首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prostaglandins (PG) have a regulatory influence on ovulation. α-Linolenic acid (ALA) vs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently influence PG biosynthesis. Whereas high EPA/DHA reduces PGE2, enhancing ovulation, we hypothesized that ALA would not affect ovulation. Our objective was to determine the effect of low and high ALA intake vs EPA/DHA on ovarian phospholipids, ovulation, and PG synthesis in rats. Following 27 days on diet and ovulation induction, ovaries were isolated and analyzed in 22 pups per diet. Ovarian phospholipid (n-3) polyunsaturated fatty acid (PUFA) incorporation increased with EPA/DHA ingestion. With significant ovarian (n-3) PUFA or EPA (P < .05) enrichment in the high–n-3 PUFA diets, ova release increased. Although high ALA did not enrich total (n-3), it increased ova release and tissue EPA over low ALA or control. Dietary EPA/DHA more effectively reduced ovarian arachidonic acid levels than dietary ALA. Dietary ALA increased PGF and very high intake reduced PGE, whereas EPA/DHA did not alter PGE or PGF. Enhanced ova release with high (n-3) PUFA intake may be induced via multiple mechanisms including reduced ovarian arachidonic acid. Significant ovarian retention of EPA and DHA enhanced ovulation with unchanged total PGE and PGF. Lack of change in PGE may have resulted from reduced PGE2 combined with increased PGE3. When EPA alone was elevated, PGE was reduced, whereas PGF was increased. Results indicate that very high ALA intake enhances ovulation similar to very high EPA/DHA ingestion, an effect potentially mediated via similar patterns of PGF2α and PGE2 synthesis.  相似文献   

2.
To examine the incorporation of n-3 polyunsaturated fatty acids (PUFAs) into erythrocyte membranes during and after moderate n-3 PUFA intake, 12 healthy men were fed three diets for 6-wk periods in a 3 x 3 crossover design, supplying different amounts of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3): a control diet, a fish diet (0.15 g EPA/d, 0.41 g DHA/d), and a fish + oil diet (5 g fish oil/d; 0.99 g EPA/d and 0.99 g DHA/d). A 6-wk washout period was allowed between diets. Between 6 and 12 wk after the fish + oil diet, erythrocyte EPA and DHA were still declining and it was only after 18 wk that erythrocyte EPA had returned to baseline whereas DHA had not. Investigators examining variables that are influenced by altered membrane fatty acid composition should be aware of these prolonged effects when designing studies. Protracted washout periods (greater than 18 wk) make the classic crossover design prohibitive and a parallel design becomes essential.  相似文献   

3.
BACKGROUND: Dietary alpha-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. OBJECTIVE: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. DESIGN: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. RESULTS: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/- SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma alpha-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. CONCLUSION: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.  相似文献   

4.
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.  相似文献   

5.
The role of n-3 polyunsaturated fatty acids (PUFAs) in psychiatric illness is a topic of public health importance. This report describes development and biomarker validation of a 21-item, self-report food frequency questionnaire (FFQ) intended for use in psychiatric research to assess intake of α-linolenic acid (18:3n-3 [ALA]), docosahexaenoic acid (22:6n-3 [DHA]), and eicosapentaenoic acid (20:5n-3 [EPA]). In a cross-sectional study conducted from September 2006 to September 2008, sixty-one ethnically diverse adult participants with (n=34) and without (n=27) major depressive disorder completed this n-3 PUFA FFQ and provided a plasma sample. Plasma levels of n-3 PUFAs EPA and DHA, and n-6 PUFA arachidonic acid (20:4n-6 [AA]) were quantified by gas chromatography. Using Spearman's ρ, FFQ-estimated intake correlated with plasma levels of DHA (r=0.50; P<0.0001) and EPA (r=0.38; P=0.002), but not with ALA levels (r=0.22; P=0.086). Participants were classified into quartiles by FFQ-estimated intake and plasma PUFA concentrations. Efficacy of the FFQ to rank individuals into same or adjacent plasma quartiles was 83% for DHA, 78.1% for EPA, and 70.6% for ALA; misclassification into extreme quartiles was 4.9% for DHA, 6.5% for EPA, and 8.2% for ALA. FFQ-estimated EPA intake and plasma EPA were superior to plasma AA levels as predictors of the plasma AA to EPA ratio. This brief FFQ can provide researchers and clinicians with valuable information concerning dietary intake of DHA and EPA.  相似文献   

6.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC), cholesteryl ester (CE) and triglyceride (TAG) and for blood mononuclear cells (MNC), red blood cells (RBC) and platelets (PLAT). Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA) in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%–64% of placebo in the four portions group). We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.  相似文献   

