (ADP)‐induced adhesion nor thrombin‐induced calcium release in GCKO platelets. Although the NO‐induced cGMP signal transduction was totally abrogated cyclic adenosine monophosphate (cAMP) signaling was still functional; however, cGMP/cAMP crosstalk was disturbed on the level of phosphodiesterase type 3 (PDE3). These in vitro data are completed by a reduced bleeding time indicating the lack of NO effect in vivo. Conclusions: We conclude that NO‐GC is the only NO receptor in murine platelets mediating the inhibition of calcium release, adhesion and aggregation: lack of the enzyme leads to disturbance of primary hemostasis.  相似文献   

9.
目的:探讨鸟甘酸环化酶 C ( GCC )在大肠癌患者外周血中的表达及其临床意义。方法采用RT-PCR法对32例大肠癌患者、25例大肠良性病变患者、30例健康体检者外周血中GCC表达情况进行检测,并对大肠癌病理指标与GCC mRNA 表达阳性率之间关系进行研究。结果32例大肠癌患者中,GCC mRNA 的阳性检出率为65.63%(21/32),良性组中 GCC mRNA 的阳性检出率为20.00%(5/25),而对照组中未见 GCC mRNA 表达;三组外周血中表达阳性率差异具有统计学意义(P〈0.05)。大肠癌患者 GCC mRNA 表达水平与Duke 分期、淋巴结转移和肝转移密切相关(P〈0.05),与年龄、性别、肿瘤大小等无关(P〉0.05)。结论 GCC mRNA 在大肠癌患者外周血中阳性表达率较高,特别是复发或转移病例,可作为大肠癌术后复发、转移的早期检测指标之一。  相似文献   

10.
In addition to increasing cGMP, the soluble guanylyl cyclase (sGC) activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) can elevate intracellular cAMP levels. This response was assumed to be as a result of cGMP-dependent inhibition of cAMP phosphodiesterases; however, in this study, we show that YC-1-induced cAMP production in the rat pancreatic beta cell line INS-1E occurs independent of its function as a sGC activator and independent of its ability to inhibit phosphodiesterases. This YC-1-induced cAMP increase is dependent upon soluble adenylyl cyclase and not on transmembrane adenylyl cyclase activity. We previously showed that soluble adenylyl cyclase-generated cAMP can lead to extracellular signal-regulated kinase activation and that YC-1-stimulated cAMP production also stimulates extracellular signal-regulated kinase. Although YC-1 has been used as a tool for investigating sGC and cGMP-mediated pathways, this study reveals cGMP-independent pharmacological actions of this compound.  相似文献   

11.
Nitric oxide (NO) is postulated to play a role in endotoxin-induced ileus. We investigated the effect of selective blockade of inducible NO synthase (iNOS) and guanylyl cyclase on endotoxin-induced ileus in mice. Thirty minutes before injection of lipopolysaccharides (LPS), mice were pretreated with L-NAME (N omega-nitro-L-arginine methyl ester, non-selective NOS inhibitor), 1400W (N-(3-(aminomethyl)benzyl)acetamide, selective iNOS inhibitor), ODQ (1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, guanylyl cyclase inhibitor), dimethyl sulfoxide (DMSO, vehicle), or dexamethasone. After 18 h, general well being deteriorated and the mice developed hypothermia and a significant delay in gastric emptying and intestinal transit as measured by Evans blue. 1400W completely reversed the endotoxin-induced delay in gastric emptying, while L-NAME did not have these beneficial effects. On the contrary, even in control mice, L-NAME delayed gastric emptying. Dexamethasone, DMSO, and ODQ mimicked the effect of 1400W on endotoxin-induced delay in gastric emptying. The endotoxin-induced delay in transit was significantly improved only by 1400W. None of the drugs reversed the hypothermia. In LPS mice treated with L-NAME, the behavior scale increased even further, while it decreased after treatment with 1400W. In conclusion, selective inhibition of iNOS reverses the endotoxin-induced delay in gastric emptying and transit and improves general well being. The pathway used by NO, derived from iNOS, may involve inhibition of guanylyl cyclase or radical scavenging.  相似文献   

