首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in the neuronal activity of globus pallidus (GP) have been shown in animal models of parkinsonism. In order to study the implication of the subthalamic nucleus (STN) in these changes, the effects of STN lesions alone or in combination with 6-hydroxydopamine (6-OHDA) -induced damage to the substantia nigra compacta (SNc) were examined in rats using electrophysiological recordings of GP cells. In normal rats, the firing rate was 22.1+/-1.4 spikes/s. The pattern was regular in 45%, irregular in 49% and bursty in 6% of the cases. In rats with STN lesions, the firing rate of GP units (20.15+/-1.25 spikes/s) did not differ from that of normal rats and only regular (46%) and irregular (54%) cells were found; a bursty pattern was not observed. 6-OHDA lesions of the SNc induced no change in the firing rate of GP neurons (21.5+/-1.4 spikes/s, P>0.05) but a significant decrease in the percentage of regular cells (27%, P<0.001), a significant increase in burst cells (21%, P<0.001) with no change in the percentage of irregular units (52%) were observed. In rats with combined SNc and STN lesions, the firing pattern did not change from that of normal rats. The present results show that STN lesions induced the disappearance of bursts in normal rats and normalization of firing pattern in the GP units of rats with 6-OHDA lesions suggesting that the STN plays an important role in the modulation of the pattern of activity of GP neurons which may account for the therapeutic effect of STN lesions in Parkinson's disease.  相似文献   

2.
The pedunculopontine nucleus (PPN) and the subthalamic nucleus (STN) are reciprocally connected by excitatory projections. In the 6-hydroxydopamine (6-OHDA) rat model the PPN was found to be hyperactive. Similarly, the STN and the substantia nigra pars reticulata (SNr) showed increased activity in Parkinson's disease (PD) animal models. A lesion of the STN was shown to restore increased activity levels in the SNr of 6-OHDA-treated rats. As the STN and the PPN were reciprocally connected by excitatory projections and both structures were shown to be hyperactive in PD animal models, the present study was performed in order to investigate the changes in neuronal activity of the STN and SNr under urethane anesthesia after unilateral ibotenic acid lesioning of the PPN in animals with previous unilateral 6-OHDA lesions of the substantia nigra pars compacta (SNc). The firing rate of STN neurons significantly increased from 10.3 +/- 0.6 spikes/s (mean +/- SEM) to 17.8 +/- 1.8 spikes/s after SNc lesion and returned to normal levels of 10.8 +/- 0.7 spikes/s after additional lesion of the PPN. Similarly, the firing rate of SNr neurons significantly increased from 19.0 +/- 1.1 to 25.9 +/- 1.4 spikes/s after SNc lesion, the hyperactivity being reversed after additional PPN lesion to 16.8 +/- 1.2 spikes/s. The reversal of STN and SNr hyperactivity of 6-OHDA-treated rats by additional PPN lesion suggests an important modulatory influence of the PPN on STN activity. Moreover, these findings could indicate a new therapeutic strategy in PD by interventional modulation of the PPN.  相似文献   

3.
The primate subthalamic nucleus (STN) is commonly seen as a relay nucleus between the external and internal pallidal segments, and as an input station for cortical and thalamic information into the basal ganglia. In rodents, STN activity is also known to influence neuronal activity in the dopaminergic substantia nigra pars compacta (SNc) through inhibitory and excitatory mono- and polysynaptic pathways. Although the anatomical connections between STN and SNc are not entirely the same in primates as in rodents, the electrophysiologic and microdialysis experiments presented here show directly that this functional interaction can also be demonstrated in primates. In three Rhesus monkeys, extracellular recordings from SNc during microinjections into the STN revealed that transient pharmacologic activation of the STN by the acetylcholine receptor agonist carbachol substantially increased burst firing of single nigral neurons. Transient inactivation of the STN with microinjections of the GABA-A receptor agonist muscimol had the opposite effect. While the firing rates of individual SNc neurons changed in response to the activation or inactivation of the STN, these changes were not consistent across the entire population of SNc cells. Permanent lesions of the STN, produced in two animals with the fiber-sparing neurotoxin ibotenic acid, reduced burst firing and firing rates of SNc neurons, and substantially decreased dopamine levels in the primary recipient area of SNc projections, the striatum, as measured with microdialysis. These results suggest that activity in the primate SNc is prominently influenced by neuronal discharge in the STN, which may thus alter dopamine release in the striatum.  相似文献   

