首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor-bearing individuals have been reported to harbor increased numbers of Foxp3(+) regulatory T cells (Treg), which prevent the development of efficient antitumor immune responses. Thus, Treg depletion has already been tested as a promising therapeutic approach in various animal models and entered clinical trials. However, the use of nonspecific Treg targeting agents such as CD25 depleting antibodies, which in addition to CD25(+) Tregs also deplete recently activated CD25(+) effector T cells, potentially masked the tremendous potential of this therapeutic strategy. To avoid such nonspecific effects, we used transgenic DEREG (depletion of regulatory T cells) mice, which express a diphtheria toxin receptor under control of the Foxp3 locus, allowing selective depletion of Foxp3(+) Tregs even during ongoing immune responses. We showed that Foxp3(+) Treg depletion induced partial regression of established ovalbumin (OVA)-expressing B16 melanoma, which was associated with an increased intratumoral accumulation of activated CD8(+) cytotoxic T cells. The antitumor effect could be significantly enhanced when Treg depletion was combined with vaccination against OVA. To further assess whether this therapeutic approach would break self-tolerance, we crossed DEREG mice with RipOVA(low) mice, expressing OVA as neo-self-antigen under control of the rat insulin promoter. In these mice, combined Treg depletion and vaccination also induced tumor regression without the onset of diabetes. Together, our data suggest that selective Treg targeting strategies combined with vaccinations against tumor-associated (self) antigens have the potential to evoke efficient antitumor responses without inducing overt autoimmunity. These findings might have implications for future therapeutic interventions in cancer patients.  相似文献   

2.
Interleukin 2 (IL)-2 induces antitumor immunity and clinical responses in melanoma and renal cell carcinoma. However, IL-2 also increases the number of CD4(+)CD25(+) regulatory T (Treg) cells that suppress antitumor immune responses. The aim of the present study was to elucidate the effect of depletion of Treg cells on IL-2-induced antitumor immunity. IL-2-transfected mouse colon adenocarcinoma (MC38/IL-2) cells were implanted subcutaneously or intrahepatically into male C57BL/6 mice, and tumor growth and the proportion of tumor-infiltrating lymphocytes with Treg-cell depletion in response to treatment with anti-CD25 monoclonal antibody (PC61) were determined. In mice treated with phosphate-buffered saline, 40-60% of MC38/IL-2 tumors were rejected. In contrast, all MC38/IL-2 tumors were rejected in mice treated with PC61. The number of tumor-infiltrating CD8(+) T cells in mice treated with PC61 was approximately twice that in mice treated with PBS. The numbers of tumor-infiltrating CD4(+) and natural killer cells were also increased significantly. To test the antimetastatic effects of IL-2 treatment in combination with Treg-cell depletion, human recombinant IL-2 (rIL-2) and PC61 were administered to mice implanted with MC38/mock cells in the spleen, and hepatic metastasis was investigated. The average liver weight in mice treated with rIL-2 plus PC61 was 1.04 +/- 0.03 g, less than that in mice treated with rIL-2 (2.04 +/- 0.51 g) or PC61 alone (1.81 +/- 0.38 g). We conclude that IL-2-induced antitumor immunity is enhanced by Treg-cell depletion and is due to expansion of the tumor-infiltrating cytotoxic CD8(+) T-cell population.  相似文献   

