首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Opiates and opioid peptides are known to influence the dopaminergic (DA) neurons in the midbrain. The purpose of this study was to map and quantify the density of kappa and delta opioid receptor subtypes in the retrorubral field, substantia nigra, and ventral tegmental area and related nuclei, which contain DA nuclei A8, A9, and A10, respectively. Sections through the rostral-caudal extent of the rat midbrain were stained with an antibody against tyrosine hydroxylase, as a DA cell marker, and comparable sections were processed for in vitro receptor autoradiography using the kappa-selective ligand, U-69593, and the delta-selective ligand, D-Pen2, D-Pen5-enkephalin. In general, both kappa and delta ligands exhibited low levels of specific binding in regions occupied by the midbrain DA neurons.Kappa binding (4–8 fmol/mg tissue) was high throughout the rostral-caudal extent of the substantia nigra, in rostral portions of the ventral tegmental area, and in the nucleus paranigralis; low binding occurred in the retrorubral field and central linear nucleus raphe.Delta binding (6–18 fmol/mg tissue) was high in the caudal portion of the substantia nigra pars reticulata, and in the medial terminal nucleus of the accessory optic system (a region previously shown to contain DA dendrites). The kappa and delta receptor binding is heterogeneously distributed in regions occupied by midbrain dopaminergic neurons, and several fold lower than the binding of mu opioid receptors in the same brain regions.  相似文献   

2.
The dopaminergic neurons in the midbrain of the rat are located in three cell groups: nucleus A8 cells in the retrourbal field, nucleus A9 cells in the substantia nigra, and nucleus A10 cells in the ventral tegmental area and related nuclei. The purpose of the present study was to map and quantify the midbrain dopaminergic neurons in two and three dimensions in the rat brain, using immunohistochemical staining and computer imaging techniques. The cells were identified with an antibody against tyrosine hydroxylase, and counted in six midbrain nuclei: the retrorubral field, substantia nigra pars compacta, substantia nigra pars reticulata, central linear nucleus, ventral tegmental area, and interfascicular nucleus. Outlines were traced around the perimeters of the coronal tissue sections, and the locations of all immunoreactive ventral midbrain cells were mapped. On one side of the brain there are approximately 1,300 nucleus A8 cells, 10,500 nucleus A9 cells, and 10,200 nucleus A10 cells. The 2- and 3-dimensional reconstructions illustrate the region-specific density of dopaminergic neurons throughout the midbrain cell complex, and provide a visual appreciation of the location and distribution of the three dopaminergic cell groups in relation to their position in the midbrain. Information about the number and location of midbrain dopaminergic neurons will be useful in conjunction with future studies that characterize these cells more specifically, for example, in terms of their co-transmitters, and afferent and efferent projections. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The coexistence of cholecystokinin- and tyrosine hydroxylase-like immunoreactivities within neurons of the rat ventral mesencephalon was analyzed by using an indirect immunofluorescence technique for the simultaneous demonstration of two antigens in the same tissue section. A high degree of colocalization was observed in the substantia nigra pars compacta, in which 80-90% of all labeled neurons at rostral and up to 70% at intermediate levels contained both cholecystokinin and tyrosine hydroxylase. At caudal levels, the incidence of colocalization declined to approximately 30-50%. All of the immunoreactive perikarya in the substantia nigra pars lateralis were labeled with both substances. Other areas of the ventral midbrain that exhibited a moderate proportion of neurons immunoreactive for both cholecystokinin and tyrosine hydroxylase included the ventral tegmental area, interfascicular nucleus, and rostral and caudal linear nuclei. In addition, coexistence was occasionally observed within neurons of the central and ventral periaqueductal gray matter, supramammillary region, peripeduncular region, retrorubral field, and extremely rarely, within the substantia nigra pars reticulata. Cell bodies containing tyrosine hydroxylase-like immunoreactivity (indicative of dopamine) usually outnumbered those containing the peptide except in the supramammillary region and in the ventral periaqueductal gray matter, where the cholecystokinin perikarya were present in higher numbers. The double-labeling colocalization technique was combined with fluorescence retrograde tracing to determine some of the forebrain projections of these neurons. Ventral midbrain neurons containing both cholecystokinin and tyrosine hydroxylase were found to project to the caudate-putamen, nucleus-accumbens, prefrontal cortex, and amygdala. These projections originated from neurons located predominantly in the substantia nigra pars compacta and the ventral tegmental area. Thus, cholecystokinin occurs within the well-known dopaminergic nigrostriatal pathway in the rat. Overall, these results demonstrate that a significant proportion of the dopamine neurons giving rise to the ascending mesotelencephalic projections also contain the peptide cholecystokinin.  相似文献   

4.
