首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
Using extracellular and intracellular ex vivo recording techniques we studied changes in the reactivity of hippocampal pyramidal CA1 neurons to serotonin (5-HT) and to the 5-HT1A- and 5-HT4 receptor agonists (+/-)-2-dipropylamino-8-hydroxy- 1,2,3 ,4-tetrahydronaphthalene hydrobromide (8-OH-DPAT) and zacopride, respectively, evoked by repeated electroconvulsive shock (ECS), imipramine and corticosterone treatments. Rats were subjected to ECS for 1 or 10 days, treated with imipramine for 1, 7, 14 or 21 days (10 mg/kg p.o., twice daily) and with corticosterone for 7 days (10 mg/kg s.c., twice daily). Hippocampal slices were prepared 2 days after the last treatment. Activation of 5-HT1A receptors decreased the amplitude of population spikes evoked by stimulation of the Schaffer/collateral-commissural pathway and hyperpolarized CA1 cells. Activation of 5-HT4 receptors increased the population spike amplitude and decreased the amplitude of slow afterhyperpolarization. Both repeated ECS and imipramine enhanced the effects related to 5-HT1A receptor activation and attenuated the effects of 5-HT4 receptor activation. The action of imipramine was significant after a 7-day treatment and reached a maximum after 14 daily applications, remaining at the same level in a group of animals treated for 21 days. Repeated corticosterone attenuated the inhibitory effect of 5-HT and 8-OH-DPAT on the population spike amplitude and enhanced the increase in population spike amplitude induced by zacopride. These findings indicate that antidepressant treatments and repeated corticosterone have opposite effects on hippocampal responsiveness to 5-HT1A and 5-HT4 receptor activation. In consequence, antidepressants enhance, whereas corticosterone reduces the 5-HT-mediated inhibition of hippocampal CA1 cells, which may be relevant to the antidepressant and pro-depressant effects of either treatment, respectively.  相似文献   

2.
The hypothermia induced by the serotonin (5-HT)1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) was attenuated in rats that had received a course of six electroconvulsive shocks (ECS) over a two-week period. The firing activity of dorsal raphe 5-HT neurons, as well as their responsiveness to microiontophoretic applications of 5-HT and 8-OH-DPAT, was unaltered in ECS-treated rats. The electrically evoked overflow of [3H]5-HT from preloaded slices of guinea pig hypothalamus was unchanged after the same ECS treatment. The concentration-effect curves of the 5-HT autoreceptor agonist 5-carboxyamidotryptamine (0.1-100 nM) were similar in slices prepared from control and ECS-treated guinea pigs. In addition, the reduction in the evoked [3H]5-HT overflow obtained by increasing the stimulation frequency from 1 to 5 Hz, which is due to a greater activation of terminal 5-HT autoreceptors at the higher frequency, was not altered by the ECS treatment. The enhancing effects of the 5-HT autoreceptor antagonist methiothepin (0.1-1 microM) and of the 5-HT3 agonist 2-methyl-5-HT (0.1-1 microM) on the evoked [3H]5-HT overflow were unaltered by the ECS treatment. These results thus indicate that repeated ECS attenuates the 8-OH-DPAT-induced hypothermia in rats, as previously reported, but does not affect the firing activity of 5-HT neurons and the sensitivity of their somatodendritic 5-HT1A autoreceptors in the dorsal raphe. The function of 5-HT terminals in the guinea pig hypothalamus was also unaffected by repeated ECS. In conclusion, repeated ECS does not affect the function of 5-HT neurons at the cell body and nerve terminal.  相似文献   