3.
Voo KS  Peng G  Guo Z  Fu T  Li Y  Frappier L  Wang RF 《Cancer research》2005,65(4):1577-1586
CD4(+) helper and regulatory T (Treg) cells play important but opposing roles in regulating host immune responses against cancer and other diseases. However, very little is known about the antigen specificity of CD4(+) Treg cells. Here we describe the generation of a panel of EBV-encoded nuclear antigen 1 (EBNA1)-specific CD4(+) T-cell lines and clones that recognize naturally processed EBNA1-P(607-619) and -P(561-573) peptides in the context of HLA-DQ2 and HLA-DR11, -DR12, and -DR13 molecules, respectively. Phenotypic and functional analyses of these CD4(+) T cells revealed that they represent EBNA1-specific CD4(+) T helper as well as Treg cells. CD4(+) Treg cells do not secrete interleukin (IL)-10 and transforming growth factor beta cytokines but express CD25, the glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR), and Forkhead Box P3 (Foxp3), and are capable of suppressing the proliferative responses of naive CD4(+) and CD8(+) T cells to stimulation with mitogenic anti-CD3 antibody. The suppressive activity of these CD4(+) Treg cells is mediated via cell-cell contact or in part by a cytokine-dependent manner. Importantly, these Treg cells suppress IL-2 secretion by CD4(+) effector T cells specific for either EBNA1 or a melanoma antigen, suggesting that these CD4(+) Treg cells induce immune suppression. These observations suggest that the success of peptide-based vaccines against EBV-associated cancer and other diseases may likely depend upon our ability to identify antigens/peptides that preferentially activate helper T cells and/or to design strategies to regulate the balance between CD4(+) helper and Treg cells.  相似文献   

4.
The aim of this study was to investigate whether depletion of CD4(+)CD25(+) regulatory T cells (Treg) from melanoma patients affects immune responses against tumors. By application of recombinant IL-2-diphteria toxin fusion protein, also known as ONTAK, we were able to significantly reduce the frequency of Treg in peripheral blood, whereas other cell populations remained unaffected. The reduction of Treg started immediately after the first bolus of ONTAK with a dose of 5 microg ONTAK per kg bodyweight and lasted for 13 days with subsequent recovery thereafter. Successive ONTAK treatments further reduced the number of circulating Treg. Using the contact sensitizer DCP we show that all patients developed vast eczema after Treg depletion, whereas no or only mild eczematous reactions were detectable before ONTAK treatment. Corresponding induction of DCP-specific CD4(+) and CD8(+) T cells were detectable. Moreover, after immunization of ONTAK treated patients with tumor antigen peptides, MelanA/MART-1 and gp100, significant induction of peptide specific CD8(+) T cells could be observed in 90% of the patients treated. These cells displayed effector functions, as they were able to lyse peptide-pulsed target cells and secreted IFNgamma upon restimulation. In aggregate, our data indicate that ONTAK depletes Treg in vivo significantly, resulting in enhanced immune functions and substantial development of antigen-specific CD8(+) T cells in vaccinated individuals.  相似文献   

5.
Human T cells genetically modified to express chimeric antigen receptors (CAR) specific to the B cell tumor antigen CD19 can successfully eradicate systemic human CD19(+) tumors in immunocompromised SCID (severe combined immunodeficient)-Beige mice. However, in the clinical setting, CD4(+) CD25(hi) T regulatory cells (Treg) present within the tumor microenvironment may be potent suppressors of tumor-targeted effector T cells. In order to assess the impact of Tregs on CAR-modified T cells in the SCID-Beige xenotransplant model, we isolated, genetically targeted and expanded natural T regulatory cells (nTreg). In vitro nTregs modified to express CD19-targeted CARs efficiently inhibited the proliferation of activated human T cells, as well as the capacity of CD19-targeted 19-28z(+) effector T cells to lyse CD19(+) Raji tumor cells. Intravenous infusion of CD19-targeted nTregs into SCID-Beige mice with systemic Raji tumors traffic to sites of tumor and recapitulate a clinically relevant hostile tumor microenvironment. Antitumor efficacy of subsequently infused 19-28z(+) effector T cells was fully abrogated as assessed by long-term survival of treated mice. Optimal suppression by genetically targeted nTregs was dependent on nTreg to effector T-cell ratios and in vivo nTreg activation. Prior infusion of cyclophosphamide in the setting of this nTreg-mediated hostile microenvironment was able to restore the antitumor activity of subsequently infused 19-28z(+) effector T cells through the eradication of tumor-targeted nTregs. These findings have significant implications for the design of future clinical trials utilizing CAR-based adoptive T-cell therapies of cancer.  相似文献   