4.
The subthalamic nucleus (STN) receives dopaminergic projections from the substantia nigra pars compacta (SNc). To investigate the role of direct and indirect dopaminergic influences on STN neurons, the spontaneous activity was studied in four groups of animals: normal rats, rats with intrasubthalamic or intranigral injection of 6-hydroxydopamine (6-OHDA), and sham STN injection rats by using extracellular recordings 4 weeks postsurgery. After intrasubthalamic injection of 6-OHDA, the mean firing rate significantly decreased (7.29 +/- 0.39 spikes/sec, P < 0.01 vs. 11.13 +/- 0.59 spikes/sec in normal or 11.26 +/- 0.57 spikes/sec in sham group), and the percentage of STN neurons discharging regularly decreased significantly (81%, P < 0.05 vs. 90% in normal group or P < 0.01 vs. 92% in sham group) and that of bursty cells increased (19%, P < 0.05 vs. 10%; in normal group or P < 0.01 vs. 8% in sham group). In the group of rats with SNc lesion, the firing rate of subthalamic neurons did not show a significant difference (11.61 +/- 0.81 spikes/sec) compared with normal group. However, the firing pattern was dramatically changed: 74% of cells exhibited bursty pattern and only 26% of cells discharged regularly or slightly irregularly. Immunohistochemical results showed that intrasubthalamic injection of 6-OHDA induced a marked degeneration of dopaminergic cells in the lateral part of the ipsilateral SNc, whereas 6-OHDA injection into the SNc induced a total in situ lesion of dopamine cells. These results suggest that the SNc exerts an excitatory influence on STN neurons and that the loss of this dopaminergic projection could, at least partially, account for the changes in the firing pattern of STN neurons in the 6-OHDA rat model of parkinsonism.  相似文献   

5.
The functional significance of the interhemispheric projections on the basal ganglia level is poorly understood. Insofar as the anatomical evidence for crossing projections between basal ganglia nuclei is sparse, whereas tracing studies demonstrated important crossing projections from the pedunculopontine nucleus (PPN) to the basal ganglia, it is suggested that the PPN might play a key role in interhemispheric regulation of basal ganglia activity. The present study was performed to assess changes in neuronal activity of ipsilateral and contralateral subthalamic nucleus (STN), substantia nigra pars reticulata (SNr), and PPN in the unilateral 6-hydroxydopamine (6-OHDA) rat model of advanced PD under urethane anesthesia. After unilateral lesioning of the SNc, the firing rate of contralateral STN neurons significantly increased from 10.9 +/- 1.0 spikes/sec (mean +/- SEM) to 16.3 +/- 1.5 spikes/sec. Similarly, the firing rate of contralateral SNr neurons significantly increased from 19.4 +/- 1.2 to 25.7 +/- 1.9 spikes/sec, and the firing rate of contralateral PPN neurons significantly increased from 10.6 +/- 0.8 to 13.9 +/- 1.1 spikes/sec. The observed activity changes in contralateral STN, SNr, and PPN are similar to those induced in the corresponding nuclei of the hemisphere ipsilateral to the nigrostriatal degeneration. Based on previous, predominantly anatomical data, the results of the present study suggest that the PPN on the lesioned side is at the origin of changes in the activity of STN and SNr on the contralateral hemisphere, because of its crossing efferent projections.  相似文献   

