首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomic analysis of cerebrospinal fluid (CSF) samples derived from patients with Alzheimer's disease (AD) or Parkinson's disease (PD) was performed. On the basis of liquid chromatography–tandem mass spectrometry, two‐dimensional gel electrophoresis analysis, and Western blot validation, it was found that the level of soluble form of monocyte differentiation antigen CD14 precursor was elevated in CSF from AD or PD patients compared with normal subjects. The soluble CD14 protein and mRNA expression was detected in microglia cells, indicating that microglia may be a cellular source of soluble CD14 in CSF. Next, the role of soluble CD14 in the regulation of glial functions was investigated. Soluble CD14 inhibited lipopolysaccharide (LPS)‐ or LPS/interferon‐gamma‐induced nitric oxide production and cell death of microglia and astrocytes. Soluble CD14 suppressed glial neurotoxicity in a coculture of glia/neuroblastoma. In addition, soluble CD14 moderately enhanced phagocytic activity of microglia. These results suggest that microglia‐derived soluble CD14 is a candidate CSF biomarker for AD and PD, and the soluble CD14 may inhibit glial activation by interfering with LPS effects. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
A variety of factors and processes have been implicated in the development and progression of the pathology of Alzheimer's Disease (AD), including amyloid fragment deposition, reactive gliosis, α-1-antichymotrypsin (ACT), and apolipoprotein E (APOE). Carriers of the APOE 4 allele have been shown to have an enhanced risk of developing AD, and the ACT signal peptide A/A genotype may modify the APOEϵ4 risk. The protein products of these genes have been shown to enhance conversion of diffuse β amyloid (Aβ) fibrils, which are found in diffuse plaques, to the fibrillar form found in neuritic plaques. In affected regions of AD brain, ACT and APOE colocalize with Aβ deposits and reactive microglia and astrocytes. We examined the regional distribution of ACT, APOE, and reactive glia in temporal cortex, where neuritic plaques are abundant, and cerebellum (in areas where diffuse plaques but not neuritic plaques accumulate) to examine the relationship of these markers to the deposition of Aβ. In temporal cortex, ACT and APOE staining was localized to plaque-like profiles, reactive astrocytes, and blood vessels; human leukocyte antigen-DR (HLA-DR) and glial fibrillary acidic protein (GFAP) staining revealed focal clusters of reactive microglia and astrocytes. In cerebellum, ACT and APOE immunoreactivity was never localized to plaque-like profiles but was weakly localized to unreactive astrocytes; weak HLA-DR and GFAP immunoreactivity was present on quiescent microglia throughout the cerebellum. The lack of fibrillar amyloid deposits in cerebellum, despite the presence of well-characterized markers thought to mediate the production of Aβ, suggests that this brain region may be lacking certain factors necessary for fibril formation or that the cerebellum responds differently to stimuli that successfully mediate inflammation in affected cortex. J. Comp. Neurol. 396:511–520, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
A prominent feature of Alzheimer's disease (AD) pathology is an abundance of activated glia (astrocytes and microglia) in close proximity to the amyloid plaques. These activated glia overexpress a number of proteins that may participate in the progression of the disease, possibly by propagation of inflammatory and oxidative stress responses. The beta-amyloid peptide 1-42 (Abeta), a major constituent of neuritic plaques, can itself induce glial activation. However, little is known about whether other plaque components, especially the upregulated glial proteins, can induce glial activation or modulate the effects of Abeta on glia. In this study, we focused on four glial proteins that are abundant in amyloid plaques and/or that are known to interact with Abeta: alpha1-antichymotrypsin (ACT), interleukin-1beta (IL-1beta), S100beta, and butyrylcholinesterase (BChE). We examined the ability of these proteins to activate rat cortical astrocyte cultures and to influence the ability of Abeta to activate astrocytes. Treatment of astrocytes with ACT, IL-1beta, or S100beta resulted in glial activation, as assessed by reactive morphology, upregulation of IL-1beta, and production of inducible nitric oxide synthase and nitric oxide. The ability of Abeta to induce astrocyte activation was also enhanced in the presence of each of these three proteins. In contrast, BChE alone did not activate astrocytes and had no effect on Abeta-induced activation. These results suggest that certain proteins produced by activated glia may contribute to the chronic glial activation seen in AD through their ability to stimulate astrocytes directly or through their ability to modulate Abeta-induced activation.  相似文献   