6.
CD25, also known as the interleukin-2 receptor α chain (IL-2Rα), is highly expressed on regulatory T cells (Tregs), but relatively lower on effector T cells (Teffs). This makes it a potential target for Treg depletion, which can be used in tumor immunotherapy. However, marketed anti-CD25 antibodies (Basiliximab and Daclizumab) were originally developed as immunosuppressive drugs to prevent graft rejection, because these antibodies can block IL-2 binding to CD25 on Teffs, which in turn destroys the function of Teffs. Recent studies have shown that non-IL-2-blocking anti-CD25 antibodies have displayed exciting antitumor effects. Here, we screened out a non-IL-2-blocking anti-CD25 monoclonal antibody (mAb) 7B7 by hybridoma technology, and confirmed its antitumor activity via depleting Tregs in a CD25 humanized mouse model. Subsequently, we verified that the humanized 7B7, named as h7B7-15S, has comparable activities to 7B7, and that its Treg depletion is further increased when combined with anti-CTLA-4, leading to enhanced remodeling of the tumor immune microenvironment. Moreover, our findings reveal that the Fab form of h7B7-15S has the ability to deplete Tregs, independent of the Fc region. Taken together, our studies expand the application of anti-CD25 in tumor immunotherapy and provide insight into the underlying mechanism.  相似文献   

7.
Although cancer tends to affect the elderly, most preclinical studies are carried out in young subjects. In this study, we developed a melanoma-specific cancer immunotherapy that shows efficacy in aged but not young hosts by mitigating age-specific tumor-associated immune dysfunction. Both young and aged CD4(+)CD25(hi) regulatory T cells (Treg) exhibited equivalent in vitro T-cell suppression and tumor-associated augmentation in numbers. However, denileukin diftitox (DT)-mediated Treg depletion improved tumor-specific immunity and was clinically effective only in young mice. DT-mediated Treg depletion significantly increased myeloid-derived suppressor cell (MDSC) numbers in aged but not young mice, and MDSC depletion improved tumor-specific immunity and reduced tumor growth in aged mice. Combining Treg depletion with anti-Gr-1 antibody was immunologically and clinically more efficacious than anti-Gr-1 antibody alone in aged B16-bearing mice, similar to Treg depletion alone in young mice. In contrast, DT increased MDSCs in young and aged mice following MC-38 tumor challenge, although effects were greater in aged mice. Anti-Gr-1 boosted DT effects in young but not aged mice. Aged antitumor immune effector cells are therefore competent to combat tumor when underlying tumor-associated immune dysfunction is appropriately mitigated, but this dysfunction varies with tumor, thus also varying responses to immunotherapy. By tailoring immunotherapy to account for age-related tumor-associated immune dysfunctions, cancer immunotherapy for aged patients with specific tumors can be remarkably improved.  相似文献   

8.
Objective: Immune escape is a characteristic feature of head and neck squamous cell carcinoma (HNSCC). Regulatory T cells (Treg) might contribute to HNSCC progression by suppressing antitumor immunity, and their attributes in patients are of special interest. Methods: Multicolor flow cytometry was used to study the frequency and phenotype of Treg in peripheral blood lymphocytes of 35 patients with HNSCC and 15 normal controls (NC). CD4(+)CD25(high) T cells were purified by fluorescence-activated cell sorting and tested for regulatory function by coculture with carboxyfluorescein diacetate succinimidylester-labeled autologous CD4(+)CD25(-) responder cells. RESULTS: The percentages of circulating CD4(+)CD25(+) T cells were increased in HNSCC patients (5 +/- 3%) versus NC (2 +/- 1.5%). In patients, this cell subset largely contained CD4(+)CD25(high)Foxp3(+) T cells and only few CD25(low/interm) cells. In addition, the frequency of Treg positive for CD62L, CTLA-4, Fas, FasL, and Foxp3 was greater in the circulation of patients than in NC (P < 0.0001). In HNSCC patients, Treg mediated significantly higher suppression (78 +/- 7%) compared with Treg in NC (12 +/- 4%) with P < 0.0001. Surprisingly, higher Treg frequency (P < 0.0059) and levels of suppression (P < 0.0001) were observed in patients with no evident disease (NED) than in untreated patients with active disease (AD). CONCLUSIONS: The frequency of T cells with suppressor phenotype and function (Treg) was significantly greater in HNSCC patients who were NED after oncologic therapy relative to those with AD. This finding suggests that oncologic therapy favors expansion of Treg.  相似文献   