6.
The pallido-subthalamic pathway powerfully controls the output of the basal ganglia circuitry and has been implicated in movement disorders observed in Parkinson's disease (PD). To investigate the normal functioning of this pathway across the sleep-wake cycle, single-unit activities of subthalamic nucleus (STN) and globus pallidus (GP) neurons were examined, together with cortical electroencephalogram and nuchal muscular activity, in non-anaesthetized head-restrained rats. STN neurons shifted from a random discharge in wakefulness (W) to a bursting pattern in slow wave sleep (SWS), without any change in their mean firing rate. This burst discharge occurred in the 1-2 Hz range, but was not correlated with cortical slow wave activity. In contrast, GP neurons, with a mean firing rate higher in W than in SWS, exhibited a relatively regular discharge whatever the state of vigilance. During paradoxical sleep, both STN and GP neurons increased markedly their mean firing rate relative to W and SWS. Our results are not in agreement with the classical 'direct/indirect' model of the basal ganglia organization, as an inverse relationship between STN and GP activities is not observed under normal physiological conditions. Actually, because the STN discharge pattern appears dependent on coincident cortical activity, this nucleus can hardly be viewed as a relay along the indirect pathway, but might rather be considered as an input stage conveying corticothalamic information to the basal ganglia.  相似文献   

7.
Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) area has been introduced as a novel surgical therapy for dopamine refractory gait problems, freezing and postural instability in the late stage of Parkinson's disease (PD). Lesions of the pedunculopontine tegmental (PPTg) nucleus, the equivalent of the PPN in rodents, were shown to reduce the elevated discharge rate of the subthalamic nucleus (STN) in the 6-hydroxydopamine (6-OHDA) rat model of PD. In order to further elucidate the modulatory effect of the PPTg on the STN we examined the effect of 25 Hz low frequency PPTg stimulation on neuronal single unit activity and oscillatory local field potentials (LFPs) of the STN, and on the electrocorticogram (ECoG) of the primary motor cortex region in rats with unilateral 6-OHDA induced nigrostriatal lesions. Stimulation of the PPTg reduced the enhanced firing rate in the STN, without affecting the firing pattern or approximate entropy (ApEn). It also reduced the activity in the beta band (15-30 Hz) of the STN, which is elevated in 6-OHDA lesioned rats, without affecting beta activity in the motor cortex. We showed a modulatory effect of PPTg stimulation on altered neuronal STN activity in the PD 6-OHDA rat model, indicating that PPTg DBS may alter activity of the basal ganglia circuitry at least partially. It remains unclear, however, how these changes are exactly mediated and whether they are relevant with regard to the descending PPTg projections in the lower brainstem.  相似文献   

8.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease (PD). In spite of proven therapeutic success, the mechanism underlying the benefits of DBS has not been resolved. A multiple-channel single-unit recording technique was used in the present study to investigate basal ganglia (BG) neural responses during behaviorally effective DBS of the STN in a rat model of PD. Rats underwent unilateral dopamine (DA) depletion by injection of 6-hydroxyDA (6-OHDA) into one side of the medial forebrain bundle and subsequently developed a partial akinesia, which was assessed during the treadmill locomotion task. High frequency stimulation (HFS) of the STN restored normal treadmill locomotion behavior. Simultaneous recording of single unit activity in the striatum (STR), globus pallidus (GP), substantia nigra pars reticulata (SNr), and STN revealed a variety of neural responses during behaviorally effective HFS of the STN. Predominant inhibitory responses appeared in the STN stimulation site. Nearly equal numbers of excitatory and inhibitory responses were found in the GP and SNr, whereas more rebound excitatory responses were found in the STR. Mean firing rate did not change significantly in the STR, GP, and SNr, but significantly decreased in both sides of STN during DBS. A decrease in firing rate in the contralateral side of STN provides neural substrate for the clinical observation that unilateral DBS produces bilateral benefits in patients with PD. In addition to the firing rate changes, a decrease in burst firing was observed in the GP and STN. The present study indicates that DBS induces complex modulations of the BG circuit and further suggests that BG network reorganization, rather than a simple excitation or inhibition, may underlie the therapeutic effects of DBS in patients with PD.  相似文献   

