首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RATIONALE: Previous studies indicate antagonism of cocaine-stimulated locomotor activity by dopamine D2-like receptor antagonists, but only at doses of the antagonists, that by themselves attenuate locomotor activity, raising questions of the specificity of the interaction and whether it might be due solely to a summation of opposing effects. OBJECTIVES: The interactions of cocaine and several D2-like dopamine antagonists and non-dopamine "physiological antagonists" were compared across a full range of doses in order to fully characterize the interaction and assess the specificity of the effects of dopamine antagonists and cocaine. METHODS: Swiss-Webster mice were treated with either vehicle, a D2-like antagonist (haloperidol, spiperone, raclopride, spiperone, (+) or (-) eticlopride), or a "physiological" antagonist (chlordiazepoxide, clonidine, or R(-) N6-(2-phenylisopropyl)adenosine) and cocaine (5-80 mg/kg) prior to a 30-min locomotor activity test. RESULTS: All test drugs decreased locomotor activity when given alone. All test drugs attenuated cocaine-induced locomotion and decreased peak responding to cocaine. In general, the D2-like antagonists also decreased maximal responding to cocaine and decreased the slope of the ascending limb of the cocaine dose-effect curve, effects not obtained with physiological antagonists. CONCLUSIONS: Blockade of D2-like receptors resulted in an interaction with cocaine that was fundamentally different from that produced through non-dopaminergic mechanisms and appears to be more than a summation of opposing effects. The present data suggest that D2-like receptors are involved in the mechanisms underlying the induction of locomotor activity by cocaine.  相似文献   

2.
alpha2 subunit-containing GABA(A) receptors are involved in incentive learning associated with cocaine, and in cocaine addiction. Deletion of alpha2-containing receptors abolishes cocaine-induced behavioural sensitisation (BS), while selective activation of alpha2 receptors, achieved using Ro 15-4513's agonist properties in alpha2(H101R) mice, induced BS. Here, we investigate further the mechanisms underlying Ro 15-4513-induced behavioural sensitisation in alpha2(H101R) mice. alpha2(H101R) mice sensitised to Ro 15-4513 (10 mg/kg) showed an enhanced stimulant response to cocaine (10 mg/kg). In contrast, cocaine (10 mg/kg)-sensitised alpha2(H101R) mice did not show enhanced sensitivity to the stimulant effects of Ro 15-4513 (1, 3 and 10 mg/kg), suggesting that the neural adaptations underlying Ro 15-4513 induced BS are related to, but not identical with those associated with cocaine-induced plasticity. Secondly, we investigated whether alpha2-containing receptors are involved in mediating the ability of BZs to facilitate cocaine-induced activity. The non-selective (i.e., alpha1, alpha2, alpha3 and alpha5 subtype) benzodiazepine GABA(A) receptor agonist midazolam (10 and 30 mg/kg) potentiated cocaine (10 mg/kg) hyperactivity in wildtype mice, but not in alpha2(H101R) mice, in which alpha2-containing receptors are insensitive to benzodiazepines. To determine where alpha2 receptors are localised we compared BZ-insensitive sites between wildtype (alpha4 and alpha6) and alpha2(H101R) (alpha2, alpha4 and alpha6) mice, using quantitative autoradiography to estimate [(3)H]Ro 15-4513 binding in the presence of 10 muM diazepam. alpha2 receptors were found in projection areas of the mesolimbic dopamine pathway including accumbens, central amygdala, and basolateral amygdala as well as CA1 and CA3 areas of the hippocampus. The involvement of the alpha2-containing receptor in mediating BZ's potentiating effect on cocaine hyperactivity suggests that the locomotor stimulant effects of BZs and psychostimulants may be mediated by a common neural system, but the lack of cross sensitisation to Ro 15-4513 in cocaine-sensitised alpha2(H101R) mice, suggests that this form of BS may occur downstream of plastic events underlying cocaine sensitisation.  相似文献   

3.
Adenosine A(2A) receptor knockout mice (A(2A)R KO) were compared to wild-type controls (A(2A)R WT) in a caffeine intake paradigm. When mice had ad libitum access to caffeine (0.3 g/l) and water in a two-bottle paradigm for 12 consecutive days, adenosine A(2A)R KO mice drank less caffeinated solution, demonstrating a reduced appetite for caffeine as compared to adenosine A(2A)R WT mice. These data reveal an important role for the adenosine A(2A) receptor in the appetitive properties of caffeine.  相似文献   