4.
This report describes the production of a monoclonal antibody raised against Bcl-xl, and includes an initial study of bcl-xl expression in neuropathology including Alzheimer's disease (AD). Bcl-xl is a potent apoptotic inhibitor and is known to be the predominant Bcl-x isoform in brain. To examine the expression of bcl-xl in aged brain and neurodegenerative disease, we raised a Bcl-xl-specific monoclonal antibody. In aged human brain, the highest bcl-xl expression was observed in cerebellum. By immunohistochemistry, significant bcl-xl expression was detected in reactive microglia of patients with AD and other neurological diseases such as progressive supranuclear palsy. Bcl-xl-positive microglia frequently colocalized with β-amyloid plaques in AD and with activated astrocytes in non-AD and AD brains, suggesting a general role for Bcl-xl in regions of pathology. High levels of Bcl-xl protein might render microglia more resistant to cytotoxic environments such as areas of neurodegeneration and astrogliosis. J. Neurosci. Res. 47:98–108, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
C6 glioma cells, and primary cultures of mouse astrocytes, stimulated with lipopolysaccharide (LPS) release an interleukin-1 like factor (IL-1) which enhances lectin-induced T-lymphocyte proliferation and promotes the release of interleukin-2 (IL-2) by ConA-stimulated thymocytes. In the present study, the glia maturation factor (GMF) was found not only to induce differentiation of glioblasts, but also to elicit the secretion of IL-1 like factors by cultured mouse astrocytes and their precursor cells. GMF was also effective in triggering IL-1 release by macrophages. Contamination of the 23 000 MW GMF preparation with LPS was excluded by the Limulus lysate assay and by using C3H/HeJ LPS-nonresponder mice whose glia and macrophages responded to GMF but not to LPS, by IL-1 release. Through its ability to induce glial differentiation and IL-1 release, GMF may represent an important endogenous signal, triggering both reactive gliosis and the development of an immune response within the central nervous system.  相似文献   

6.
The contribution of reactive gliosis to the pathological phenotype of Alzheimer's disease (AD) opened the way for therapeutic strategies targeting glial cells instead of neurons. In such context, connexin hemichannels were proposed recently as potential targets since neuronal suffering is alleviated when connexin expression is genetically suppressed in astrocytes of a murine model of AD. Here, we show that boldine, an alkaloid from the boldo tree, inhibited hemichannel activity in astrocytes and microglia without affecting gap junctional communication in culture and acute hippocampal slices. Long‐term oral administration of boldine in AD mice prevented the increase in glial hemichannel activity, astrocytic Ca2+ signal, ATP and glutamate release and alleviated hippocampal neuronal suffering. These findings highlight the important pathological role of hemichannels in AD mice. The neuroprotective effect of boldine treatment might provide the basis for future pharmacological strategies that target glial hemichannels to reduce neuronal damage in neurodegenerative diseases.  相似文献   

7.
Alterations in the neuronal expression of some neurotrophins have been shown in various neurodegenerative processes, particularly Alzheimer’s disease (AD). Glia may up-regulate neurotrophins and their high-affinity tyrosine kinase (trk) receptors in response to neural injury. In human immunodeficiency virus type 1 (HIV-1) encephalitis, activated microglia were shown to express brain-derived neurotrophic factor (BDNF), while reactive astrocytes expressed trkB receptor. This observation has suggested the existence of local neurotrophic regulation between different glial populations. To characterize the glial cellular distribution of BDNF and trkB receptor proteins in AD, we studied selected regions of postmortem brains from four AD and three age-matched control patients by double-immunofluorescence confocal microscopy. In both groups, BDNF immunoreactivity was distributed in neuronal perikarya and neuritic processes in the neocortex and hippocampus. No BDNF immunoreactivity was observed in microglia or astrocytes within and between senile plaques of AD. Catalytic trkB receptor immunoreactivity was present in neuronal perikarya in the neocortex and hippocampus. Reactive astrocytes and microglia were not immunoreactive for catalytic trkB. The absence of BDNF and trkB proteins in glia in AD patients is in contrast to the finding in patients with HIV-1 encephalitis. This difference suggests that glial expression of BDNF and trkB proteins may be characteristic of particular disease processes, rather than merely representing a stereotyped response to any type of neural injury. Received: 13 July 1998 / Revised, accepted: 25 February 1999  相似文献   