7.
Dietary fatty acids (FA) are increasingly recognized as major biologic regulators and have properties that relate to health outcomes and disease. The longer chain, more bioactive (n-6) (or omega-6) FA and (n-3) (or omega-3) FA share similar elongation and desaturation enzymes in their conversion from the essential (n-6) FA, linoleic acid, and (n-3) FA, α-linolenic acid (ALA). Conversion from these essential FA is very inefficient. However, now for the (n-3) FA series, soy oil can be enriched with (n-3) stearidonic acid (SDA) to allow for much more efficient conversion to longer chain EPA. EPA and the longer chain DHA possess distinct physical and biological properties that generally impart properties to cells and tissue, which underlie their ability to promote health and prevent disease. Although active in a number of areas of human biology, mechanisms of action of EPA and DHA are perhaps best defined in cardiovascular disease. There is concern that to reach the intake recommendations of EPA and DHA, their supply from cold water fish will be insufficient. Gaps in understanding mechanisms of action of (n-3) FA in a number of health and disease areas as well as optimal sources and intake levels for each need to be defined by further research. Because of the inefficient conversion of ALA, the appearance of SDA in enriched soy oil offers a biologically effective and cost effective approach to providing a sustainable plant source for (n-3) FA in the future.  相似文献   

8.
Low tissue levels of (n-3) PUFA, particularly docosahexaenoic acid [DHA, 22:6(n-3)], are implicated in postpartum depression. Brain DHA content is depleted in female rats undergoing pregnancy and lactation when the diet supplies inadequate (n-3) PUFA. In this study, the effects of DHA depletion as a result of reproductive activity and an (n-3) PUFA-deficient diet were examined in 8 specific brain regions of female rats after undergoing 2 sequential reproductive cycles. Virgin females, fed the alpha-linolenic acid (ALA)-containing or deficient (low-ALA) diets for a commensurate duration (13 wk) served as a control for reproduction. Total phospholipid composition of each brain region was determined at weaning (postnatal d 21) by TLC/GC. The regional PUFA composition of ALA virgins was similar to that previously measured in male rats. All brain regions examined were affected by reproductive activity and/or the low-ALA diet; however, the magnitude of the loss of DHA and compensatory incorporation of docosapentaenoic acid [(n-6) DPA, 22:5(n-6)] varied among brain regions. In low-ALA parous dams, frontal cortex (77% of ALA virgin) and temporal lobe (83% of ALA virgin), regions involved in cognition and affect, were among those exhibiting the greatest depletion of DHA. Caudate-putamen also exhibited significant depletion of DHA (82% of ALA virgin), whereas only (n-6) DPA levels were altered in ventral striatum, hypothalamus, hippocampus, and cerebellum. This pattern of changes in regional DHA and (n-6) DPA content suggests that specific neuronal systems may be differentially affected by depletion of brain DHA in the postpartum organism.  相似文献   

9.
Prostaglandins (PGs) play a key role in the regulation of ovulation. Typically, ingestion of the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) has been found to decrease, whereas arachidonic acid (ARA) increases PG biosynthesis in most systems. We hypothesized that DHA and EPA would decrease ovarian PGE2, enhancing ovulation, with combined EPA and DHA having the greatest effect, whereas ARA would increase PGE2, suppressing ovulation. Our objective was to determine how 0.3-g/100-g diet DHA and EPA alone or combined, or ARA would affect tissue composition, ovulation, and PG synthesis in rats. After 27 days on diet and ovulation induction, ovaries were isolated and analyzed from 22 pups per diet. Eicosapentaenoic acid alone reduced ovarian n-6 PUFA attributable to reduced ARA incorporation. Arachidonic acid ingestion reduced and EPA enhanced ovarian n-3 PUFA to levels above what was seen with DHA or DHA/EPA combinations. Docosahexaenoic acid alone increased total PGE 1.5-fold over control, whereas neither differed from the remaining treatments. Increased total PGE with DHA was attributable to elevated PGE3 with PGE2 unchanged by diet, and PGE3 only increased with DHA ingestion alone. Total PGF differed from control with the highest DHA intake, alone or combined with EPA, or with ARA ingestion (P < .05). Increased PGF with DHA was attributable to increased PGF. Experimental diets did not alter ovulation from control. Results indicate that DHA and EPA consumption at human achievable doses differently alters ovarian phospholipids and PGs associated with ovulation with potential for significant 3-series PG without significantly perturbing ovulation.  相似文献   

10.

Purpose

To study, in high-fructose-fed rats, the effect of a dietary enrichment in omega-3 polyunsaturated fatty acids (n-3 PUFA) on the expression of genes involved in lipid metabolism and cardiovascular function.