12.
Phosphodiesterase type 5 (PDE5) inhibitors are used to treat erectile dysfunction, and growing evidence supports potential cardiovascular utility. Their efficacy declines with reduced nitric-oxide synthase (NOS) activity common to various diseases. We tested whether direct soluble guanylate cyclase (sGC) stimulation restores in vivo cardiovascular modulation by PDE5 inhibition despite acute or chronically suppressed NOS activity. Mice (C57/Bl6; n = 62) were studied by in vivo pressure-volume analysis to assess acute modulation by the PDE5 inhibitor sildenafil (SIL; 100 microg/kg/min) of the cardiac response to isoproterenol (ISO) with or without NOS inhibition [N(omega)-nitro-L-arginine methyl ester (L-NAME)] and cotreatment by the sGC stimulator 2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-morpholinyl)pyrimidine-4,6-diamine (BAY 41-8543). SIL induced mild vasodilation but no basal cardiac effects and markedly blunted ISO-stimulated contractility. Acute BAY 41-8543 at a dose lacking cardiovascular effects did not alter ISO responses. However, after acute L-NAME, SIL ceased to influence cardiovascular function, but adding BAY 41-8543 fully restored SIL effects. After 1 week of L-NAME, neither SIL nor SIL + BAY 41-8543 acutely induced vasodilation or blunted ISO responses. However, sustained BAY 41-8543 despite concurrent NOS inhibition restored the cardiovascular efficacy of SIL. The disparity between acute and chronic NOS inhibition related to diffusion of PDE5 away from myocyte z-bands coupled with reduced protein kinase G activation. Both were restored by sustained sGC costimulation. Thus, PDE5 regulation of adrenergic reserve and systemic vasodilation depends upon NOS-induced cGMP/protein kinase G and can be enhanced by sustained low-level stimulation of sGC. This may prove beneficial for enhancing the efficacy of PDE5 inhibitors in conditions with chronically reduced NOS activity.  相似文献   

13.
Although viral upper respiratory infections (URIs) provoke wheezing in many asthma patients, the effect of these illnesses on the airway response to inhaled antigen is not established. The following study evaluated the effect of an experimental rhinovirus (RV) illness on airway reactivity and response to antigen in 10 adult ragweed allergic rhinitis patients. Preinfection studies included measurements of airway reactivity to histamine and ragweed antigen. Furthermore, the patients were also evaluated for late asthmatic reactions (LARs) to antigen (a 15% decrease in forced expiratory volume of the first second approximately 6 h after antigen challenge). 1 mo after baseline studies, the patients were intranasally inoculated with live RV16. All 10 patients were infected as evidenced by rhinovirus recovery in nasal washings and respiratory symptoms. Baseline FEV1 values were stable throughout the study. During the acute RV illness, there was a significant increase in airway reactivity to both histamine and ragweed antigen (P = 0.019 and 0.014, respectively). Before RV inoculation, only 1 of the 10 subjects had an LAR after antigen challenge. However, during the acute RV illness, 8 of 10 patients had an LAR (P less than 0.0085 compared with baseline); the development of LARs was independent of changes in airway reactivity and the intensity of the immediate response to antigen. Therefore, we found that not only does a RV respiratory tract illness enhance airway reactivity, but it also predisposes the allergic patient to develop LARs, which may be an important factor in virus-induced bronchial hyperresponsiveness.  相似文献   