8.
Neurodegenerative disorders present with progressive and irreversible degeneration of the neurons. Alzheimer's disease (AD) is one of the most common neurodegenerative disorders affecting 50 million people worldwide (2017), expected to be doubled every 20 years. Primarily affected by age, AD is the cause for old‐age dementia, progressive memory loss, dysfunctional thoughts, confusion, cognitive impairment and personality changes. Neuroglia formerly understood as “glue” of the brain neurons consists of macroglia (astrocytes and oligodendrocyte), microglia and progenitors NG2‐glia, and constitute a large fraction of the mammalian brain. The primary functions of glial cells are to provide neurons with metabolic and structural support in the healthy brain; however, they attain a “reactive” state from the “resting” state upon challenged with a pathological insult such as a neurodegenerative cascade. Failure or defects in their homoeostatic functions (i.e. concentration of ions, neurotransmitters) ultimately jeopardize neurons with excitotoxicity and oxidative stress. Moreover, the most common clinical outcome of AD is the cognitive impairment and memory loss, which are attributed mainly by the accumulation of Aβ. Failure of glial cells to remove the Aβ toxic proteins accelerates the AD progression. The rapidly emerging proteomic techniques such as mass spectrometry (MS), cross‐linking mass spectrometry, hydrogen deuterium trade mass spectrometry, protein foot printing and 2‐DGE combined with LC–MS/MS present wide array of possibilities for the identification of differentially expressed proteins in AD.  相似文献   

9.
J. Satoh, H. Tabunoki, T. Ishida, Y. Saito and K. Arima (2013) Neuropathology and Applied Neurobiology 39, 109–120 Accumulation of a repulsive axonal guidance molecule RGMa in amyloid plaques: a possible hallmark of regenerative failure in Alzheimer's disease brains Aims: RGMa is a repulsive guidance molecule that induces the collapse of axonal growth cones by interacting with the receptor neogenin in the central nervous system during development. It remains unknown whether RGMa plays a role in the neurodegenerative process of Alzheimer's disease (AD). We hypothesize that RGMa, if it is concentrated on amyloid plaques, might contribute to a regenerative failure of degenerating axons in AD brains. Methods: By immunohistochemistry, we studied RGMa and neogenin (NEO1) expression in the frontal cortex and the hippocampus of 6 AD and 12 control cases. The levels of RGMa expression were determined by qRT‐PCR and Western blot in cultured human astrocytes following exposure to cytokines and amyloid beta (Aβ) peptides. Results: In AD brains, an intense RGMa immunoreactivity was identified on amyloid plaques and in the glial scar. In the control brains, the glial scar and vascular foot processes of astrocytes expressed RGMa immunoreactivity, while oligodendrocytes and microglia were negative for RGMa. In AD brains, a small subset of amyloid plaques expressed a weak NEO1 immunoreactivity, while some reactive astrocytes in both AD and control brains showed an intense NEO1 immunoreactivity. In human astrocytes, transforming growth factor beta‐1 (TGFβ1), Aβ1–40 or Aβ1–42 markedly elevated the levels of RGMa, and TGFβ1 also increased its own levels. Coimmunoprecipitation analysis validated the molecular interaction between RGMa and the C‐terminal fragment β of amyloid beta precursor protein (APP). Furthermore, recombinant RGMa protein interacted with amyloid plaques in situ. Conclusions: RGMa, produced by TGFβ‐activated astrocytes and accumulated in amyloid plaques and the glial scar, could contribute to the regenerative failure of degenerating axons in AD brains.  相似文献   