3.
We previously demonstrated that repeated electroconvulsive shock (ECS) treatment enhanced serotonin (5-HT)(1A)- and 5-HT(3)-receptor-mediated responses in hippocampal CA1 pyramidal neurons. The electrophysiological studies were performed to elucidate the effects of ECS treatment on depolarization, which was an additional response induced by 5-HT, and the second messenger system involved in this depolarization of hippocampal CA1 neurons. Both application of 5-HT (100 microM) induced depolarization of the membrane potential in the presence of 5-HT(1A)-receptor antagonists. This depolarization was mimicked by 5-HT(4)-receptor agonists, RS 67506 (1-30 microM) and RS 67333 (0.1-30 microM), in a concentration-dependent manner. 5-HT- and RS 67333-induced depolarization was attenuated by concomitant application of RS 39604, a 5-HT(4)-receptor antagonist. H-89, a protein kinase A (PKA) inhibitor, inhibited 5-HT-, RS 67506-, and RS 67333-induced depolarizations, while forskolin (10 microM), an activator of adenylate cyclase, induced depolarization. Furthermore, RS 67333-induced depolarization was not significantly different between hippocampal slices prepared from rats administered ECS once a day for 14 days and those from sham-treated rats. These findings suggest that 5-HT(4)-receptor-mediated depolarization is caused via the cAMP-PKA system. In addition, repeated ECS-treatment did not modify 5-HT(4)-receptor functions in contrast to 5-HT(1A)- and 5-HT(3)-receptor functions.  相似文献   

4.
Imipramine-induced enhancement of the inhibitory action of 5-HT(lA) receptor activation in hippocampal pyramidal neurons has been attributed to alterations in the transduction mechanism that involves G protein-dependent opening of K(+) channels. Postsynaptic 5-HT(lA) and adenosine Al receptors may share that transduction pathway. We investigated the influence of repeated imipramine administration on 5-HT(lA) and adenosine A1 receptor-mediated effects in rat hippocampal slices. Repeated imipramine selectively enhanced the postsynaptic effects of 5-HT(1A) receptor activation, including hyperpolarization and reduction of input resistance of neurons and reduction of the population spike amplitude. In contrast, after imipramine treatment only the presynaptic effect of adenosine receptor agonists, a decrease of the field excitatory postsynaptic potential, was enhanced. The data demonstrate that alterations in the presumed common transduction mechanism that was postulated for the 5-HT(lA) and adenosine A1 receptor-mediated activation of K(+) channels are not involved in the effect of repeated imipramine administration.  相似文献   

5.
Hippocampal 5-HT(1A) receptors have been shown to be suppressed by glucocorticoids in a variety of animal studies, however the molecular mechanism and the functional meaning of this effect are still not well understood. The present study was designed to investigate the impact of repeated administration of corticosterone (10 mg/kg s.c. twice daily for 7 days) on the functional consequences of 5-HT(1A) receptor stimulation measured electrophysiologically in hippocampal slices. Additionally, the effects of corticosterone on 5-HT(1A) receptor binding and on receptor mRNA levels in the hippocampus were studied. Prolonged, but not acute treatment with corticosterone attenuated (+/-)-8-hydroxy-2-di- N-propylamino)tetralin hydrobromide (8-OH-DPAT)-induced inhibition of population spikes, and 8-OH-DPAT-induced hyperpolarization in rat CA1 hippocampal neurons. Chronic, but not acute treatment with corticosterone also decreased 5-HT(1A) receptor binding in the CA1 region (in the ventral part only) and the dentate gyrus. A single dose of corticosterone increased [(3)H]8-OHDPAT binding in the dentate gyrus and in the CA3 and CA4 hippocampal regions. Only acute, but not prolonged treatment with corticosterone decreased the level of 5-HT(1A) receptor mRNA in the CA1 region and dentate gyrus of the hippocampus. 5-HT turnover in the hippocampus was not influenced by chronic corticosterone. It is concluded that a chronically elevated level of corticosterone can induce functional desensitization of 5-HT(1A) receptors in the CA1 area of the hippocampus, although this effect is not always followed consequently by decreases in 5-HT(1A) receptor synthesis in this or other areas of the hippocampus.  相似文献   

6.
The influence of repeated administration of tianeptine, an atypical antidepressant, which was administered twice daily (10 mg/kg) for 14 days and zinc hydroaspartate, a compound exhibiting antidepressant-like activity, which was administered twice daily (65 mg/kg) for 14 days, and the effects of electroconvulsive shocks (ECS) delivered once daily for 10 days, were investigated ex vivo in rat hippocampal slices. Slices were prepared 2 days after the last session of treatment of animals, and spontaneous epileptiform bursts were recorded extracellularly from the CA3 area. 5-HT(7) receptor-mediated increase in bursting frequency was induced by bath application of of 5-carboxamidotryptamine (5-CT; 0.025-1 microM) in the presence of N-[2-[4-(2-methoxyphenyl)-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY 100635; 2 microM), an antagonist of the 5-HT(1A) receptor. The data indicate an enhancement of the excitatory effect of the activation of 5-HT(7) receptors after ECS repeated ten times, but not by a single ECS. Neither tianeptine nor zinc, administered for 14 days, altered the reactivity of 5-HT(7) receptors.  相似文献   