Methods

Twenty-eight male “Wistar Han” rats received for 8 weeks, either a standard chow food or an isocaloric 67 % fructose diet enriched or not in alpha-linolenic acid (ALA) or in docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) mix (DHA/EPA). After sacrifice, blood was withdrawn for biochemical analyses; heart, periepididymal adipose tissue and liver were collected and analyzed for the expression of 22 genes by real-time PCR.

Results

Fructose intake resulted in an increase in liver weight and triglyceride content, plasma triglyceride and cholesterol concentrations, although no difference in glucose and insulin. In the liver, lipogenesis was promoted as illustrated by an increase in stearoyl-CoA desaturase and fatty acid synthase (Fasn) together with a decrease in PPAR gamma, delta and PPAR gamma coactivator 1 alpha (PGC1 alpha) expression. In the heart, Fasn and PPAR delta expression were increased. The addition of ALA or DHA/EPA into the diet resulted in a protection against fructose effects except for the decreased expression of PPARs in the liver that was not counterbalanced by n-3 PUFA suggesting that n-3 PUFA and fructose act independently on the expression of PPARs and PGC1 alpha.

Conclusions

In liver, but not in heart, the fructose-enriched diet induces an early tissue-specific reduction in PPAR gamma and delta expression, which is insensitive to n-3 PUFA intake and dissociated from lipogenesis.  相似文献   

11.
BACKGROUND: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. OBJECTIVE: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. DESIGN: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to 1 of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. RESULTS: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. CONCLUSION: An intake of 相似文献   

12.
gamma-Linolenic acid [GLA, 18:3(n-6)], eicosapentaenoic acid [EPA, 20:5(n-3)] and docosahexaenoic acid [DHA, 22:6(n-3)] have been reported to prevent cardiovascular diseases. However, they are highly unsaturated and therefore more sensitive to oxidation damage. We investigated the effects of a diet rich in these polyunsaturated fatty acids (PUFA) on blood pressure, plasma and lipoprotein lipid concentrations, total antioxidant status, lipid peroxidation and platelet function in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Five-week-old SHR and WKY rats were fed for 10 wk either a diet containing Isio 4 oil or a diet rich in GLA, EPA and DHA (5.65, 6.39 and 4.94 g/kg dry diet, respectively). The total antioxidant status was assayed by monitoring the rate of free radical-induced hemolysis. VLDL-LDL sensitivity to copper-induced lipid peroxidation was determined as the production of thiobarbituric acid reactive substances. After dietary PUFA supplementation, a significant decrease in blood pressure of SHR rats (-20 mm Hg) was observed and the total antioxidant status was enhanced. VLDL-LDL resistance to copper-induced peroxidation was increased in both strains. The PUFA supplementation did not change platelet maximum aggregation in SHR rats, but it decreased the aggregation speed. In hypertensive rats, GLA + EPA + DHA supplementation lowers blood pressure, enhances total anti-oxidant status and resistance to lipid peroxidation, diminishes platelet aggregation speed and lowers plasma lipid concentrations. Thus, it enhances protection against cardiovascular diseases. Therefore, nutritional recommendations for cardiovascular disease prevention should take into account the pharmacologic properties of GLA, EPA and DHA.  相似文献   

13.
High linoleic acid (LA) intakes have been suggested to reduce alpha-linolenic acid [ALA, 18:3(n-3)] metabolism to eicosapentaenoic acid [EPA, 20:5(n-3)] and docosahexaenoic acid [DHA, 22:6(n-3)], and favor high arachidonic acid [ARA, 20:4(n-6)]. We used a randomized cross-over study with men (n = 22) to compare the effect of replacing vegetable oils high in LA with oils low in LA in foods, while maintaining constant ALA, for 4 wk each, on plasma (n-3) fatty acids. Nonvegetable sources of fat, except fish and seafoods, were unrestricted. We determined plasma phospholipid fatty acids at wk 0, 2, 4, 6, and 8, and triglycerides, cholesterol, serum CRP, and IL-6, and platelet aggregation at wk 0, 4, and 8. LA and ALA intakes were 3.8 +/- 0.12% and 1.0 +/- 0.05%, and 10.5 +/- 0.53% and 1.1 +/- 0.06% energy with LA:ALA ratios of 4:0 and 10:1 during the low and high LA diets, respectively. The plasma phospholipid LA was higher and EPA was lower during the high than during the low LA diet period (P < 0.001), but DHA declined over the 8-wk period (r = -0.425, P < 0.001). The plasma phospholipid ARA:EPA ratios were (mean +/- SEM) 20.7 +/- 1.52 and 12.9 +/- 1.01 after 4 wk consuming the high or low LA diets, respectively (P < 0.001); LA was inversely associated with EPA (r = -0.729, P < 0.001) but positively associated with ARA:EPA (r = 0.432, P < 0.001). LA intake did not influence ALA, ARA, DPA, DHA, or total, LDL or HDL cholesterol, CRP or IL-6, or platelet aggregation. In conclusion, high LA intakes decrease plasma phospholipid EPA and increase the ARA:EPA ratio, but do not favor higher ARA.  相似文献   