10.
Depletion of noradrenaline in newborn rats by 6-hydroxydopamine (6-OHDA) affects the postnatal development and reduces the granular cell area in the neocerebellum (lobules V-VII). During the first postnatal month, Bergmann glial fibers guide the migration of immature granule cells to the internal granule cell layer. Microglia and Bergmann glia may play an important role in this process, but the exact mechanism behind this phenomenon is not known. We studied the effect of systemic administration of 6-OHDA on the expression and localization on microglia and Bergmann glia in the neonatal cerebellum by immunohistochemistry. In the neocerebellum, 6-OHDA treatment caused a significant increase in the number of activated microglia. The increase was observed mainly in the granule cell layer and the cerebellar medulla. Bergmann glial cells in treated brains were abnormally located, did not form intimate associations with Purkinje cells, and the glial fibers were structurally different. Our findings indicate that a noradrenergic influence may be necessary for the normal maturation and migration of granule cells, and abnormal migration may be the result of Bergmann glia destruction and the activation of microglia. Activated microglia in the granule cell layer may be used as a marker for an injured cerebellar area.  相似文献   

11.
Hamo L  Stohlman SA  Otto-Duessel M  Bergmann CC 《Glia》2007,55(11):1169-1177
The potential interplay of glial cells with T cells during viral induced inflammation was assessed by comparing major histocompatibility complex molecule upregulation and retention on astrocytes and microglia. Transgenic mice expressing green fluorescent protein under control of the astrocyte-specific glial fibrillary acidic protein promoter were infected with a neurotropic coronavirus to facilitate phenotypic characterization of astrocytes and microglia using flow cytometry. Astrocytes in the adult central nervous system up-regulated class I surface expression, albeit delayed compared with microglia. Class II was barely detectable on astrocytes, in contrast to potent up-regulation on microglia. Maximal MHC expression in both glial cell types correlated with IFN-gamma levels and lymphocyte accumulation. Despite a decline of IFN-gamma concomitant to virus clearance, MHC molecule expression on glia was sustained. These data demonstrate distinct regulation of both class I and class II expression by microglia and astrocytes in vivo following viral induced inflammation. Furthermore, prolonged MHC expression subsequent to viral clearance implies a potential for ongoing presentation.  相似文献   

12.
Astrocytes are the most abundant cell‐type of the human brain and play a variety of roles in brain homeostasis and synaptic maturation, under normal conditions. However, astrocytes undergo dramatic pathological changes in response to brain injury, such as reactive gliosis and glial scar formation. Although abnormal hypertrophy and massive proliferation of astrocytes are obvious, the molecular identity and cues that dictate the structural changes in reactive astrocytes remain unclear. This study proposes that fibroblast growth factor (FGF) signaling is responsible for making astrocyte morphology more complex and hypertrophic in response to an inflammatory stimulus such as lipopolysaccharide. Primary astrocytes isolated from perinatal brains developed more branches in the presence of FGF8 or lesser branches in the presence of FGF2. Introduction of the constitutively active form of the FGF receptor 3 (caFGFR3) into the brain increases the structural complexity, with greater glial fibrillary acidic protein level in astrocytes, while overexpression of a dominant‐negative form of FGFR3 (dnFGFR3) reduces it. Treatment of FGF8 facilitated the wound‐healing process of primary astrocytes in vitro by changing their morphology, indicating that the FGF signal may control the responsiveness of astrocytes in injury conditions. Finally, the blockade of FGF signaling by introducing dnFGFR3 at the site of reactive gliosis reduces astrocyte branch formation and minimizes hypertrophic responses during reactive gliosis. Taken together, these results indicate that FGF8–FGFR3 signaling controls structural changes in astrocytes during reactive gliosis, under pathogenic conditions. GLIA 2014;62:1328–1344  相似文献   