7.
1 A method is described of measuring the K+-evoked release of endogenous 5-hydroxytryptamine (5-HT) and noradrenaline (NA) from slices prepared from rat cortex. 2 There was no difference in either the spontaneous (basal) or K+-evoked release of 5-HT or NA from cortical slices prepared from handled animals and those given a single electroconvulsive shock (ECS) either 30 min or 24 h earlier. 3 In chronic studies, rats were either handled or given an ECS 5 times over 10 days and cortical slices prepared. There was no difference in 5-HT or NA release between the groups 30 min after the last treatment other than a modest attentuation of spontaneous NA release following ECS treatment. However 24 h after the last treatment K+-evoked release (above basal release) of 5-HT and NA was inhibited by 84% and 48%, respectively. 4 These data demonstrate that following a single ECS, normal 5-HT and NA release is seen at a time when GABA release is markedly inhibited. After repeated ECS the release of both monoamines was markedly inhibited. These 5-HT changes may be involved in the enhanced 5-HT-receptor function seen after repeated ECS.  相似文献   

8.
It has been reported that the treatment with a tricyclic antidepressant imipramine induces an increase in the sensitivity of 5-HT(1A) receptors and a decrease in the sensitivity of 5-HT(4) receptors in the rat hippocampus. 5-HT(1A) receptor agonists and neuroleptics also affect 5-HT(1A) receptors in different brain areas; therefore, it was of interest to compare their effects on hippocampal 5-HT receptors with the influence of the well-established antidepressant imipramine. We studied the effects of repeated treatment with imipramine, the 5-HT(1A) receptor agonists 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) and buspirone, and the neuroleptics haloperidol and clozapine on the sensitivity of rat hippocampal CA1 neurons to 5-HT(1A)- and 5-HT(4) receptor activation. Imipramine was administered for 21 days (10 mg/kg p.o., twice daily), 8-OH-DPAT for 7 days (1 mg/kg s.c., twice daily) and buspirone for 21 days (5 mg/kg s.c., twice daily). The rats received haloperidol (1 mg/kg) and clozapine (30 mg/kg) for 6 weeks in drinking water. Hippocampal slices were prepared 2 days after the last treatment with imipramine, 8-OH-DPAT or buspirone, and 5 days after the last treatment with the neuroleptics. Using an extracellular in vitro recording, we studied changes in the amplitude of stimulation-evoked population spikes, induced by 5-HT, 8-OH-DPAT and the 5-HT(4) receptor agonist zacopride. Activation of 5-HT(1A) receptors decreased, while activation of 5-HT(4) receptors increased the amplitude of population spikes. Imipramine significantly enhanced the inhibitory effects of 5-HT and 8-OH-DPAT, and attenuated the excitatory effect of zacopride. No other treatment used in the present study changed the sensitivity of hippocampal CA1 neurons to 5-HT(1A) and 5-HT(4) receptors activation. These findings indicate that adaptive changes in the sensitivity of hippocampal neurons to 5-HT(1A) and 5-HT(4) receptors agonists are specific to imipramine and may thus-at least partly-mediate its effects.  相似文献   

9.
The objective of the present study was to investigate whether repeated exposure of rats to high level of corticosterone affects responses of CA1 hippocampal cells to the 5-HT4 receptor agonist zacopride. To assess responsiveness of CA1 neurons to zacopride we used extracellular recording of population spikes evoked in CA1 cells by the stimulation of the Schaffer/collateral-commissural pathway in hippocampal slices. Rats were treated with corticosterone for 7 days (10 mg/kg sc, twice daily), slices were prepared two days after the last treatment. Zacopride induced an increase in the amplitude of population spike and repeated corticosterone treatment enhanced this excitatory effect. It is concluded that repeated treatment with corticosterone increases the responsiveness of hippocampal CA1 neurons to the 5-HT4 receptor activation.  相似文献   