Neurotensin-like immunoreactivity (NT-LI) was demonstrated in projection neurons of the striatum and nucleus accumbens in the cat by combining immunohistochemistry and the fluorescent retrograde neuronal labeling method. In colchicine-treated cats, many neurons with NT-LI were found in the caudate nucleus, nucleus accumbens, and putamen. Most of these neurons were medium-sized neurons with spiny dendrites. NT-LI of neuronal elements in the caudate nucleus and nucleus accumbens formed dense aggregates with irregular figures, which appeared to correspond to the striosomes of Graybiel et al. (Proc. Natl. Acad. Sci. USA 75:5723-5726, '78; Exp. Brain Res. 34:189-195, '79; Neuroscience 6:377-397, '81). Fibers with NT-LI were distributed massively to the globus pallidus and ventral midbrain regions, but not to the entopeduncular nucleus. In the ventral midbrain regions, many fine varicose fibers with NT-LI were distributed to the pars compacta and pars lateralis of the substantia nigra, ventral tegmental area, and retrorubral area. In the pars reticulata of the substantia nigra, however, fibers with NT-LI were rather sparse. Examination of consecutive sections immunostained for NT, enkephalin (Enk), GABA, and substance P (SP) revealed that 50% of neurons with NT-LI in the caudate nucleus and nucleus accumbens exhibited Enk-LI, 15% showed GABA-LI, and 5% manifested both Enk-LI and GABA-LI; no NT-positive neurons in the striatum and nucleus accumbens showed SP-LI. No morphological differences were found between NT-positive neurons with Enk-LI and/or GABA-LI and those without Enk-LI and GABA-LI. Most neurons with NT-LI in the striatum and nucleus accumbens were retrogradely labeled with True Blue injected into the globus pallidus, pars compacta and pars lateralis of the substantia nigra, and ventral tegmental area. After hemitransection severing neuronal connections between the ventral midbrain regions and the forebrain structures, fibers with NT-LI and those with Enk-LI in the ventral midbrain regions were markedly reduced in number.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
The distribution and morphological characteristics of dopamine (DA) neurons in the midbrain of the squirrel monkey (Saimiri sciureus) were investigated by peroxidase-antiperoxidase (PAP) immunohistochemistry with a highly specific antiserum raised against DA-glutaraldehyde-lysyl-protein conjugate (donated by M. Geffard). Four contiguous areas contained DA-immunostained nerve cell bodies: (1) the substantia nigra, pars compacta (SNc), (2) the ventral tegmental area (VTA), (3) the retrorubral area (RRA), and (4) the periaqueductal gray (PAG). The SNc composed the vast majority of DA-immunostained neurons. Most of these neurons were relatively large (mean diameters: 35 x 15 micron) and varied in shape from fusiform to polygonal, but a few smaller (16 x 10.5 micron) globular cells were dispersed among them. The caudal two-thirds of the SNc was particularly rich in DA somata. Rostrally, these DA cells formed several distinct columns impinging deeply upon the underlying pars reticulata. Large oval sectors mostly devoid of immunoreactivity were delineated by these trabeculae. The long dendritic processes of DA neurons in the SNc were generally oriented in prominent dorsoventral bundles the ventralmost portion of which arborized diffusely along