13.
Alzheimer's disease (AD), the most common progressive neurodegenerative disorder is characterized by the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). Increasing evidences suggest a link between neuroinflammation and neuronal dysfunction in AD, orchestrated by the progressive activation of microglial cells and astrocytes with the consequent overproduction of proinflammatory molecules. The concomitant release of anti-inflammatory mediators antagonizes the inflammatory processes and leading to the severity of the AD pathology. The simultaneous detection of these inflammatory molecules in the pre-symptomatic stage may help in the early diagnosis of the AD. We have discussed the impact of microglia and astrocytic cells, the principal agents in the neuroinflammation process, in relation to the progression of the AD. Modulation of the risk factors and targeting of these immune mechanisms could lead to better therapeutic or preventive strategies for the AD. Further studies need to determine, how the inhibition of inflammatory factors could be used for the AD alternative therapies.  相似文献   

14.
BACKGROUND: A previous study reported reductions in glial density and glia/neuron ratio in the amygdala of individuals with major depressive disorder (MDD), without a change in neuronal density. It is not known, however, whether this glial loss is due to astrocytes, oligodendrocytes, or microglia. METHODS: Tissue samples, equally from the right and left hemispheres, were obtained from subjects diagnosed with MDD (n = 8), bipolar disorder (BD) (n = 9), or no psychiatric disorders (n = 10). Sections were stained immunohistochemically for S-100beta (for astrocytes) and human leukocyte antigen (for microglia), and with the Nissl method. In Nissl-stained sections, oligodendrocytes have more compact, darker-stained nuclei, whereas astrocytes and microglia have larger, lighter-stained nuclei, with more granular chromatin. Neurons are larger, with a nucleolus and stained cytoplasm. The density of glia was determined with stereologic methods. RESULTS: The density of total glia and oligodendrocytes in the amygdala was significantly lower in MDD than in control subjects, but not significantly lower in BD compared with control subjects. The decreases were largely accounted for by differences in the left hemisphere. There was no significant decrease in astrocyte or microglia density in MDD or BD subjects. CONCLUSIONS: The glial cell reduction previously found in the amygdala in MDD is primarily due to oligodendrocytes.  相似文献   

15.
B-crystallin is a member of the small heatshock protein family. Under pathological conditions, the expression of B-crystallin increases in proliferating astrocytes, which suggests that this protein, in addition to glial fibrillary acidic protein (GFAP), can be a marker for gliosis in neurodegenerative diseases. Immunoblotting and immunohistochemical methods were used for the detection of B-crystallin in the brains of Alzheimer's disease (AD) patients and nondemented controls. An increase in B-cyrstallin expression was found in the brains of AD patients. Immunoreaction was present in reactive astrocytes, microglia, and oligodendrocytes, indicating that all types of glia respond to the stress associated with AD pathology. Colocalization of GFAP and B-crystallin was found in fibrous astrocytes. However, the intensity and range of B-crystallin expression appeared to be limited as compared with the large increase in the number of GFAP-positive astrocytes. This indicates that expression of B-crystallin is not a marker for gliosis in AD. Immunoreactivity to B-crystallin in both astrocytes and microglia was found mainly restricted to areas with senile plaques and neurofibrillary tangles, suggesting the association of B-crystallin with amyloid deposition in AD.Supported by a grant (No. EY08202) from the National Institutes of Health, Bethesda, USASupported by a fellowship of the Royal Netherlands Academy of Arts and Sciences  相似文献   