10.
The effects of repeated electroconvulsive shock (ECS) administration, repeated desmethylimipramine injection (5 mg kg-1, twice daily for 14 days) and acute administration of the beta-adrenoceptor, clenbuterol, on 5-hydroxytryptamine (5-HT)- and dopamine-mediated behaviours in mice have been examined. All three treatments enhanced the carbidopa/5-hydroxytryptophan (5-HTP)-induced head-twitch response at all doses of 5-HTP examined, producing a parallel shift in the dose-response curve. A single ECS administration or single dose of desmethylimipramine had no effect. Only repeated ECS enhanced the locomotor response to injection of apomorphine. The dose-response curve shift was not parallel. A single ECS had no effect. A 6-hydroxydopamine lesion of brain dopamine terminals also enhanced the apomorphine response, but again did not produce a parallel shift in the dose-response curve. Both repeated ECS and repeated desmethylimipramine administration to rats increased the number of 5-HT2 receptor sites in rat brain. Clenbuterol had no effect. The enhancing effects of repeated ECS and clenbuterol administration on the 5-HTP-induced head-twitch response were additive. Enhanced 5-HT-mediated behavioural responses are seen in both mice and rats after these treatments. If it is assumed, therefore, that similar receptor changes occur in both species it appears that there is no relationship in either behavioural system between the ability of the treatment to alter receptor number and the change in the dose-response curve (parallel or non-parallel). All three antidepressant treatments (ECS, a tricyclic and a beta-adrenoceptor agonist) increase 5-HT-mediated behavioural responses although clenbuterol did not increase 5-HT2 receptor number. Only ECS increased dopamine-mediated responses.  相似文献   

11.
The degree of inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT and by carbachol in hippocampal membranes was significantly reduced after administration of either chronic ECS (10 days) or desimipramine (10 mg/kg i.p. for 3 weeks). A single ECS had no effect on the 5-HT response and slightly augmented the carbachol response. These results parallel previous observations on the effects of ECS and antidepressants on behavioral responses to 5-HT1a agonists and on muscarinic receptor number, and indicate the possible involvement of these receptors in the mechanism of action of antidepressant drugs.  相似文献   

12.
1 A single electroconvulsive shock (ECS) of 150 V for 1 s increased the concentration of rat brain 5-hydroxyindoleacetic acid (5-HIAA) but did not alter brain 5-hydroxytryptamine (5-HT) or tryptophan concentrations 3 h later. 2 A single ECS decreased 5-HT synthesis 3 h and 6 h later. Synthesis was back to normal after 24 hours. The ECS-treated rats did not show greater hyperactivity produced by the increased brain 5-HT accumulation following administration of L-tryptophan and tranylcypromine at any time up to 24 h later. This suggests that a single electroshock does not alter 5-HT functional activity. 3 Twenty-four hours after the final ECS of a series of 10 shocks given once daily, the rats were given tranylcypromine and L-tryptophan. They displayed greater hyperactivity than control rats not treated with ECS, suggesting that ECS increases 5-HT functional activity. Brain concentrations of 5-HT, 5-HIAA and tryptophan were then unchanged by ECS. 5-HT synthesis and accumulation of 5-HT following tranylcypromine and L-tryptophan were not altered by ECS. 4 The hyperactivity following administration of the 5-HT agonist 5-methoxy N,N-dimethyltryptamine was enhanced by repeated (10 day) ECS, suggesting altered post-synaptic responses to 5-HT receptor stimulation. 5 Repeated ECS enhanced locomotor activity following tranylcypromine and L-DOPA. It did not alter brain noradrenaline or dopamine concentrations. 6 The latent period before a pentylenetetrazol-induced convulsion was shortened by repeated ECS. 7 Following repeated ECS there appears to be increased neuronal sensitivity to certain stimuli producing centrally mediated behavioural stimulation. This is discussed in relation to the mechanism by which electroconvulsive therapy (ECT) produces its therapeutic effect.  相似文献   

