首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Fibroblast growth factor (FGF) signaling is implicated in the control of pluripotency and lineage differentiation of both human and mouse embryonic stem cells (mESCs). FGF4 dependent stimulation of ERK1/2 signaling triggers transition of pluripotent ESCs from self-renewal and lineage commitment. In this study, Sprouty 1 (Spry1) expression was observed in undifferentiated mESCs, where it modulated ERK1/2 activity. Spry1 was confirmed as dispensable for the maintenance of self-renewal. However, suppression of Spry1 expression and subsequent activation of ERK1/2 signaling promoted neural differentiation and inhibited endothelial differentiation of mESCs. Moreover, evidence is presented which indicates that SHP2, a major determinant of balance between mESC self-renewal and differentiation, directly regulates Spry1 activity to modulate ERK1/2 signaling and lineage-specific differentiation in mESCs. Our results show that Spry1 has an essential role in the lineage specific differentiation of mESCs.  相似文献   

2.
Murine embryonic stem cells (mESCs) are pluripotent cells that can be propagated in an undifferentiated state in continuous culture on a feeder layer or without feeders in the presence of leukemia inhibitory factor (LIF). Although there has been a great advance since their establishment, ESC culture is still complex and expensive. Therefore, finding culture conditions that maintain the self-renewal of ESCs, preventing their differentiation and promoting their proliferation, is still an area of great interest. In this work, we studied the effects of the conditioned medium from a bovine granulosa cell line (BGC-CM) on the maintenance of self-renewal and pluripotency of mESCs. We found that this medium is able to maintain mESCs' self-renewal while preserving its critical properties without LIF addition. mESCs cultured in BGC-CM expressed the stem cell markers Oct4, Sox2, Nanog, SSEA-1, Klf4, Rex1, and ECAT1. Moreover, mESCs cultured in BGC-CM gave rise to embryoid bodies and teratomas that differentiated effectively to diverse cell populations from endoderm, mesoderm, and ectoderm. Further, we found that mESCs cultured in BGC-CM have an increased proliferation rate compared with cells grown in the mESC standard culture medium supplemented with LIF. These findings may provide a powerful tool to culture mESCs for long periods of time with high proliferation rate while preserving its basic characteristics, contributing to the application of these cells to assess potential tissue engineering and cellular therapy applications.  相似文献   

3.
The regulation of mouse embryonic stem cell (mESC) fate is controlled by the interplay of signaling networks that either promote self-renewal or induce differentiation. Leukemia inhibitory factor (LIF) is a cytokine that is required for stem cell renewal in mouse but not in human embryonic stem cells. However, feeder layers of embryonic fibroblasts are capable of inducing stem cell renewal in both cell types, suggesting that the self-renewal signaling pathways may also be promoted by other triggers, such as alternative cytokines and/or chemical or physical properties of the extracellular matrix (ECM) secreted by feeder fibroblasts. We have recently used a synthetic polyamide matrix (Ultra-Web) whose three-dimensional (3D) nanofibrillar organization resembles the ECM/basement membrane. Growth of mESCs on this nanofibrillar surface greatly enhanced proliferation and self-renewal in comparison with growth on tissue culture surfaces without nanofibers, despite the presence of LIF in both systems. Enhanced proliferation and self-renewal of the stem cells on nanofibrillar surfaces were correlated with the activation of the small GTPase Rac, the activation of phosphoinositide 3-kinase (PI3K) pathway, and the enhanced expression of Nanog, a homeoprotein required for maintenance of pluripotency. Inhibitors of PI3K reduced the expression level of Nanog in mESCs cultured on 3D nanofibrillar surfaces. These results provide support for the view that the three-dimensionality of the culture surface may function as a cue for the activation of Rac and PI3K signaling pathways, resulting in stem cell proliferation and self-renewal.  相似文献   

4.
5.
6.
Nanog is a critical homeodomain factor responsible for maintaining embryonic stem (ES) cell self-renewal and pluripotency. Of interest, Nanog expression is not homogeneous in the conventional culture of murine ES cells. A Nanog-high population expresses markers for pluripotent ES cells, whereas a Nanog-low population expresses markers for primitive endoderm, such as Gata6. Since the inner cell mass of early blastocysts has recently been reported to be heterogeneous in terms of Nanog and Gata6 expression, ES cells appear to closely resemble the developing stage from which they originate. We further demonstrate that Nanog can directly repress Gata6 expression through its binding to the proximal promoter region of the Gata6 gene and that overexpression of Nanog reduces heterogeneity during ES cell maintenance. Interestingly, Nanog heterogeneity does not correlate with the heterogeneous expression of stage-specific embryonic antigen-1, suggesting that multiple but overlapping levels of heterogeneity may exist in ES cells. These findings provide insight into the factors that control ES cell self-renewal and the earliest lineage commitment to primitive endoderm while also suggesting methods to promote homogeneity during ES cell maintenance. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