9.
目的腹内侧前额叶皮质在随意运动的起始和控制、情感以及认知中具有重要作用。然而,黑质-纹状体通路变性后腹内侧前额叶皮质的神经活动和5-HT_(1A)受体的作用仍不清楚。本研究观察了6-羟基多巴胺(6- hydroxydopamine,6-OHDA)损毁黑质致密部(substantia nigra pars compacta,SNc)后大鼠腹内侧前额叶皮质神经活动的变化和体循环给予选择性5-HT_(1A)受体拮抗剂WAY-100635后神经元活动的改变。方法采用在体玻璃微电极细胞外记录方法,记录正常大鼠和SNc单侧损毁大鼠的腹内侧前额叶皮质神经元的活动。结果6-OHDA损毁SNc大鼠的腹内侧前额叶皮质神经元放电频率显著增加,放电形式没有明显改变。体循环给予WAY-100635 (0.1 mg/kg,i.v.)不改变正常大鼠腹内侧前额叶皮质神经元的平均放电频率和放电形式,而显著降低了SNc损毁大鼠前额叶皮质神经元的平均放电频率。结论黑质-纹状体通路的变性可导致腹内侧前额叶皮质神经活动增强,5-HT_(1A)受体拮抗剂WAY-100635可以抑制这种活动增强,提示可能存在腹内侧前额叶皮质5-HT_(1A)受体功能失调。  相似文献   

10.
Parkinson's disease (PD) is a progressive neurodegenerative disorder of the basal ganglia, associated with the inappropriate death of dopaminergic neurons of the substantia nigra pars compacta (SNc). Here, we show that adenovirally mediated expression of neuronal apoptosis inhibitor protein (NAIP) ameliorates the loss of nigrostriatal function following intrastriatal 6-OHDA administration by attenuating the death of dopamine neurons and dopaminergic fibres in the striatum. In addition, we also addressed the role of the cysteine protease caspase-3 activity in this adult 6-OHDA model, because a role for caspases has been implicated in the loss of dopamine neurons in PD, and because NAIP is also a reputed inhibitor of caspase-3. Although caspase-3-like proteolysis was induced in the SNc dopamine neurons of juvenile rats lesioned with 6-OHDA and in adult rats following axotomy of the medial forebrain bundle, caspase-3 is not induced in the dopamine neurons of adult 6-OHDA-lesioned animals. Taken together, these results suggest that therapeutic strategies based on NAIP may have potential value for the treatment of PD.  相似文献   

11.
The subthalamic nucleus (STN) plays a key role in motor control. Disorganization of its neuronal activity is implicated in the manifestation of parkinsonian motor symptoms. The aim of the present work was to study the time-course of changes in the firing activity of STN neurons in a rat model of parkinsonism. Electrophysiological recordings were done in normal rats and four groups of rats at different time points after 6-hydroxydopamine (6-OHDA) microinjection into the pars compacta of substantia nigra (SNc). Results showed a significant decrease in firing rate during the first and second weeks post lesion (5.53+/-0.56 and 7.66+/-0.73 spikes/s, respectively) compared to normal rats (11.13+/-0.59 spikes/s). From the 3rd week after 6-OHDA injection the firing rates returned toward baseline, with an average of 9.71+/-0.51 spikes/s during the 3rd week and 11.13+/-0.71 spikes/s during the 4th week. With regard to firing pattern, the majority of STN cells (90%) discharged regularly or slightly irregularly in normal animals. Only 4% exhibited burst activity and 6% had mixed firing patterns. After SNc-lesion, the percentage of cells exhibiting burst and mixed patterns increased progressively from 35% during the first week to 56% at week 4 post-lesion. In sum, these experiments revealed that the firing rate of STN neurons was altered only transiently following nigral lesions, whereas a progressive and stable change in the firing pattern was observed up to 4 weeks post lesion, suggesting that the persistence of bursts firing more closely relates to the motor pathologies of this rat model of parkinsonism.  相似文献   

12.
目的 腹内侧前额叶皮质在随意运动的起始和控制、情感以及认知中具有重要作用.然而,黑质-纹状体通路变性后腹内侧前额叶皮质的神经活动和5-HT1A受体的作用仍不清楚.本研究观察了6-羟基多巴胺(6-hydroxydopamine,6-OHDA)损毁黑质致密部(substantia nigra pars compacta,SNc)后大鼠腹内侧前额叶皮质神经活动的变化和体循环给予选择性5-HT1A受体拮抗剂WAY-100635后神经元活动的改变.方法 采用在体玻璃微电极细胞外记录方法,记录正常大鼠和SNc单侧损毁大鼠的腹内侧前额叶皮质神经元的活动.结果 6-OHDA损毁SNc大鼠的腹内侧前额叶皮质神经元放电频率显著增加,放电形式没有明显改变.体循环给予WAY-100635(0.1 mg/kg,i.v.)不改变正常大鼠腹内侧前额叶皮质神经元的平均放电频率和放电形式,而显著降低了SNc损毁大鼠前额叶皮质神经元的平均放电频率.结论 黑质-纹状体通路的变性可导致腹内侧前额叶皮质神经活动增强,5-HT1A受体拮抗剂WAY-100635可以抑制这种活动增强,提示可能存在腹内侧前额叶皮质5-HT1A受体功能失调.  相似文献   