13.
A review of the literature suggests that the dorsal hippocampal serotonergic system, and, in particular, the postsynaptic 5-HT(1A) receptor, mediates an anxiogenic response, whereas endogenous dorsal hippocampal cholinergic tone mediates an anxiolytic response. Accordingly, it has been shown that direct dorsal hippocampal administration of the 5-HT(1A) receptor agonist, 8-OH-DPAT, the nicotinic receptor antagonist, mecamylamine, and the M(1) muscarinic receptor antagonist, pirenzepine, all have anxiogenic effects in rats tested in the social interaction test. It is therefore surprising that nicotine also has an anxiogenic effect in this test following dorsal hippocampal administration. However, the anxiogenic effects of mecamylamine and nicotine in the dorsal hippocampus are blocked by coadministration of the 5-HT(1A) receptor antagonist, WAY 100635, suggesting that both of these compounds act by enhancing hippocampal serotonergic transmission, thereby stimulating postsynaptic 5-HT(1A) receptors. This conclusion is supported by the observation that both nicotine and mecamylamine stimulate basal [3H]-5-HT release from dorsal hippocampal slices. A possible mechanism by which nicotinic receptor ligands modulate hippocampal 5-HT release is discussed, and it is proposed that the dorsal hippocampal serotonergic and cholinergic systems are tightly coupled and function antagonistically in the modulation of anxiety, as measured in the social interaction test. These systems are relatively unimportant in controlling behaviour on trial 1 in the plus-maze. On trial 2 in the elevated plus-maze, a model of specific phobia, the endogenous cholinergic system, nicotine, and the M(1) receptor agonist, McN-A-343, all mediate an anxiolytic effect, whereas stimulation of 5-HT(1A) receptors mediates an anxiogenic effect. It is proposed that the hippocampus may predominantly control the avoidance components of phobic anxiety, with other regions, such as the dorsomedial hypothalamus, controlling the escape components.  相似文献   

14.
U Lebrecht  J Z Nowak 《Neuropharmacology》1980,19(11):1049-1053
Effect of single and repeated (once daily for 10 days) electroconvulsive shock (ECS) (150V, 0.4 sec) on 5-hydroxyltryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels under various pharmacological conditions in the hypothalamus (HTh) and forebrain (F) of the rat brain was investigated. Single and repeated ECS increased significantly the accumulation of 5-HT in both brain regions in iproniazide-, and iproniazide plus l-tryptophan-treated rats after 1 hr, but not after 24 and 48 hr. The disappearance of 5-HT in p-chlorophenylalanine-treated animals was potentiated by both ECS regimens only at 1 hr. Single and repeated ECS increased 5-HIAA levels in both hypothalamus and forebrain in rats pretreated with probenecid, and in rats without any drug treatment. It is concluded that single and repeated ECS increased the synthesis and the catabolism of 5-HT in the rat brain only at 1 hr. There was neither qualitative nor quantitative difference in effects on 5-HT metabolism between both ECS regimens.  相似文献   