16.
Astrocytes are well known modulators of normal developmental retinal vascularization. However, relatively little is known about the role of glial cells during pathological retinal neovascularization (NV), a leading contributor to vision loss in industrialized nations. We demonstrate that the loss of astrocytes and microglia directly correlates with the development of pathological NV in a mouse model of oxygen‐induced retinopathy (OIR). These two distinct glial cell populations were found to have cooperative survival effects in vitro and in vivo. The intravitreal injection of myeloid progenitor cells, astrocytes, or astrocyte‐conditioned media rescued endogenous astrocytes from degeneration that normally occurs within the hypoxic, vaso‐obliterated retina following return to normoxia. Protection of the retinal astrocytes and microglia was directly correlated with accelerated revascularization of the normal retinal plexuses and reduction of pathological intravitreal NV normally associated with OIR. Using astrocyte‐conditioned media, several factors were identified that may contribute to the observed astrocytic protection and subsequent normalization of the retinal vasculature, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Injection of VEGF or bFGF at specific doses rescued the retinas from developing OIR‐associated pathology, an effect that was also preceded by protection of endogenous glia from hypoxia‐induced degeneration. Together, these data suggest that vascular‐associated glia are also required for normalized revascularization of the hypoxic retina. Methods developed to target and protect glial cells may provide a novel strategy by which normalized revascularization can be promoted and the consequences of abnormal NV in retinal vascular diseases can be prevented. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Glial expression of estrogen and androgen receptors after rat brain injury   总被引:6,自引:0,他引:6  
Estrogens and androgens can protect neurons from death caused by injury to the central nervous system. Astrocytes and microglia are major players in events triggered by neural lesions. To determine whether glia are direct targets of estrogens or androgens after neural insults, steroid receptor expression in glial cells was assessed in two different lesion models. An excitotoxic injury to the hippocampus or a stab wound to the parietal cortex and hippocampus was performed in male rats, and the resultant expression of steroid receptors in glial cells was assessed using double-label immunohistochemistry. Both lesions induced the expression of estrogen receptors (ERs) and androgen receptors (ARs) in glial cells. ERalpha was expressed in astrocytes immunoreactive (ERalpha-ir) for glial fibrillary acidic protein or vimentin. AR immunoreactivity colocalized with microglial markers, such as Griffonia simplicifolia lectin-1 or OX-6. The time course of ER and AR expression in glia was studied in the stab wound model. ERalpha-ir astrocytes and AR-ir microglia were observed 3 days after lesion. The number of ERalpha-ir and AR-ir glial cells reached a maximum 7 days after lesion and returned to low levels by 28 days postinjury. The studies of ERbeta expression in glia were inconclusive; different results were obtained with different antibodies. In sum, these results suggest that reactive astrocytes and reactive microglia are a direct target for estrogens and androgens, respectively.  相似文献   

18.
19.
Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star‐shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ~178, 364 μm3. The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic‐somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia–astrocyte pairs, while another 38.6% and 11.4% were astrocyte–astrocyte and NG2 glia–NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte–NG2 glia or NG2 glia–NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Alzheimer's disease (AD) is the most common progressive dementia and is pathologically characterized by brain deposition of amyloid‐β (Aβ) peptide as senile plaques. Inflammatory and immune response pathways are chronically activated in AD patient brains at low levels, and likely play a role in disease progression. Like microglia, activated astrocytes produce numerous acute‐phase reactants and proinflammatory molecules in the AD brain. One such molecule, S100B, is highly expressed by reactive astrocytes in close vicinity of β‐amyloid deposits. We have previously shown that augmented and prolonged activation of astrocytes has a detrimental impact on neuronal survival. Furthermore, we have implicated astrocyte‐derived S100B as a candidate molecule responsible for this deleterious effect. To evaluate a putative relationship between S100B and AD pathogenesis, we crossed transgenic mice overexpressing human S100B (TghuS100B mice) with the Tg2576 mouse model of AD, and examined AD‐like pathology. Brain parenchymal and cerebral vascular β‐amyloid deposits and Aβ levels were increased in bigenic Tg2576‐huS100B mice. These effects were associated with increased cleavage of the β‐C‐terminal fragment of amyloid precursor protein (APP), elevation of the N‐terminal APP cleavage product (soluble APPβ), and activation of β‐site APP cleaving enzyme 1. In addition, double transgenic mice showed augmented reactive astrocytosis and microgliosis, high levels of S100 expression, and increased levels of proinflammatory cytokines as early as 7–9 months of age. These results provide evidence that (over)‐expression of S100B acts to accelerate AD‐like pathology, and suggest that inhibiting astrocytic activation by blocking S100B biosynthesis may be a promising therapeutic strategy to delay AD progression. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号