13.
Recent data suggest a role for the pedunculopontine nucleus (PPN) in the pathophysiology of Parkinson's disease. Although there is anatomical evidence that the PPN and the basal ganglia are reciprocally connected, the functional importance of these connections is poorly understood. Lesioning of the PPN was shown to induce akinesia in primates, whereas in the 6-hydroxydopamine rat model the PPN was found to be hyperactive. As both nigrostriatal dopamine depletion and lesioning of the PPN were shown to induce akinesia and parkinsonism, the present study was performed in order to investigate the changes in neuronal activity of the subthalamic nucleus (STN) and the substantia nigra pars reticulata (SNr) after unilateral ibotenic acid lesioning of the PPN and after unilateral 6-hydroxydopamine lesioning of the substantia nigra pars compacta (SNc). The firing rate of STN neurones significantly increased from 10.2 +/- 6.2 (mean +/- SD) to 14.6 +/- 11.7 spikes/s after lesion of the PPN and to 18.6 +/- 14.5 spikes/s after lesion of the SNc. The activity of the SNr significantly increased from 19.6 +/- 10.5 to 28.7 +/- 13.4 spikes/s after PPN lesioning and to 23.5 +/- 10.8 spikes/s after SNc lesioning. Furthermore, PPN lesion decreased the number of spontaneously firing dopaminergic SNc cells, while having no effect on their firing rate. The results of our study show that lesion of the PPN leads to hyperactivity of the STN and SNr, similar to the changes induced by lesion of the SNc. Moreover, the decreased activity of SNc cells observed after PPN lesion might be at the origin of activity changes in the STN and SNr.  相似文献   

14.
The role of the dopaminergic innervation of the basal ganglia on the activity in the subthalamic nucleus (STN) evoked by amphetamine and apomorphine in the behaving rat was examined. The aim was to determine the relationship between that neural activity and the movements evoked by the drugs. Bilateral electrolytic lesions of the globus pallidus (GP), superimposed on the earlier unilateral lesion in substantia nigra (SN) with 6-hydroxydopamine (6-OHDA) affected differently the excitatory responses in the STN evoked by amphetamine and apomorphine and the motor responses to the drugs recorded concurrently. Before the GP lesions, the administration of amphetamine, 5 mg/kg, to the unilaterally deafferented rat induced increased activity in the STN and simultaneously increased movement in the animal. After the GP lesions, the excitatory response to amphetamine in the STN was not different from that seen before the GP lesions. The motor response was also unchanged. In contrast, the GP lesions altered the excitatory response to apomorphine, 3 mg/kg. Before these lesions, the administration of apomorphine to the 6-OHDA lesioned animal evoked a robust and long-lasting excitatory response in the STN and, concurrently, a long-lasting motor response. After the GP lesions, both responses to apomorphine were attenuated. These differential effects of the GP lesions on the unit and motor responses to the two drugs are viewed as representing the effects of the damage in the GP on the dopaminergic innervation contributing to the regulation of activity in the STN. In the 6-OHDA animal, the dopamine afferents innervating the basal ganglia had already been dramatically reduced by 6-OHDA. The GP lesions did not significantly add to the number of these afferents previously eliminated; therefore, the excitatory and motor responses to amphetamine were not changed by the GP lesions. But the GP damage served to eliminate the dopamine receptor in the GP and thus reduced the density of the dopamine receptor in the basal ganglia available for binding to apomorphine. Therefore, the excitatory and motor responses to apomorphine were attenuated after the GP lesions compared to the responses before these lesions.  相似文献   