15.
Distinct membrane receptors that elicit similar cellular responses may share elements of signal transduction. In the present study, rat hippocampal adenosine (AD) and 5-hydroxytryptamine (5-HT) receptors were chosen to test this possibility using biochemical and electrophysiological techniques. Responses elicited by the AD receptor that mediates the inhibition of forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes and hyperpolarization of resting membrane potential (RMP) in rat hippocampal pyramidal cells were characterized and compared, in the same preparation, with those analogous responses elicited by the 5-HT1A receptor. A series of AD agonists including the selective AD A1 agonist (R)-phenylisopropyladenosine [(R)-PIA] inhibited forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes in a concentration-dependent manner. Cyclopentyltheophylline (CPT), a selective AD A1 antagonist, was a potent, competitive antagonist of this response with a dissociation constant (Kb) of 6 nM (Schild analysis). The rank order of agonist EC50 values and antagonist Kb values, as well as stereoselectivity, are consistent with the classification of this receptor as the AD A1 receptor. Spiperone, a potent 5-HT1A antagonist, competitively antagonized 5-HT-mediated inhibition of forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes with a Kb value of 14 nM. Intracellular recording techniques revealed that AD, (R)-PIA, 5-HT, and 5-carboxyamidotryptamine (5-CT) elicited concentration-dependent hyperpolarization of RMP within the same hippocampal pyramidal cell. The maximal hyperpolarization obtained for the AD or 5-HT analogs was the same for individual pyramidal cells. CPT and spiperone antagonized the hyperpolarization by (R)-PIA and 5-CT, respectively. Saturating concentrations of spiperone failed to antagonize (R)-PIA-mediated responses and CPT did not block responses elicited by 5-HT in either the biochemical or electrophysiological preparations. The combination of saturating concentrations of 5-HT and (R)-PIA evoked nonadditive biochemical responses relative to those observed with (R)-PIA alone. Similarly, electrophysiological experiments conducted under voltage-clamp conditions demonstrated that maximally effective concentrations of AD and 5-CT exhibited nonadditive behavior. Because the amount of outward current elicited when these agonists were coperfused was significantly less than the algebraic sum of the currents evoked individually by these agents, we infer that a population of AD A1 and 5-HT1A receptors activates a common pool of guanine nucleotide-binding proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effects in mice of administration of the anticonvulsants, progabide, sodium valproate, diazepam, carbamazepine and phenytoin on 5-hydroxytryptophan (5-HTP)-induced head-twitch, apomorphine-induced locomotion, clonidine-induced sedation, and beta-adrenoceptor and 5-HT2 receptor number have been examined. Repeated progabide administration (400 mg kg-1, i.p. twice daily for 14 days) enhanced the head-twitch response the effect lasting for over 8 days after the last dose, and also increased 5-HT2 receptor number in frontal cortex. Progabide (400 mg kg-1, i.p.) enhanced the head-twitch response when given once daily for 10 days and when given intermittently (5 times over 10 days) but not after 1 day of administration. Repeated Na valproate (400 mg kg-1, i.p.) also increased the 5-HTP-induced head-twitch response and 5-HT2 receptor number in the frontal cortex when given twice daily for 14 days, but no behavioural enhancement was seen after 10 days' treatment. Diazepam (1.25 mg kg-1, i.p.) twice daily for 14 days increased the head-twitch response and 5-HT2 receptor number. Repeated progabide and valproate (but not diazepam) administration attenuated the sedation response to the alpha 2-adrenoceptor agonist, clonidine (0.15 mg kg-1) but neither drug altered beta-adrenoceptor number in the cerebral cortex. No changes in apomorphine-induced locomotor behaviour were seen after progabide, valproate or diazepam. Repeated carbamazepine (20 mg kg-1) or phenytoin (40 mg kg-1) administration failed to alter any of the biochemical or behavioural parameters listed above. Like repeated electroconvulsive shock (ECS), progabide altered the head-twitch response, clonidine-induced sedation response and 5-HT2 receptor number. Unlike repeated ECS, it did not alter beta-adrenoceptor number or the apomorphine-induced locomotor response. These data suggest that ECS may produce some changes in monoamine function by altering GABA metabolism as has previously been postulated.  相似文献   

17.
The aim of the present study was to determine the influence of thyroid hormone, T3, on the regulation of hippocampal BDNF expression by 5-HT receptor agonists. Chronic T3 administration prior to treatment with the 5-HT(1A) agonist, 8-OH-DPAT, significantly decreased BDNF mRNA in the dentate gyrus region of the hippocampus. Administration of 8-OH-DPAT did not alter hippocampal BDNF mRNA expression in naive, euthyroid rats. Pretreatment with the 5-HT(1A) antagonist, WAY 100635, completely blocked the 8-OH-DPAT-induced down-regulation of BDNF mRNA in chronic T3-treated rats. Acute T3 administration prior to 8-OH-DPAT treatment led to a small, but significant, decrease in hippocampal dentate gyrus BDNF mRNA. Acute or chronic administration of T3 did not alter the decrease in hippocampal BDNF mRNA induced by the 5-HT(2A/2C) receptor agonist, DOI. The influence of 8-OH-DPAT and DOI on hippocampal BDNF mRNA was also unaltered in rats rendered hypothyroid by propylthiouracil administration. Chronic T3 treatment or hypothyroidism did not influence the basal expression of hippocampal BDNF mRNA. The affinity and density of 5-HT(1A) receptors, and the hippocampal expression of 5-HT(1A) mRNA were also not influenced by chronic T3 treatment. The results of this study clearly demonstrate a powerful interaction between thyroid hormone and the 5-HT(1A) receptor in the regulation of hippocampal BDNF expression. Crosstalk between signal transduction cascades influenced by T3 and 5-HT(1A) receptors may mediate the synergistic effects of these systems on hippocampal BDNF expression.  相似文献   