9.
Interleukin-10 (IL-10) is a broadly acting immune inhibitory cytokine that is generally thought to support tumor growth. Here we challenge this view with evidence that genetic ablation of IL-10 in the mouse significantly heightens sensitivity to chemical carcinogenesis, growth of transplanted tumors, and formation of metastases. Tumor growth in IL-10-deficient (IL-10(-/-)) mice was associated with an increased level of myeloid-derived suppressor cells (MDSC) and CD4(+)Foxp3(+) regulatory T (Treg) cells in both the tumor microenvironment and the tumor-draining lymph nodes. IL-10(-/-) MDSCs express high levels of MHC and IL-1, and they efficiently induced formation of Treg cells. IL-1 signaling blockade reduced tumor growth mediated by IL-10 deficiency, associated with a partial rescue of tumor infiltration and function of effector T cells and a decrease in tumor angiogenesis and tumor infiltration by Treg cells. Taken together, our findings establish that endogenous IL-10 inhibits inflammatory cytokine production and hampers the development of Treg cells and MDSCs, two key components of the immunosuppressive tumor microenvironment, thereby inhibiting tumor development, growth, and metastasis.  相似文献   

10.
Tumor-infiltrating lymphocytes (TILs) are a heterogeneous cell family which plays an important role in tumor-associated immune response. Of these, T regulatory (Treg) cells have also been shown to inhibit anti-tumor response. We aimed to evaluate the expression of T regulatory cell markers (CD4, CD25, CTLA-4 and FoxP3) in samples of oral cavity squamous cell carcinoma (OCSCC) and lip SCC (LSCC) by immunohistochemistry. The relationship of Treg markers with survival data and the proliferative index were also evaluated. We observed similar numbers of CD4-, CD25- and FoxP3(+) cells in OCSCC and LSCC. On the other hand, numbers of CTLA-4(+) cells were significantly lower in OCSCC than in LSCC. OCSCC samples with high numbers of CD4 exhibited a high proliferative index, while samples with high CTLA-4 counts demonstrated a low tumoral proliferative index. A log-rank test showed that patients with OCSCC that presented high counts of CD4 showed a significantly decreased survival compared with patients with low cell counts. In contrast, high CD25(+) cell counts were associated with increased survival. Our results suggest an association of CD4 with poor prognosis, while CD25 expression is related with favorable prognosis. These findings result from the heterogeneity of TIL subsets that display an antagonistic role in tumor immune cell response.  相似文献   

11.
We have previously observed a novel role of natural killer T (NKT) cells in negative regulation of antitumor immune responses against an immunogenic regressor tumor expressing a transfected viral antigen. Here, we investigated whether hidden spontaneous antitumor immunosurveillance, in the absence of a vaccine, could be revealed by disruption of this negative regulatory pathway involving CD4+ NKT cells and interleukin-13 (IL-13), in a murine pulmonary metastasis model of a nontransfected, nonregressor, syngeneic tumor, the CT26 colon carcinoma. Lung metastases of CT26 were decreased in CD4+ T cell-depleted BALB/c mice, suggesting that CD4+ T cells were involved in negative regulation of antitumor responses. CD1-knock out (CD1-KO) mice, which have conventional CD4+ T cells and CD4+CD25+ regulatory T cells but lack CD1-restricted CD4+ NKT cells, were significantly resistant to lung metastasis of CT26. The metastases were not further decreased in CD4+ T cell-depleted CD1-KO mice, implying that CD4+ NKT cells might be the primary negative regulator of antitumor immune responses in BALB/c mice. CD8+ T cells were found to act as effectors in antitumor immune responses, since the inhibition of lung metastases observed in naive CD1-KO or CD4+ T cell-depleted mice was abrogated by depletion of CD8+ T cells. Lung metastases were significantly decreased by treatment of mice with an IL-13 inhibitor, but not by deficiency or inhibition of IL-4. Thus, even for a nonregressor tumor, immunosurveillance exists but is negatively regulated via CD4+ NKT cells possibly mediated by IL-13, and can be unmasked by removal of these negative regulatory components.  相似文献   