15.
Clinical and preclinical data indicate that the subthalamic nucleus (STN) plays a critical role in mediating the hyper- and hypoactive behavioral states associated with increases and decreases in dopamine receptor stimulation in the basal ganglia. The present study investigates effects of dopamine receptor stimulation on slow multisecond oscillations in firing rates in STN neurons. Extracellular, single-unit recordings were performed in locally anesthetized and immobilized rats which were either intact or had received unilateral 6-OHDA lesions of the medial forebrain bundle. The majority (64%) of spike trains recorded from STN neurons exhibited periodic oscillations in firing rate within the range of 2-60 sec, with an average period of 24 sec. The distribution of these baseline periodicities was not altered by unilateral 6-OHDA lesion, but periods were significantly shortened by systemic administration of the D1/D2 agonist apomorphine. This effect was observed in a greater proportion of neurons recorded from 6-OHDA-lesioned rats as compared to intact rats, was notably diminished in rats systemically anesthetized with chloral hydrate, and did not correlate with drug-induced changes in firing rate. These oscillations are similar to slow periodicities in firing rate recently reported in other basal ganglia nuclei. The possibility that these periodic oscillations in firing rate play a significant role in basal ganglia function was supported by the observation that the time of onset of apomorphine induced alterations in amplitude and periodicity of slow oscillations in STN spike trains is coincident with the onset of behavioral effects of this drug in 6-OHDA-lesioned animals. Synapse 38:38-50, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

16.
Recent anatomical, physiological and computer modeling studies have revealed that oscillatory processes at the levels of single neurons and neuronal networks in the subthalamic nucleus (STN) and external globus pallidus (GPe) are associated with the operation of the basal ganglia in health and in Parkinson's disease (PD). Autonomous oscillation of STN and GPe neurons underlies tonic activity and is important for synaptic integration, whereas abnormal low-frequency rhythmic bursting in the STN and GPe is characteristic of PD. These recent findings provide further support for the view that the basal ganglia use both the pattern and the rate of neuronal activity to encode information.  相似文献   

17.
Although 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective metabotropic glutamate receptor 5 antagonist, improves the motor symptoms of Parkinson's disease (PD), the effects of MPEP on the psychiatric symptom of PD and the mechanism involved are still unclear. In the present study, we examined the effects of MPEP in anxiolytic-like behavior and firing activity of projection neurons in the basolateral nucleus of the amygdala (BLA) in rats with 6-hydroxydopamine (6-OHDA) injected bilaterally into dorsal striatum. Rats were divided into three groups, sham-operated group, 6-OHDA lesion with vehicle treatment group and 6-OHDA lesion with MPEP treatment group. Injection of 6-OHDA (10.5 μg) into the dorsal striatum produced 31.5% loss of tyrosine hydroxylase immunoreactive (TH-ir) neurons in the SNpc. The 6-OHDA-lesioned rats showed anxiety behavior and the firing rate of BLA projection neurons decreased significantly compared with sham-operated rats, and no difference was found in the firing pattern of these neurons. Whereas chronic, systemic treatment of MPEP (3 mg/kg/day, i.p.; 14 days) attenuated loss of TH-ir neurons, produced anxiolytic-like effect and normalized the abnormal firing rate of projection neurons of the BLA in rats with the bilateral lesions. Systemic administration of cumulative apomorphine (10-160 μg/kg, i.v.) inhibited the firing rate of BLA projection neurons in sham-operated, 6-OHDA lesion with vehicle-treated and MPEP-treated rats, but the 6-OHDA lesion decreased the response of BLA projection neurons to apomorphine stimulation, while MPEP reversed the reactivity of these neurons. These data demonstrate that the partial lesion of the nigrostriatal pathway causes anxiety symptom and decreases firing rate of BLA projection neurons in the rat. Furthermore, chronic, systemic MPEP treatment has the neuroprotective and anxiolytic-like effects, and reverses the abnormal firing rate of BLA projection neurons, suggesting that MPEP has important implication for the treatment of PD.  相似文献   