14.
The nonsteroidal anti-inflammatory drug sulindac is metabolized to sulindac sulfone (exisulind), an antineoplastic agent that inhibits growth and induces apoptosis in solid tumors. In colon cancer cells, the antineoplastic effects of exisulind have been attributed, in part, to induction of cyclic guanosine 3',5'-monophosphate (cGMP) signaling through inhibition of cGMP-specific phosphodiesterases, which elevates intracellular cGMP, and novel expression of cGMP-dependent protein kinase (PKG) Ibeta, the presumed downstream effector mediating apoptosis. Here, inhibition of proliferation and induction of cell death by exisulind was dissociated from cGMP signaling in human colon cancer cells. Accumulation of intracellular cGMP produced by an exogenous cell-permeant analogue of cGMP or a potent agonist of guanylyl cyclase C yielded cytostasis without cell death. Surprisingly, the antiproliferative effects of induced cGMP accumulation were paradoxically less than additive, rather than synergistic, when combined with exisulind. Further, although exisulind induced expression of PKG Ibeta, it did not elevate intracellular cGMP and its efficacy was not altered by inhibition or activation of PKG I. Rather, PKG I induced by exisulind may mediate desensitization of cytostasis induced by cGMP. Thus, cytotoxic effects of exisulind are independent of cGMP signaling in human colon cancer cells. Moreover, combination therapies, including exisulind and agents that induce cGMP signaling, may require careful evaluation in patients with colon cancer.  相似文献   

15.
Previous studies have demonstrated hepatic cytochrome P-450-dependent biotransformation of organic nitrates. We assessed whether this biotransformation resulted in the formation of an activator of guanylyl cyclase using the 100,000 x g supernatant of rat aorta as a source of crude enzyme. Incubation of aortic supernatant with rat hepatic microsomes and glyceryl trinitrate (GTN) resulted in concentration-dependent increases in guanylyl cyclase activity provided that the incubations were performed anaerobically and that reduced nicotinamide adenine phosphate was added. Cysteine-dependent activation of guanylyl cyclase by GTN was greater under anaerobic compared to aerobic conditions. Guanylyl cyclase activation by GTN was increased using hepatic microsomes from phenobarbital-treated but not beta-naphthoflavone (BNF)-treated rats and was decreased when microsomes from cimetidine-treated rats were used. The hepatic microsome-dependent activation of guanylyl cyclase by GTN was inhibited by in vitro treatment of microsomes with carbon monoxide, SKF 525A, metyrapone and cimetidine, but not by ranitidine. The sensitivity of isolated rat aorta to the relaxant effects of GTN was increased under low oxygen conditions or when aortae were obtained from phenobarbital- or beta-naphthoflavone-treated rats. Treatment of rats with cimetidine did not affect GTN-induced relaxation. The vascular biotransformation of GTN was increased greater than 3-fold when performed anaerobically, and this increase was prevented by pretreatment of the tissues with carbon monoxide. Together, these data provide strong evidence for the involvement of hepatic cytochromes P-450 in the formation from GTN of an activator of guanylyl cyclase (presumably NO or some closely related compound), and suggest that at least a portion of the vascular biotransformation of GTN is mediated by hemoproteins.  相似文献   

16.
目的探索脊柱骨折伴高位截瘫合并气道高反应性患者气道的有效护理方法。方法密切观察呼吸的频率、节律、幅度等情况,保持呼吸道通畅,加强气道湿化,保持正态通气方式,维持机体有效循环,保证体内血氧处于正常状态。结果患者好转出院16例,因家庭因素及经济原因自动出院3例。结论患有气道高反应性的脊柱骨折伴高位截瘫的患者,应加强气道湿化,保持呼吸道通畅,保持正态通气方式,能保证机体血氧处于正常状态,促进患者早日康复。  相似文献   