4.
The effect of caffeine on the locomotor stimulant activity induced by intravenous cocaine in rats was investigated. Low doses of caffeine (20 mg/kg IP) potentiated the locomotor activity induced by 1, 2.5 mg/kg intravenous doses of cocaine and higher doses of caffeine (50, 100 mg/kg IP) had no significant effect. The locomotor stimulant effect of 20 mg/kg IP dose of caffeine per se in vehicle was significantly higher and that with 100 mg/kg dose significantly lower than that of the vehicle control. Thus caffeine produced dose-dependent effects on cocaine-induced locomotor stimulant activity, with low dose potentiating and higher doses having no significant effect on such activity. Pharmacokinetic or dispositional factors did not appear to play a role in potentiation of cocaine locomotor stimulant activity by caffeine.  相似文献   

5.
A recent study has shown that the alpha 2-adrenoceptor antagonist, yohimbine, has an additional action, in micromolar concentrations, to inhibit the binding of [3H]benzodiazepines to their receptors in the CNS. An important question raised by this finding is to what extent the behavioural effects of yohimbine can be attributed to this action. Yohimbine (1.25-2.5 mg/kg) produced a dose-related decrease in exploratory head-dipping and locomotor activity in the holeboard test. The alpha 2-adrenoceptor agonist clonidine, in small doses (0.01-0.025 mg/kg), antagonized the reduction in exploratory head-dipping and locomotor activity produced by yohimbine (2.5 mg/kg). The benzodiazepine chlordiazepoxide (5-10 mg/kg), which reduces the activity of noradrenergic neurones, antagonized the effects of yohimbine less effectively. The inability of flumazepil (10-20 mg/kg; Ro 15-1788, a benzodiazepine receptor antagonist) to reverse the effects of yohimbine suggested that the low-affinity effect of yohimbine to displace the binding of benzodiazepines from their receptors, is not important in its behavioural effects in the holeboard, but that these effects are attributable to the alpha 2-antagonist action of yohimbine. These conclusions are consistent with previous results in an animal test of anxiety.  相似文献   

6.
Current evidence indicates that the acute locomotor stimulant effects of caffeine involve dopamine (DA) receptor activation; however, few studies have investigated the role of DA receptors in mediating the development of tolerance to caffeine. Therefore, the present study was designed to determine the degree to which DA receptors mediate the development of tolerance to the locomotor stimulant effects of caffeine. Caffeine was examined alone and in combination with haloperidol (HAL), GBR 12909, nisoxetine and fluoxetine. HAL dose-dependently and completely blocked the acute effects of caffeine on locomotor activity, and the highest dose of GBR 12909 enhanced the effects of caffeine. Neither nisoxetine nor fluoxetine altered the effects of caffeine. HAL was infused via osmotic pumps (0.1 mg/kg/day) during a 14-day regimen of chronic caffeine administered in a caffeinated drinking solution ( approximately 136 mg/kg/day). HAL did not block the development of tolerance to the locomotor stimulant effects of caffeine, but did impair the recovery from tolerance following withdrawal of caffeine. [3H]SCH 23390 (DA D(1)) binding sites were downregulated in the nucleus accumbens and striatum and were upregulated in the prefrontal cortex of caffeine-treated vs. control rats; however, the affinity of [3H]SCH 23390 for these binding sites was unaltered. There were no differences between the caffeine-treated and control rats in number or affinity of [3H]spiperone (DA D(2)) binding sites. These results suggest that, although HAL did not alter the development of tolerance to caffeine, changes in DA D(1) receptors could be one component of the mechanism underlying caffeine-induced tolerance.  相似文献   