the dorsal surface of the cerebral peduncle. In the VTA, the DA neurons were regrouped in a triangular zone located dorsal to the interpeduncular nucleus, medial to the substantia nigra and ventral to the oculomotor nucleus. These DA cells were of medium size (19 x 10.5 micron), globular or fusiform, and usually showed one or two thick primary dendrites oriented dorsoventrally. The DA cells in the RRA lay in continuity with the most caudal DA-containing elements of the substantia nigra but could be distinguished by their smaller size (26 x 12 micron), shorter and more profusely branched dendrites, and darker immunostaining. These DA neurons were characteristically scattered among and medial to the fibers of the medial lemniscus, and a few could be observed as far caudally as the pedunculopontine nucleus. In the PAG, DA-immunostained neurons were seen in the rostral half of the mesencephalic central gray and predominated in its ventral half. These cells were of medium size (22.5 x 10 micron) and some of them were found in proximity to the ventricular lining. At caudal levels, the DA-positive cells in the PAG did not intermingle with dorsal raphe neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The relationship in the human substantia nigra of peptidergic fibers with intrinsic dopaminergic neurons was studied in adjacent coronal sections of the mesencephalon immunohistochemically stained for enkephalin (ENK), substance P (SP), and tyrosine (TH) hydroxylase immunoreactivity. TH-positive elements are present in the substantia nigra in at least two different arrangements: 1) a dorsal tier of rather loosely arranged neurons, which is continuous medially with the ventral tegmental area and laterally with the retrorubral area, 2) a ventral tier of more closely packed neurons, clusters of which frequently form finger-like extensions deep into the pars reticulata. This ventral region contains TH-positive dendrites extending ventrally into the pars reticulata. The distribution of ENK is mainly restricted to the medial half of the ventral aspect of the substantia nigra, while SP occupies its entire rostral-caudal and medial-lateral extents. Peptide-positive fibers vary in density from dense to light. There is very little overlap between the dorsal tier of the TH-positive neurons and the ENK or SP staining. The dorsal part of the peptide-immunoreactive area extensively overlaps with the TH-positive neurons of the ventral tier of cells. The ventral part of the peptide-positive area overlaps with the pars reticulata of the substantia nigra in which the TH-positive dendrites extend. The overlap between the neuropeptide fibers and the TH-positive cells of the ventral tier is not complete, with cells found both within and outside peptide-positive fiber networks. Three patterns of overlap emerge. In dorsal regions elongated cell clusters lie partially within and partially outside the dense peptide-positive fiber networks. In the ventral regions TH-positive cells are either completely embedded within peptide fibers or clusters of cells are present in peptide-free zones. These data suggest that specific peptidergic pathways differentially innervate the substantia nigra. TH cells which lie within or outside these fibers may reflect functionally different subsystems in the striatonigral pathways in the human.  相似文献   

8.