14.
α-Tocopherol is a required, lipid-soluble antioxidant that protects PUFA. We hypothesized that α-tocopherol deficiency in zebrafish compromises PUFA status. Zebrafish were fed for 1 y either an α-tocopherol-sufficient (E+; 500 mg α-tocopherol/kg) or -deficient (E-; 1.1 mg α-tocopherol/kg) diet containing α-linolenic (ALA) and linoleic (LA) acids but without arachidonic acid (ARA), EPA, or DHA. Vitamin E deficiency in zebrafish decreased by ~20% (n-6) (P < 0.05) and (n-3) (P < 0.05) PUFA and increased the (n-6):(n-3) PUFA ratio (P < 0.05). In E- compared to E+ females, long chain-PUFA status was impaired, as assessed by a ~60% lower DHA:ALA ratio (P < 0.05) and a ~50% lower ARA:LA ratio (P < 0.05). fads2 (P < 0.05) and elovl2 (P < 0.05) mRNA expression was doubled in E- compared to E+ fish. Thus, inadequate vitamin E status led to a depletion of PUFA that may be a result of either or both increased lipid peroxidation and an impaired ability to synthesize sufficient PUFA, especially (n-3) PUFA.  相似文献   

15.
Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHD). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.  相似文献   

16.
PUFA are hypothesized to influence bone health, but longitudinal studies on hip fracture risk are lacking. We examined associations between intakes of PUFA and fish, and hip fracture risk among older adults (n = 904) in the Framingham Osteoporosis Study. Participants (mean age ~75 y at baseline) were followed for incident hip fracture from the time they completed the baseline exam (1988-1989) until December 31, 2005. HR and 95% CI were estimated for energy-adjusted dietary fatty acid exposure variables [(n-3) fatty acids: α-linolenic acid (ALA), EPA, DHA, EPA+DHA; (n-6) fatty acids: linoleic acid, arachidonic acid (AA); and the (n-6):(n-3) ratio] and fish intake categories, adjusting for potential confounders and covariates. Protective associations were observed between intakes of ALA (P-trend = 0.02) and hip fracture risk in a combined sample of women and men and between intakes of AA (P-trend = 0.05) and hip fracture risk in men only. Participants in the highest quartile of ALA intake had a 54% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.46; 95% CI = 0.26-0.83). Men in the highest quartile of AA intake had an 80% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.20; 95% CI = 0.04-0.96). No significant associations were observed among intakes of EPA, DHA, EPA+DHA, or fish. These findings suggest dietary ALA may reduce hip fracture risk in women and men and dietary AA may reduce hip fracture risk in men.  相似文献   

17.

Background

Previous work showed that the functional cardiac effect of dietary alpha-linolenic acid (ALA) in rats requires a long feeding period (6 months), although a docosahexaenoic (DHA) acid-supply affects cardiac adrenergic response after 2 months. However, the total cardiac membrane n-3 polyunsaturated fatty acid (PUFA) composition remained unchanged after 2 months. This delay could be due to a specific reorganization of the different subcellular membrane PUFA profiles. This study was designed to investigate the evolution between 2 and 6 months of diet duration of the fatty acid profile in sarcolemmal (SL), mitochondrial (MI), nuclear (NU) and sarcoplasmic reticulum (SR) membrane fractions.

Methods

Male Wistar rats were randomly assigned to 3 dietary groups (n = 10/diet/period), either n-3 PUFA-free diet (CTL), or ALA or DHA-rich diets. After 2 or 6 months, the subcellular cardiac membrane fractions were separated by differential centrifugations and sucrose gradients. Each membrane profile was analysed by gas chromatography (GC) after lipid extraction.

Results

As expected the n-3 PUFA-rich diets incorporated n-3 PUFA instead of n-6 PUFA in all the subcellular fractions, which also exhibited individual specificities. The diet duration increased SFA and decreased PUFA in SL, whereas NU remained constant. The SR and MI enriched in n-3 PUFA exhibited a decreased DHA level with ageing in the DHA and CTL groups. Conversely, the n-3 PUFA level remained unchanged in the ALA group, due to a significant increase in docosapentaenoic acid (DPA). N-3 PUFA rich diets lead to a better PUFA profile in all the fractions and significantly prevent the profile modifications induced by ageing.