12.
Interleukin (IL)-2 is used in the immunotherapy of patients with certain cancer and HIV infection. IL-2 treatment reliably results in 16% to 20% objective clinical response rate in cancer patients, with significant durability of responses in selected patients. However, the mechanisms of therapeutic activity in responding versus nonresponding patients remain poorly understood. CD4(+)CD25(+)FOXP3(+) regulatory T (Treg) cells contribute to immunosuppressive networks in human tumors. We treated 31 ovarian cancer patients with IL-2. We show that administration of IL-2 induces the proliferation of existent Treg cells in patients with ovarian cancer. The potency of Treg cell proliferation is negatively determined by the initial prevalence of Treg cells, suggesting that Treg cells are a factor for self-controlling Treg cell proliferation. After IL-2 cessation, the number of Treg cells more efficiently dropped in clinical responders than nonresponders. Furthermore, IL-2 treatment stimulates chemokine receptor CXCR4 expression on Treg cells, enables Treg cell migration toward chemokine CXCL12 in the tumor microenvironment, and may enforce Treg cell tumor accumulation. Our findings support the concept that administration of IL-2 numerically and functionally affects the Treg cell compartment. These data provide an important insight in evaluating the clinical benefit and therapeutic prediction of IL-2 treatment in patients with cancer.  相似文献   

13.
Increase of regulatory T cells in the peripheral blood of cancer patients.   总被引:70,自引:0,他引:70  
PURPOSE: T cells constitutively expressing both CD4 and CD25are essential for maintenance of self-tolerance and therefore have been referred to as regulatory T cells (Treg). Experimental tumor models in mice revealed that Tregs are potent inhibitors of an antitumor immune response. The current study was designed to determine whether cancer patients exhibit an expanded Treg pool. EXPERIMENTAL DESIGN: The frequency of Tregs in the peripheral blood of 42 patients suffering from epithelial malignancies and from 34 healthy controls was determined by flow cytometry. The immunoregulatory properties of CD4(+)CD25(+) and CD4(+)CD25(-) T cells were characterized by proliferation and suppression assays. Cocultures with natural killer (NK) cells were performed to determine the impact of Tregs on NK-mediated cytotoxicity. RESULTS: Patients with epithelial malignancies show an increase of CD4(+)CD25(+) T cells in the peripheral blood with characteristics of Tregs, i.e., they are CD45RA(-), CTLA-4(+), and transforming growth factor beta(+). Notably, CD4(+) T cells from cancer patients are characterized by an impaired proliferative capacity, which is restored to the extend of CD25-depleted CD4(+) T cells from control persons by prior removal of CD25(+) T cells. In contrast to CD4(+)CD25(-) T cells, isolated CD4(+)CD25(+) T cells from cancer patients were anergic towards T cell receptor stimulation. In addition, CD4(+)CD25(+) T cells suppressed the proliferation of CD4(+)CD25(-) T cells. When cultured together with CD56(+) NK-cells, CD4(+)CD25(+) T cells from cancer patients effectively inhibited NK-cell-mediated cytotoxicity. CONCLUSIONS: Thus, we provide evidence of an increased pool of CD4(+)CD25(+) regulatory T cells in the peripheral blood of cancer patients with potent immunosuppressive features. These findings should be considered for the design of immunomodulatory therapies such as dendritic cell vaccination.  相似文献   