The distribution of cell bodies expressing either calbindin D-28k or parvalbumin immunoreactivity in the basal forebrain and midbrain of squirrel monkeys (Saimiri sciureus) was studied on contiguous sections incubated with monoclonal antibodies raised against calbindin or parvalbumin. In the nucleus accumbens, medium-sized calbindin-positive neurons formed two cell bridges joining the ventral part of the striatum to the olfactory tubercle, whereas medium-sized parvalbumin-positive cells in the same area were much less numerous and more uniformly distributed. The medial and dorsal septal nuclei contained a small number of elongated calbindin-positive neurons and only a few parvalbumin-immunoreactive cells. In the nucleus of the diagonal band of Broca, calbindin and parvalbumin were found to label two distinct but closely intermingled neuronal populations. In the striatum, medium-sized calbindin-immunoreactive cells occurred in very large numbers and appeared to be confined to the extrastriosomal matrix. Medium-sized, parvalbumin-immunoreactive neurons were also present in the striatum but they were less numerous than the calbindin-positive cells. The calbindin-positive neurons in the dorsal portion of the striatum were less intensely stained than those in the ventral portion, whereas this pattern did not occur for neurons expressing parvalbumin immunoreactivity. At the pallidal level, neurons in both segments were devoid of calbindin but displayed a very strong parvalbumin immunoreactivity. Most of the large neurons of the nucleus basalis of Meynert were strongly calbindin-immunoreactive and many of them invaded dorsally the medullary laminae of the pallidal complex. The neurons of the subthalamic nucleus were markedly enriched with parvalbumin but displayed only light calbindin staining. In the substantia nigra/ventral tegmental area complex, calbindin-immunoreactive cells abounded in the ventral tegmental area and in the dorsal tier of the pars compacta of the substantia nigra, but were absent in the ventral tier of the pars compacta and in the entire pars reticulata of the substantia nigra. In contrast, numerous parvalbumin-immunoreactive neurons occurred in the pars reticulata and pars lateralis, but none were found in the pars compacta and ventral tegmental area. These findings reveal that the patterns of calbindin and parvalbumin distribution in primate basal forebrain and midbrain are strikingly complementary, suggesting a synergistic role for these calcium-binding proteins in basal forebrain and midbrain function.  相似文献   

9.
A topographic mapping of dopamine (DA)-containing neurons and fibers was done mainly in the mesencephalon of the dog using the fluorescent histochemical technique of Falck and Hillarp. The extensive DA neuron system was found to be located in the ventral and medial regions of the mesencephalon; the pars compacta of the substantia nigra, the area almost corresponding to the ventral tegmental area of Tsai (hich consists of three groups, a caudal, the nucleus parabrachialis pigmentosus, a ventral, the nucleus paranigralis and a rostral, the caudal part of the nucleus tegmentalis gventralis of Tsai), the nucleus linearis of the raphe, and the mesencephalic reticular formation. The nigro-neostriatal projection can be traced in the non-treated or nialamide plus L-dopa treated puppies without the lesion-degeneration technique. Most fibers arising from these DA cell groups assemble at the prerubral area and ascend just dorsal to the medial forebrain bundle. Most fibers turn laterally at the lateral hypothalamus and enter the neostriatum via the dorsal part of the subthalamic nucleus, the zona incerta and the capsula interna. These findings show that the distribution of DA neurons and the nigro-neostriatal pathway are fundamentally similar to those in other mammals. In this study, the processes of the nigral and paranigral DA neurons have been demonstrated to project into the pars reticulata in the dog.  相似文献   

10.
Several lines of anatomical, biochemical, and pharmacological evidence have suggested that specific high affinity neurotensin binding sites are associated with dopamine-containing neurons in the rat ventral tegmentum. In the present study we confirmed and quantified the extent of this association by combining monoiodinated neurotensin radioautography and tyrosine hydroxylase immunohistochemistry on adjacent 5-10 microns-thick midbrain sections. We found that 95-100% tyrosine hydroxylase-immunoreactive neurons detected in all subdivisions of the substantia nigra (pars compacta, pars lateralis, and pars reticulata) exhibited intense 125I-neurotensin labeling in adjacent light microscopic radioautographs. Tyrosine hydroxylase-positive dendrites radiating downward from compacta neurons were also heavily labeled throughout the pars reticulata. In the paranigral subdivision of the ventral tegmental area, silver grains were evenly distributed over neuropil and perikarya and therefore could not be readily attributed to any given tyrosine hydroxylase-positive element. In contrast, within the parabrachial pigmentous subdivision of the ventral tegmental area, 80-90% of the tyrosine hydroxylase-immunoreactive somata and proximal processes were clearly in register with 125I-neurotensin labeled cells. Finally, all tightly packed TH-positive neurons in the interfascicular nucleus showed intense 125I-neurotensin labeling. The vast majority of the neurotensin binding sites observed in the ventral midbrain tegmentum were of the high affinity, physiologically active receptor type since levocabastine, a selective blocker of the low affinity neurotensin binding component, had minimal effect on the binding density in any of the midbrain regions examined. The present results demonstrate an extensive overlap between specific, high affinity neurotensin binding sites and dopamine perikarya and dendrites in the rat ventral tegmentum, and thereby provide a direct anatomical substrate for observed neurotensin-dopamine interactions in the mesocorticolimbic and nigrostriatal projection systems.  相似文献   

11.