Conclusion

With the ALA diet the n-3 PUFA content, particularly in SR and SL kept increasing between 2 and 6 months, which may partly account for the delay to achieve the modification of adrenergic response.  相似文献   

18.
Low tissue levels of (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid [DHA, 22:6(n-3)], are implicated in postpartum depression. The effects of 1-4 sequential reproductive cycles on maternal brain phospholipid fatty acid composition were determined in female rats fed diets containing alpha-linolenic acid (ALA), containing ALA and pre-formed DHA (ALA+DHA), or lacking ALA (low-ALA). Virgin females, fed the diets for commensurate durations served as a control for reproduction. Whole-brain total phospholipid composition was determined at weaning by TLC/GC. A single reproductive cycle on the low-ALA diet decreased brain DHA content by 18% compared to ALA primiparas (P < 0.05), accompanied by incorporation of docosapentaenoic acid ((n-6) DPA, 22:5(n-6)) to 280% of ALA primiparas (P < 0.05). DHA was not further decreased after subsequent cycles; however, there was an additional increase in (n-6) DPA after the second cycle (P < 0.05). Brain DHA of virgin females fed the low-ALA diet for 27 wk decreased 15% (P < 0.05), but was accompanied by a more modest increase in (n-6) DPA than in parous low-ALA dams (P < 0.05). Virgin females and parous dams fed the diet containing ALA+DHA exhibited only minor changes in brain fatty acid composition. These observations demonstrate that brain DHA content of adult animals is vulnerable to depletion under dietary conditions that supply inadequate (n-3) PUFAs, that this effect is augmented by the physiological demands of pregnancy and lactation, and that maternal diet and parity interact to affect maternal brain PUFA status.  相似文献   

19.
The effect of feeding redfish (Sebastes marinus or mantella) oil or a derived n-3 fatty acid concentrate containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the fatty acid compositions of individual phospholipids in selected neural tissues was studied in growing male rats. Control animals were given sunflower oil in the diet for the 5-wk feeding trial. Lipid analyses revealed that EPA (20:5n-3) became significantly enriched in all phospholipid fractions (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol) in the tissues studied (brain, retina and sciatic nerve) in the two n-3 fatty acid dietary groups relative to controls. Corresponding changes were also found in the 22:5n-3 contents of these tissues, whereas little or no significant elevation in DHA (22:6n-3) was found. In contrast, the percentages by weight of the n-6 fatty acids including 18:2n-6, 20:4n-6 (arachidonic acid, AA), 22:4n-6 and 22:5n-6 were generally lower in the various phospholipids/tissues of the animals given fish oil or the n-3 fatty acid concentrate; the levels of 22:5n-6 and 22:4n-6 were markedly affected in this regard. These results indicate that dietary n-3 fatty acids (as EPA plus DHA) can greatly affect the fatty acid compositions of the various membrane phospholipids in nervous tissues within a relatively short time. These biochemical alterations may be important for functional changes including altered membrane fluidity, cellular responses, ion transport and the biosyntheses of AA- and EPA-derived prostaglandins and leukotrienes.  相似文献   

20.
The long-chain PUFA, docosahexaenoic acid [22:6(n-3), DHA], a major component of neuronal membrane phospholipids, accumulates in brain during late prenatal and early neonatal development and is essential for optimal attentional and cognitive function. Because all nutrition is supplied to the developing fetus/neonate by the mother and maternal DHA status is affected by parity, this study examined the effects of maternal diet and parity on DHA accretion in the developing brain. Whole brain total phospholipid fatty acid composition was determined by TLC and GC in weanling male Long-Evans rats (n = 5) from the 1st, 2nd, 3rd, or 4th litters of dams fed diets containing alpha-linolenic acid (ALA), containing ALA and preformed DHA (ALA + DHA), or lacking ALA (low-ALA). First-litter low-ALA offspring exhibited a decrease in phospholipid fatty acid DHA content to 68% of 1st-litter ALA pups. DHA in 2nd-litter low-ALA pups was further decreased to 55% of 1st-litter ALA pups, but further decreases were not observed in subsequent litters. DHA levels increased 15-20% in 2nd to 4th-litter ALA + DHA pups and 11% in 4th-litter ALA pups compared with 1st-litter ALA pups. These findings demonstrate that maternal diet and parity interact to affect offspring brain DHA status and suggest that maternal multiparity may place offspring at greater risk of decreased accretion of brain DHA if the maternal diet contains insufficient (n-3) PUFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号