7.
Δ40p53 is a transactivation-deficient isoform of the tumor suppressor p53. We discovered that Δ40p53, in addition to being highly expressed in embryonic stem cells (ESCs), is the major p53 isoform during early stages of embryogenesis in the mouse. By altering the dose of Δ40p53 in ESCs, we identified a critical role for this isoform in maintaining the ESC state. Haploinsufficiency for Δ40p53 causes a loss of pluripotency in ESCs and acquisition of a somatic cell cycle, while increased dosage of Δ40p53 prolongs pluripotency and inhibits progression to a more differentiated state. Δ40p53 controls the switch from pluripotent ESCs to differentiated somatic cells by controlling the activity of full-length p53 at critical targets such as Nanog and the IGF-1 receptor (IGF-1R). The IGF axis plays a central role in the switch between pluripotency and differentiation in ESCs-and Δ40p53, by controlling the level of the IGF-1R, acts as a master regulator of this switch. We propose that this is the primary function of Δ40p53 in cells of the early embryo and stem cells, which are the only normal cells in which this isoform is expressed.  相似文献   

8.
9.
10.
11.
12.
13.
14.
c-Myc participates in diverse cellular processes including cell cycle control, tumorigenic transformation, and reprogramming of somatic cells to induced pluripotent cells. c-Myc is also an important regulator of self-renewal and pluripotency of embryonic stem cells (ESCs). We recently demonstrated that loss of the Max gene, encoding the best characterized partner for all Myc family proteins, causes loss of the pluripotent state and extensive cell death in ESCs strictly in this order. However, the mechanisms and molecules that are responsible for these phenotypes remain largely obscure. Here, we show that Sirt1, p53, and p38(MAPK) are crucially involved in the detrimental phenotype of Max-null ESCs. Moreover, our analyses revealed that these proteins are involved at varying levels to one another in the hierarchy of the pathway leading to cell death in Max-null ESCs.  相似文献   

15.
16.
Pluripotent stem cells are under the influence of soluble factors in a diffusion dominant in vivo microenvironment. In order to investigate the effects of secreted soluble factors on embryonic stem cell (ESC) behavior in a diffusion dominant microenvironment, we cultured mouse ESCs (mESCs) in a membrane-based two-chambered micro-bioreactor (MB). To avoid disturbing the cellular environment in the top chamber of the MB, only the culture medium of the bottom chamber was exchanged. Cell growth in the MB after 5 days of culture was similar to that in conventional 6-well plate (6-WP) and membrane-based Transwell insert (TW) cultures, indicating adequate nutrient supply in the MB. However, the cells retained higher expression of pluripotency markers (Oct4, Sox2 and Rex1) and secreted soluble factors (FGF4 and BMP4) in the MB. Inhibition of FGF4 activity in the MB and TW resulted in a similar cellular response. However, in contrast to the TW, inhibition of BMP4 activity revealed that autocrine action of the upregulated BMP4, which acted cooperatively with leukemia inhibitory factor (LIF), upregulated the pluripotency markers expression in the MB culture. We propose that BMP4 accumulated in the diffusion dominant microenvironment of the MB upregulated its own expression by a positive feedback mechanism—in contrast to the macro-scale culture systems—thereby enhancing the pluripotency of mESCs. The micro-scale culture platform developed in this study enables the investigation of the effects of soluble factors on ESCs in a diffusion dominant microenvironment, and is expected to be used to modulate the ESC fate choices.  相似文献   

17.
The gene expression networks governing embryonic stem cell (ESC) pluripotency are complex and finely regulated during differentiation toward specific lineages. We describe a new role for Amd1 (adenosyl methionine decarboxylase), a key enzyme in the polyamine synthesis pathway, in regulating both ESC self-renewal and differentiation to the neural lineage. Amd1 is highly expressed in ESCs and is translationally down-regulated by the neural precursor cell (NPC)-enriched microRNA miR-762 during NPC differentiation. Overexpression of Amd1 or addition of the polyamine spermine blocks ESC-to-NPC conversion, suggesting Amd1 must be down-regulated to decrease the levels of inhibitory spermine during differentiation. In addition, we demonstrate that high levels of Amd1 are required for maintenance of the ESC state. We show that forced overexpression of Amd1 in ESCs results in maintenance of high Myc levels and a delay in differentiation on removal of LIF. We propose that Amd1 is a major regulator of ESC self-renewal and that its essential role lies in its regulation of Myc levels within the cell.  相似文献   

18.
19.
Nanog是维持干细胞自我更新增殖和亚全能性的关键性基因,胚胎干细胞的转录因子。近年来,随着对Nanog在干细胞和肿瘤细胞中的表达相关研究的不断深入,为研究肿瘤的起源和生物学行为以及治疗肿瘤提供了新途径。  相似文献   

20.
Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and α-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers βIII-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号