Using a retrograde axonal transport method, direct projections to the neostriatum were demonstrated from the dorsal raphe nucleus, a large area of the ventral midbrain tegmentum (including the ventral tegmental area of Tsai, the substantia nigra pars compacta, reticulata and suboculomotoria), and the tegmentum ventral to the caudal red nucleus. A direct projection was also found from the mediodorsal part of the substantia nigra to the rostral part of the dorsal raphe nucleus. Projections from the entopeduncular nucleus (pallidum) and the lateral hypothalamic area to the lateral habenular nucleus, and from the latter to the dorsal raphe nucleus were also found. This habenular projection arises primarily from large neurons in the medial part of the lateral habenula and also from another group of small cells immediately adjacent to the medial habenular nucleus. A non-reciprocal connection of the dorsal raphe nucleus to the locus coeruleus was also found. On the basis of these results and the data available in the literature on the possible neurotransmitters used by these various structures, it is suggested that the dorsal raphe nucleus may play an important role in brain stem modulation of neostriatal function.  相似文献   

12.
In previous studies of our group, we have reported differential alterations in opioidergic receptor subtypes densities in infarcted and periinfarcted brain tissue following middle cerebral artery occlusion (MCAO) in mice. Other studies have also described subcortical alterations consecutive to focal cortical ischemia. For a better understanding of ischemic processes in exofocal areas, we have investigated the evolution of opioidergic receptors following focal cortical ischemia through the quantification of relative binding densities, B(max) and K(d) values for the mu, delta, and kappa subtypes. Our results demonstrate that opioid receptor subtypes exhibit adaptations at distance from the ischemic core, mainly in the striatum, the thalamus, and the substantia nigra. Indeed, mu and delta B(max) values were increased in ventral thalamic nuclei, while kappa relative binding densities were transiently increased in nucleus medialis dorsalis and nucleus lateralis, pars posterior. Moreover, the B(max) of mu and delta receptors were transiently decreased at 6 h post-MCAO in ipsi- and contralateral patches and matrices of the striatum. Conversely, the mu B(max) values were increased in ipsi- and contralateral substantia nigra, pars compacta, and pars reticulata, 24 h following MCAO. In contralateral substantia nigra, pars compacta, kappa B(max) was found to be decreased at 24 h post-MCAO. These alterations could reflect neuronal dysfunction in exofocal brain structures, consecutively to the degeneration of defined neuroanatomical pathways. Our study indicates that opioidergic receptors could be used as markers of the neuronal reorganization that take place in subcortical areas following an ischemic insult of the brain cortex.  相似文献   

13.