14.
  目的   研究卵巢癌患者腹水及外周血单个核细胞(PBMC)中CD4+ CD25+调节性T细胞(Treg)的表达差异、免疫调节功能及其含量与化疗、复发的关系,探究其在卵巢癌腹腔微环境中发挥免疫调节的具体作用及意义。   方法   采用流式细胞术分别检测27例卵巢癌患者腹水及28例卵巢癌患者PBMC中CD4+ CD25+/CD4+ T细胞百分比,并根据收集标本时患者临床特征进行分组,比较处于初治(PD)、化疗后(AC)及复发(RD)3个阶段卵巢癌患者腹水及PBMC中Treg含量的差异。应用免疫磁珠分选卵巢癌患者腹水及外周血Treg,与经羧基荧光素二醋酸盐琥珀酰亚胺酯(carboxyfluorescein succinimidylester,CFSE)标记的自CD4+CD25- T细胞按不同比例(0:1,1:1,1:2及1:4)共培养,检测Treg免疫抑制功能。   结果   卵巢癌患者腹水中CD4+ CD25+/CD4+ T细胞百分比(28.25±14.06)%较PBMC中(14.6±4.74)%显著增高(P < 0.000 1)。卵巢癌患者PD、AC及RD 3个阶段腹水及PBMC中Treg含量均显示为AC>RD>PD,且均有显著统计学意义(P < 0.000 1)。体外实验结果显示,卵巢癌患者腹水中CD4+ CD25+ Treg可有效抑制CFSE标记的自体CD4+ CD25- T细胞增殖,且抑制功能较外周血显著增强(P < 0.01)。   结论   卵巢癌腹腔微环境中存在CD4+ CD25+Treg,且其含量及免疫抑制功能较外周血PBMC显著增高,提示卵巢癌腹腔内更易发生免疫逃逸作用。卵巢癌患者化疗后及复发阶段腹水及PBMC中CD4+ CD25+ Treg含量均大于原发阶段,提示化疗可能促进卵巢癌患者体内Treg含量升高,而Treg升高可能参与促进肿瘤复发。    相似文献   

15.
Chen A  Liu S  Park D  Kang Y  Zheng G 《Cancer research》2007,67(3):1291-1298
One strategy for improving adoptive therapy is preconditioning the host immune environment by depleting CD4(+)CD25(+) regulatory T cells (Treg) suppressive to antitumor responses. Given that Treg increase, or selectively accumulate, within tumors and are sensitive to FasL-mediated apoptosis, we test here the hypothesis that inducing apoptosis of intratumoral Treg using FasL may improve adoptive T cell therapy. We show that FasL applied intratumorally via protein transfer decreases intratumoral Treg via inducing apoptosis in these cells. Significantly, we show that the use of FasL prior to the infusion of tumor-reactive CD8(+) T cells enhances the therapeutic efficacy of adoptive T cell transfer against established tumors, which is mediated by persistent, systemic antitumor immunity. Intratumoral FasL protein transfer also results in neutrophil infiltration of tumor. However, we show that intratumoral immunodepletion of neutrophils does not abolish the effect of FasL on adoptive transfer. Rather, the effect of FasL is completely abolished by cotransfer of Treg, isolated from the tumor-draining lymph nodes. Hence, our study shows for the first time that using FasL to predeplete intratumoral Treg provides a useful means for optimizing adoptive therapy.  相似文献   