18.
Parkinson's disease is associated with increased oscillatory firing patterns in basal ganglia output, which are thought to disrupt thalamocortical activity. However, it is unclear how specific thalamic nuclei are affected by these changes in basal ganglia activity. The thalamic parafascicular nucleus (PFN) receives input from basal ganglia output nuclei and directly projects to the subthalamic nucleus (STN), striatum and cortex; thus basal ganglia-mediated changes on PFN activity may further impact basal ganglia and cortical functions. To investigate the impact of increased oscillatory activity in basal ganglia output on PFN activity after dopamine cell lesion, PFN single-unit and local field potential activities were recorded in neurologically intact (control) rats and in both non-lesioned and dopamine lesioned hemispheres of unilateral 6-hydroxydopamine lesioned rats anesthetized with urethane. Firing rates were unchanged 1–2 weeks after lesion; however, significantly fewer spontaneously active PFN neurons were evident. Firing pattern assessments after lesion showed that a larger proportion of PFN spike trains had 0.3–2.5 Hz oscillatory activity and significantly fewer spike trains exhibited low threshold calcium spike (LTS) bursts. In paired recordings, more PFN–STN spike oscillations were significantly correlated, but as these oscillations were in-phase, results are inconsistent with feedforward control of PFN activity by inhibitory oscillatory basal ganglia output. Furthermore, the decreased incidence of LTS bursts is incompatible with inhibitory basal ganglia output inducing rebound bursting in PFN after dopamine lesion. Together, results show that robust oscillatory activity observed in basal ganglia output nuclei after dopamine cell lesion does not directly drive changes in PFN oscillatory activity.  相似文献   

19.
Dopamine replacement therapy with levodopa (LD) is currently the most effective pharmacological treatment for Parkinson's disease (PD), a neurodegenerative disorder characterized by dysfunction of basal ganglia electrophysiology. The effects of chronic LD treatments on the electrophysiological activity of the subthalamic nucleus (STN) and the substantia nigra reticulata (SNR) in parkinsonism are not clear. In the present study we examined the effects of chronic LD treatments on the firing rate and firing pattern of STN and SNR neurons in the stable hemiparkinsonian monkey model of PD. We also evaluated local field potentials of both nuclei before and after LD treatments. In a stable hemiparkinsonian state, STN and SNR had a mean firing rate of 42.6 ± 3.5 Hz (mean ± SEM) and 52.1 ± 5.7 Hz, respectively. Chronic intermittent LD exposure induced marked amelioration of parkinsonism with no apparent drug-induced motor complications. LD treatments did not significantly change the mean firing rate of STN neurons (41.3 ± 3.3 Hz) or bursting neuronal firing patterns. However, LD treatments induced a significant reduction of the mean firing rates of SNR neurons to 36.2 ± 3.3 Hz (p < 0.05) and a trend toward increased burstiness. The entropy of the spike sequences from STN and SNR was unchanged by LD treatment, while there was a shift of spectral power into higher frequency bands in the LFPs. The inability of chronic LD treatments to reduce the bursty firing patterns in the STN and SNR should be further examined as a potential pathophysiological mechanism for PD symptoms that are refractory to LD treatments.  相似文献   

20.
Cellular expression of cytochrome oxidase subunit I (COI) mRNA has recently been used as a metabolic marker for neuronal activity to study the functional changes in the subthalamic nucleus (STN) in parkinsonism. The previous experimental studies have been performed when the pathological state was stabilized at a maximal level. In order to determine the evolution of changes in neuronal activity in the STN after nigrostriatal denervation, we analysed by in situ hybridization the cellular expression of COI mRNA in the subthalamic neurons at different times, from 6 h to 14 days, after unilateral intranigral microinjection of 6-hydroxydopamine (6-OHDA) in rats. In parallel, the time-dependent changes of the unit neuronal activity of subthalamic neurons have been recorded. Levels of COI mRNA increased by 41% in subthalamic neurons from 24 h after 6-OHDA intoxication, to 14 days (+26%). Similarly, electrical activity started to increase slightly 24 h after lesion (+20%) and remained significantly higher at 14 days after the lesion (+189%). Changes in neuronal mean discharge rate were associated with changes in the pattern of spiking activity, from a regular firing pattern to an irregular one with a high bursting activity. These results show that: (i) the hyperactivity of the STN represents a very early phenomenon in the physiopathology of parkinsonian syndromes; and (ii) that changes in COI mRNA expression slightly precede changes in electrical neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号