The dopaminergic (DA) neurons in the midbrain play a role in cognition, affect and movement. The purpose of the present study was to map and quantify the number of DA neurons in the midbrain, within the nuclei that constitute cell groups A8, A9 and A10, in the mouse. Two strains of mice were used; the C57BL/6 strain was chosen because it is commonly used in neurobiological studies, and the FVB/N strain was chosen because it is used frequently in transgenic studies. DA neurons were identified, in every fifth 20-μm-thick coronal section, using an antibody against tyrosine hydroxylase. Cell locations were entered into a computer imaging system. The FVB/N strain has 42% more midbrain DA neurons than the C57BL/6 strain; on one side of the brain there were 15,135 ± 356 neurons (mean ± S.E.M.) in the FVB/N strain, and 10,645 ± 315 neurons in the C57BL/6 strain. In both strains, approximately 11% of the neurons were located in nucleus A8 (the DA neurons in the retrorubral field), 38% in nucleus A9 (the DA neurons in the substantia nigra pars compacta, pars reticulata, and pars lateralis), and 51% in nucleus A10 (the DA neurons in midline regions such as the ventral tegmental area, central linear nucleus, and interfascicular nucleus). The number of midbrain DA cells, and their distribution within the three nuclear groups, is discussed with respect to findings in other species. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The purpose of the present study was to analyze the distribution of cholecystokininlike-immunoreactive (CCK-I) neurons within the rat ventral mesencephalon which project to several forebrain areas. The peroxidase-antiperoxidase immunocytochemical technique was used to examine the anatomical localization of CCK-I within the ventral midbrain and in the following forebrain regions: caudate-putamen, nucleus accumbens, olfactory tubercle, bed nucleus of the stria terminalis, septum, amygdala, and prefrontal, anterior cingulate, and piriform cortices. CCK-I perikarya were distributed throughout the substantia nigra, ventral tegmental area, and several midline raphe nuclei to a greater extent than previously reported, particularly in the substantia nigra pars compacta. Terminallike immunoreactivity for CCK was observed in all of the above forebrain sites. In addition, infrequent CCK-I cell bodies were localized in the caudate-putamen, nucleus accumbens, olfactory tubercle, septum, and bed nucleus of the stria terminalis. To analyze forebrain projections of the ventral midbrain CCK-I neurons, indirect immunofluorescence was combined with fluorescence retrograde tracing. CCK-I neurons of the substantia nigra and/or ventral tegmental area were found to project, to varying extents, to all of the above CCK-I forebrain terminal fields. The nucleus accumbens, olfactory tubercle, and septal and prefrontal cortical projections arose primarily from CCK-I perikarya in the ventral tegmental area whereas the projections to the caudate-putamen and anterior cingulate cortex arose predominantly from immunoreactive neurons in the substantia nigra pars compacta. The amygdala received innervation mainly from CCK-I cell bodies located in the substantia nigra pars lateralis. CCK-I afferents to the bed nucleus of the stria terminalis and piriform cortex originated from perikarya distributed approximately equally across the ventral tegmental area and substantia nigra pars compacta. The general topography of CCK-I forebrain innervation observed in this study is similar to that previously reported for the ascending dopaminergic projections from ventral mesencephalic neurons. CCK-I neurons of the midline raphe nuclei were found to provide relatively minor afferents to the caudate-putamen, bed nucleus of the stria terminalis, septum, and prefrontal cortex and more substantial projections to the amygdala. The results of this study demonstrate that CCK-I neurons of the ventral midbrain supply a much broader innervation of forebrain regions than previously appreciated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The aim of the present study was to determine whether the retrorubral nucleus projects to the dopaminergic nuclei in the ventral midbrain of the cat. For this purpose, injections of biotinylated dextran-amine or Phaseolus vulgaris-leucoagglutinin were placed into the retrorubral nucleus under stereotaxic guidance. The tracers were visualized by means of (immuno) histochemical procedures. In addition, tyrosine hydroxylase immunohistochemistry was used to evaluate the location of the injection sites and the distribution of the anterogradely labeled fibers. Both tracers reveal the same topography of labeled fibers in the ventral mesencephalon. Labeled fibers with varicosities were found ipsilaterally in the substantia nigra pars compacta, the substantia nigra pars lateralis, the ventral tegmental area and, contralaterally, in the substantia nigra pars compacta, the ventral tegmental area, and the retrorubral nucleus. A considerable number of labeled axons with varicosities were observed to be wrapped around the dendrites and perikarya of tyrosine hydroxylase-positive neurons in these areas. The present results are discussed in view of the possible role of the A8 dopaminergic cell group in the coordination of A9 nigrostriatal and A10 mesolimbic systems, as well as in the progressive pathology seen in patients suffering from Parkinson's disease.  相似文献   

16.