17.
Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.  相似文献   

18.
Cytosolic guanylyl cyclases (GTP pyrophosphate-lyase [cyclizing; EC 4.6.1.2]), primary receptors for nitric oxide (NO) generated by NO synthases, are obligate heterodimers consisting of an alpha and a beta subunit. The alpha1/beta1 form of guanylyl cyclase has the greatest activity and is considered the universal form. An isomer of the beta1 subunit, i.e., beta2, has been detected in the liver and kidney, however, its role is not known. In this study, we investigated the function of beta2. Immunoprecipitation experiments showed that the beta2 subunit forms a heterodimer with the alpha1 subunit. NO-stimulated cGMP formation in COS 7 cells cotransfected with the alpha1 and beta2 subunits was approximately 1/3 of that when alpha1 and beta1 subunits were cotransfected. The beta2 subunit inhibited NO-stimulated activity of the alpha1/beta1 form of guanylyl cyclase and NO-stimulated cGMP formation in cultured smooth muscle cells. Our results provide the first evidence that the beta2 subunit can regulate NO sensitivity of the alpha1/beta1 form of guanylyl cyclase. Northern analysis for guanylyl cyclase subunits was performed on RNA from kidneys of Dahl salt-sensitive rats, which have been shown to have decreased renal sensitivity to NO. Compared to the Dahl salt-resistant rat, message for beta2 was increased, beta1 was decreased, and alpha1 was unchanged. These results suggest a molecular basis for decreased renal guanylyl cyclase activity, i.e. , an increase in the alpha1/beta2 heterodimer, and decrease in the alpha1/beta1 heterodimer.  相似文献   

19.
Eosinophils cluster around airway nerves in patients with fatal asthma and in antigen-challenged animals. Activated eosinophils release major basic protein, which blocks inhibitory M2 muscarinic receptors (M2Rs) on nerves, increasing acetylcholine release and potentiating vagally mediated bronchoconstriction. We tested whether GW701897B, an antagonist of CCR3 (the receptor for eotaxin as well as a group of eosinophil active chemokines), affected vagal reactivity and M2R function in ovalbumin-challenged guinea pigs. Sensitized animals were treated with the CCR3 antagonist before inhaling ovalbumin. Antigen-challenged animals were hyperresponsive to vagal stimulation, but those that received the CCR3 antagonist were not. M2R function was lost in antigen-challenged animals, but not in those that received the CCR3 antagonist. Although the CCR3 antagonist did not decrease the number of eosinophils in lung tissues as assessed histologically, CCR3 antagonist prevented antigen-induced clustering of eosinophils along the nerves. Immunostaining revealed eotaxin in airway nerves and in cultured airway parasympathetic neurons from both guinea pigs and humans. Both IL-4 and IL-13 increased expression of eotaxin in cultured airway parasympathetic neurons as well as in human neuroblastoma cells. Thus, signaling via CCR3 mediates eosinophil recruitment to airway nerves and may be a prerequisite to blockade of inhibitory M2Rs by eosinophil major basic protein.  相似文献   

20.
Nitric oxide (NO) activates soluble guanylyl cyclase, which results in an increased synthesis of cyclic guanosine 3',5'-cyclic monophosphate (cGMP), smooth muscle relaxation and vasodilation. The heme group in soluble guanylyl cyclase binds NO and allosterically activates the catalytic site. In addition, a second allosteric site that synergistically activates the enzyme has been reported. BAY 41-2272 was reported as an NO-independent activator of soluble guanylyl cyclase. Treatment with this compound results in anti-platelet activity, a decrease in blood pressure and an increase in survival, indicating a potential for treating cardiovascular diseases. YC-1, another NO-independent activator, activates soluble guanylyl cyclase and the activity is enhanced in the presence of NO. YC-1 relaxed tissue strips in organ bath. Consistent with its biochemical activity, YC-1 induced penile erection in a conscious rat model. Recently, we found a novel series of soluble guanylyl cyclase activators that also NO-independently activate soluble guanylyl cyclase and cause penile erection, suggesting a synergy with the endogenous NO production in vivo. Here I review the NO/cGMP signal transduction pathway and define soluble guanylyl cyclase modulators as a novel approach for the treatment of cardiovascular diseases and erectile dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号