16.
The accumulation of myeloid suppressor cells (MSCs) is associated with immune suppression in tumor-bearing mice and in cancer patients. The suppressive activity of MSC correlates with the expression of the myeloid markers Gr-1, CD115 (macrophage colony-stimulating factor receptor), and F4/80. Gr-1(+)CD115(+) MSCs, in addition to being able to suppress T-cell proliferation in vitro, can induce the development of Foxp3(+) T regulatory cells (Treg) in vivo, which are anergic and suppressive. Furthermore, the secretion of interleukin (IL)-10 and transforming growth factor-beta by Gr-1(+)CD115(+) MSCs was induced and enhanced, respectively, on IFN-gamma stimulation. The development of Treg requires antigen-associated activation of tumor-specific T cells, depends on the presence of IFN-gamma and IL-10, and is independent of the nitric oxide-mediated suppressive mechanism by MSC. Our data provide evidence that Gr-1(+)CD115(+) MSC can mediate the development of Treg in tumor-bearing mice and show a novel immune suppressive mechanism by which MSCs can suppress antitumor responses.  相似文献   

17.
CD25 is the alpha-chain of the heterotrimer IL-2 receptor. CD25 is expressed on the surface of both immune and non-immune cells with different frequencies. For cancers, CD25 is expressed at high levels in many types of hematological malignancies, but at low levels in most solid tumors. CD25 is also highly expressed in activated circulating immune cells and regulatory T cells (Tregs). Infiltration of Tregs in the tumor microenvironment can lead to an imbalanced ratio of effector T cells (Teffs) and Tregs, which is associated with the progression of cancers. A rescued Teff/Treg cell ratio indicates an efficient anti-tumor response to immunotherapy. CD25 as a potential target for the depletion of Tregs is critical in developing new immunotherapeutic strategies. Few articles have summarized the relationships between CD25 and tumors, or the recent progress of drugs targeting CD25. In this paper, we will discuss the structures of IL-2 and IL-2R, the biological function of CD25 and its important role in tumor therapy. In addition, the latest research on drugs targeting CD25 has been summarized, providing guidance for future drug development.  相似文献   

18.
Human CD4+ CD25+ regulatory T cells suppress NKT cell functions   总被引:18,自引:0,他引:18  
CD4+CD25+ regulatory T cells play an important role in peripheral tolerance. These cells have been reported to be capable of suppressing the response of CD4+CD25- T cells in vitro. The depletion of these cells evokes effective immune responses to tumor cells in vivo. In this study, we demonstrate that CD4+CD25+ T cells also suppress all subsets of Valpha24+NKT cells (Valpha24+CD4-CD8- double negative, Valpha24+CD4+, and Valpha24+CD8+) in both proliferation and cytokine production [IFN-gamma, interleukin-4 (IL-4), IL-13, and IL-10]. This suppression is mediated by cell-to-cell contact but not by a humoral factor or the inhibition of antigen-presenting cells. Moreover, the cytotoxic activity of Valpha24+NKT cells against some tumor cell lines is suppressed by CD4+CD25+ T cells. This finding is important in developing an effective immunotherapy for cancer.  相似文献   

19.
20.
Cancerous tissue protection from tumor-recognizing CD8(+) and CD4(+) T cells (antitumor T cells) limits the therapeutic potential of immunotherapies. We propose that tumor protection is to a large extent due to (a) inhibition of antitumor T cells by hypoxia-driven accumulation of extracellular adenosine in local tumor microenvironment and due to (b) T regulatory cell-produced extracellular adenosine. The adenosine triggers the immunosuppressive signaling via intracellular cyclic AMP-elevating A2A adenosine receptors (A2AR) on antitumor T cells. In addition, the activated antitumor T cells in hypoxic tumor microenvironment could be inhibited by elevated levels of immunosuppressive hypoxia-inducible factor-1alpha. Complete rejection or tumor growth retardation was observed when A2AR has been genetically eliminated or antagonized with synthetic drug or with natural A2AR antagonist 1,3,7-trimethylxanthine (caffeine). The promising strategy may be in combining the anti-hypoxia-adenosinergic treatment that prevents inhibition of antitumor T cells by tumor-produced and T regulatory cell-produced adenosine with targeting of other negative regulators, such as CTL antigen-4 blockade. Observations of tumor rejection in mice and massive prospective epidemiologic studies support the feasibility of anti-hypoxia-adenosinergic combined immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号