The projection from the central nucleus of the amygdala to the substantia nigra was labeled by injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into different subregions of the nucleus. A sparse projection of labeled bouton-like swellings was observed in the rostral, medial substantia nigra pars compacta and ventral tegmental area from all subregions of the central nucleus of the amygdala that were injected. A dense projection of labeled axons and bouton-like swellings was observed in the lateral part of the substantia nigra pars compacta and pars lateralis when the injection site included the dorsal and rostral central nucleus. Heavy labeling was also seen in the lateral retrorubral field in these cases. In no instances were labeled terminals observed in the substantia nigra pars reticulata. The same pattern of labeling in the lateral substantia nigra and retrorubral field was seen after injections rostral to the central nucleus or dorsal and medial to it in the sublenticular region. The results suggest that the amygdalonigral pathway contributes to the innervation of extensive areas of the substantia nigra pars compacta. The major component of the pathway, however, projects only to a subregion of the substantia nigra. The origin of this pathway is confined to a discrete region of the dorsal central nucleus of the amygdala but extends rostrally into an area that is part of the "extended amygdala."  相似文献   

17.
It has been reported that systemic administration of the D1 dopamine (DA) receptor agonist SKF 38393 inhibits the firing rate of substantia nigra pars compacta (SNC, A9) DA neurons after repeated reserpine treatment in locally anesthetized rats, although SKF 38393 induces little effect on the firing of midbrain DA neurons in normal rats. The present study found that local pressure microejection of SKF 38393 (10−2 M, 20–100 nl) to SNC or substantia nigra pars reticulata (SNR) failed to influence the firing of SNC DA neurons in reserpinized rats (reserpine 1 mg/kg × 6 days, s.c.); subsequent intravenous (i.v.) injection of SKF 38393 (4 mg/kg), however, inhibited their firing and the inhibition was reversed by the D1 receptor antagonist SCH 23390. Similarly, systemic administration of SKF 38393 (4 mg/kg, i.v.) inhibited the firing of ventral tegmental area (VTA, A10) DA cells in reserpinized rats, while local microejection of SKF 38393 (10−2 M, 30–60 nl) did not affect their firing. Furthermore, the inhibitory effect of systemic SKF 38393 on firing rate of either SNC or VTA DA neurons in reserpinized rats was eliminated after hemitransection of diencephalon. These results suggest that repeated reserpine treatment renders midbrain DA neurons responsive to D1 receptor stimulation and that D1 receptor agonist-induced inhibition of midbrain DA cell firing in reserpinized rats may require the involvement of long-loop feedback pathways. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The ventral striatum is characterized by an intricate neurochemical compartmentation that is reflected in the distribution of most of its afferent fiber systems. In the present study, the compartmental relationships of ventral striatal neurons projecting to the mesencephalon were studied by combining tract tracing with the immunohistochemical localization of leu-enkephalin. Injections of the retrograde tracer cholera toxin subunit B were placed at various sites in the ventral mesencephalon. The anterograde tracer Phaseolus vulgaris leucoagglutinin was injected in single compartments in the rostrolateral part of the nucleus accumbens. The projections from the ventral striatum to the dopaminergic cell groups in the ventral mesencephalon and those to the substantia nigra pars reticulata originate from distinct subpopulations of ventral striatal neurons that respect neurochemically defined compartmental boundaries. In the "shell" of the nucleus accumbens, neurons that project to the dopaminergic cell groups are located outside areas of high cell density and weak enkephalin immunoreactivity (ENK-IR). Rostrolaterally in the "core" of the nucleus accumbens, neurons inside large areas of strong ENK-IR surrounding the anterior commissure project to the dorsomedial part of the substantia nigra pars reticulata, whereas neurons outside these areas innervate the ventral tegmental area and/or the medial part of the substantia nigra pars compacta. By contrast, more caudally in the dorsal part of the nucleus accumbens and in the ventral part of the caudate-putamen, the relationships are reversed: neurons in- or outside small patches of strong ENK-IR project respectively to the pars compacta or the pars reticulata of the substantia nigra. Since the thalamic and cortical afferents of the ventral striatum are compartmentally ordered as well, the present results imply that through the ventral striatal compartments information from disparate combinations of cortical and thalamic sources may be conveyed to distinct mesencephalic targets. The component of the ventral striatomesencephalic system reaching the dopaminergic cell groups A10, A9, and A8 may modulate the dopaminergic input to virtually the entire striatum. The other component can, by way of the pars reticulata of the substantia nigra, participate in nigrothalamic and nigrotectal output pathways of the basal ganglia.  相似文献   

19.