18.
These experiments were designed to examine the effects of repeated 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) treatment on the autoregulatory control of cortical 5-HT release and dorsal raphe nucleus (DRN) 5-HT neuronal cell firing. Repeated DOI treatment decreased the behavioural responsiveness (wet-dog shakes) of 5-HT2 receptors and attenuated the inhibitory effects of the 5-HT1A receptor agonist, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), on both cortical 5-HT release and DRN 5-HT neuronal firing. In contrast, the inhibitory effect of acute DOI on cortical 5-HT release and DRN 5-HT neuronal firing was unaffected by repeated DOI treatment. The results demonstrate that changes in the responsiveness of 5-HT2 receptor function may influence the responsiveness of presynaptic 5-HT1A receptors regulating 5-HT neuronal function. The results also provide further evidence that the inhibition of cortical 5-HT release and DRN 5-HT neuronal firing produced by DOI is not mediated by 5-HT2 receptor activation.  相似文献   

19.
The aim of this study was to determine whether electroconvulsive shock (ECS, an established antidepressant treatment), like acute and chronic antidepressant drug treatments, produces similar differential effects on the behavioural profile of resident rats expressed during social encounters with unfamiliar intruder conspecifics (resident-intruder paradigm). Thirty minute pretreatment with a single ECS suppressed both investigation and aggression directed at intruders concomitant with increased flight behaviour and marked sedation. Behavioural disruption subsided over the following 24 h. In contrast, resident rats subjected to bi-daily ECS treatment expressed elevated aggression at days 7 (four shocks) and 14 (eight shocks). Eight days after the last ECS treatment the behaviour of the resident rats had returned to pretreatment values. Additional studies showed that bi-daily ECS treatment nearly abolished 5-HT(2C) receptor-mediated hypolocomotion induced by acute m-chlorophenylpiperazine (mCPP, 2.5 mg/kg sc) challenge 24 h following 2 ECSs, while 4 ECSs only enhanced 5-HT(2A) receptor-mediated head shakes induced by 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 2.0 mg/kg sc). These studies demonstrate that repeated ECS treatment increases the aggressive behaviour of resident rats which may be associated with adaptive changes in 5-HT(2C) and 5-HT(2A) receptor-mediated function. It remains to be seen whether adaptive changes in 5-HT(2C) receptor function represent a common mechanism of clinical antidepressant efficacy.  相似文献   

20.
1 In addition to stopping migraine attacks, dihydroergotamine (DHE) is an efficient drug for migraine prophylaxis. Whether 5-HT(1A) receptors could contribute to the latter action was assessed by investigating the effects of DHE and its metabolite, 8'-OH-DHE, on these receptors in the rat brain. 2 Membrane binding assays with [(3)H]8-OH-DPAT and [(3)H]WAY 100635 as radioligands showed that both DHE (IC(50)=28-30 nM) and 8'-OH-DHE (IC(50)=8-11 nM) are high-affinity 5-HT(1A) receptor ligands. 3 Both DHE and 8'-OH-DHE enhanced the specific binding of [(35)S]GTP-gamma-S to the dorsal raphe nucleus and the hippocampus in brain sections, but to a lower extent than 5-carboxamido-tryptamine (5-CT) in the latter area. 4 Both DHE (EC(50)=10.9+/-0.3 nM) and 8'-OH-DHE (EC(50)=30.4+/-0.8 nM) inhibited the firing of serotoninergic neurons in the dorsal raphe nucleus within brain stem slices. 5 Intracellular recording showed that 8'-OH-DHE was more potent than DHE to hyperpolarize CA1 pyramidal cells in rat hippocampal slices. 6 Both the stimulatory effects of DHE and 8'-OH-DHE on [(35)S]GTP-gamma-S binding and their electrophysiological effects were completely prevented by the selective 5-HT(1A) receptor antagonist WAY 100635. 7 As expected of 5-HT(1A) receptor partial agonists, DHE and 8'-OH-DHE prevented any subsequent hyperpolarization of CA1 pyramidal cells by 5-HT or 5-CT. 8 Through their actions at 5-HT(1A) auto- (in the dorsal raphe nucleus) and hetero-(notably in the hippocampus) receptors, DHE, and even more its metabolite 8'-OH-DHE, can exert both an inhibitory influence on neuronal excitability and anxiolytic effects which might contribute to their antimigraine prophylactic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号