Using 32P-labeled oligonucleotides derived from the coding region of human dopamine D1 receptor mRNA we have localized in the human and rat brain the cells containing the mRNAs coding for this receptor. Dopamine D1 receptor mRNA in human brain was found to be contained in the neurons of the caudate and putamen nuclei as well as in the nucleus accumbens, some cortical regions and some nuclei of the amygdala. In the rat brain, cells containing D1 receptor mRNA were enriched in caudate-putamen and accumbens nuclei, olfactory tubercle, islands of Calleja, some cortical areas and in several thalamic nuclei. Moreover, in both species, it was absent from the neurons of the substantia nigra both pars compacta and pars reticulata and ventral tegmental area as well as from the globus pallidus pars lateralis and medialis in human and globus pallidus and entopeduncular nucleus in rat. In general, a good agreement was found with the distribution of binding sites labeled with the D1 antagonist SCH 23390. The main exception was the absence of D1 receptor mRNA in globus pallidus and substantia nigra, regions where high densities of receptor sites are found. These data support the notion that sites in these two regions are localized to projections from striatal neurons and that dopaminergic neurons do not express this receptor.  相似文献   

20.
The excitatory amino acid, glutamate, has long been thought to be a transmitter that plays a major role in the control of the firing pattern of midbrain dopaminergic neurons. The present study was aimed at elucidating the anatomical substrate that underlies the functional interaction between glutamatergic afferents and midbrain dopaminergic neurons in the squirrel monkey. To do this, we combined preembedding immunocytochemistry for tyrosine hydroxylase and calbindin D-28k with postembedding immunostaining for glutamate. On the basis of their ultrastructural features, three types (so-called types I, II, and III) of glutamate-enriched terminals were found to form asymmetric synapses with dendrites and perikarya of midbrain dopaminergic neurons. The type I terminals accounted for more than 70% of the total population of glutamate-enriched boutons in contact with dopaminergic cells in the dorsal and ventral tiers of the substantia nigra pars compacta as well as in the ventral tegmental area, whereas 5–20% of the glutamatergic synapses with dopaminergic neurons involved the two other types of terminals. The major finding of our study is that the glutamate-enriched boutons were involved in 70% of the axodendritic synapses in the ventral tegmental area. In contrast, less than 40% of the boutons in contact with dopaminergic dendrites were immunoreactive for glutamate in the dorsal and ventral tiers of the substantia nigra pars compacta. Approximately 50% of the terminals in contact with the perikarya of the different populations of midbrain dopaminergic neurons displayed glutamate immunoreactivity. In conclusion, our findings provide the first evidence that glutamate-enriched terminals form synapses with midbrain dopaminergic neurons in primates. The fact that the proportion of glutamatergic boutons in contact with dopaminergic cells is higher in the ventral tegmental area than in the substantia nigra pars compacta suggests that the different groups of midbrain dopaminergic neurons are modulated differently by extrinsic glutamatergic afferents in primates. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号