7.
1. The coexistence of both inhibitory A(1) and facilitatory A(2) adenosine receptors in the rat myenteric plexus prompted the question of how adenosine activates each receptor subtype to regulate cholinergic neurotransmission. 2. Exogenously applied adenosine (0.3-300 microm) decreased electrically evoked [(3)H]acetylcholine ([(3)H]ACh) release. Blocking A(1) receptors with 1,3-dipropyl-8-cyclopentylxanthine (10 nm) transformed the inhibitory action of adenosine into a facilitatory effect. Adenosine-induced inhibition was mimicked by the A(1) receptor agonist R-N(6)-phenylisopropyladenosine (0.3 microm), but the A(2A) agonist CGS 21680C (0.003 microm) produced a contrasting facilitatory effect. 3. Increasing endogenous adenosine levels, by the addition of (1) the adenosine precursor AMP (30-100 microm), (2) the adenosine kinase inhibitor 5'-iodotubercidin (10 microm) or (3) inhibitors of adenosine uptake (dipyridamole, 0.5 microm) and of deamination (erythro-9(2-hydroxy-3-nonyl)adenine, 50 microm), enhanced electrically evoked [(3)H]ACh release (5 Hz for 40 s). Release facilitation was prevented by adenosine deaminase (ADA, 0.5 U ml(-1)) and by the A(2A) receptor antagonist ZM 241385 (50 nm); these compounds decreased [(3)H]ACh release by 31+/-6% (n=7) and 37+/-10% (n=6), respectively. 4. Although inhibition of ecto-5'-nucleotidase by alpha,beta-methylene ADP (200 microm) or by concanavalin A (0.1 mg ml(-1)) attenuated endogenous adenosine formation from AMP, analysed by HPLC, the corresponding reduction in [(3)H]ACh release only became evident when stimulation of the myenteric plexus was prolonged to over 250 s. 5. In summary, we found that endogenously generated adenosine plays a predominantly tonic facilitatory effect mediated by prejunctional A(2A) receptors. Extracellular deamination and cellular uptake may restrict endogenous adenosine actions to the neuro-effector region near the release/production sites.  相似文献   

8.
In a double-blind and randomized study the respiratory stimulant effect of continuous intravenous adenosine infusion was studied after previous administration of caffeine, placebo and enprofylline in 10 healthy young volunteers. After placebo, adenosine induced an increase of minute ventilation (from 6.3 to 12.5 l min-1), tidal volume (from 0.60 to 0.96 l), and breathing rate (from 11.0 to 14.8 min-1). Venous pCO2 fell and pH rose after adenosine. Caffeine significantly reduced the adenosine-induced changes of minute ventilation, tidal volume, venous pCO2 and pH, whereas no changes occurred after enprofylline. Our results suggest that adenosine stimulates respiration in man by binding with specific P1-purinoceptors, which can be blocked by caffeine, but not by enprofylline.  相似文献   

9.
The role of the adenosine A2A receptor in the hypnotic effects of ethanol was assessed in mice. The duration of the loss of righting reflex following acute ethanol administration was shorter for A2A receptor-deficient mice (A2AR KO) than for wild-type mice (A2AR WT), whereas the fall in body temperature was not different between the two phenotypes. In contrast, the duration of the loss of righting reflex was increased in A2AR KO mice versus controls after administration of pentobarbital. Dipyridamole, an inhibitor of adenosine uptake, increased the sleep time observed following administration of ethanol in CD1 mice and in A2AR WT but not in A2AR KO mice. SCH 58261, a selective A2A receptor antagonist, unlike DPCPX, a selective A1 receptor antagonist, shortened the duration of the loss of righting reflex induced by ethanol, thus mimicking the lack of receptor in deficient mice. Finally, the non-selective adenosine receptor antagonist caffeine (25 mg/kg) reduced ethanol-induced hypnotic effects. These results indicate that the activation of A2A receptors that follows an increase in extracellular adenosine levels caused by the administration of high doses of ethanol plays a role in its hypnotic effects. Thus, A2A receptor antagonists may be useful therapeutic agents for alleviating ethylic coma.  相似文献   

10.
Considering the existing interactions between ethanol and adenosine, the influence of the genetic impairment of the adenosine A(2A) receptor has been examined upon the seizures occurring at the cessation of chronic ethanol intake or 'ethanol withdrawal' in male mice. Acute clearance of ethanol did not differ between adenosine A(2A) receptor knockout and wild-type mice. Mice were exposed for 10 days to a diet consisting of a milky chocolate drink that contained increasing concentrations (1.8, 3.6 and 6.3% v/v) of ethanol. Adenosine A(2A) receptor knockout mice ingested similar amounts of the fluid, either containing alcohol or not, as did the controls. The severity of handling-induced convulsions during withdrawal was significantly reduced in the adenosine A(2A) receptor knockout mice as compared with their wild-type controls. The selective adenosine A(2A) receptor antagonist ZM 241385 (20 mg/kg) also significantly attenuated the intensity of withdrawal-induced seizures occurring in wild-type male mice when intraperitoneally administered twice daily during the last 5 days of the forced alcohol intake. These results suggest that selective adenosine A(2A) receptor antagonists may be useful in the treatment of alcohol withdrawal.  相似文献   

11.
Adenosine is a neuromodulator in the nervous system and it has recently been observed that pharmacological blockade or gene disruption of adenosine A(2A) receptors confers neuroprotection under different neurotoxic situations in the brain. We now observed that coapplication of either caffeine (1-25 micro M) or the selective A(2A) receptor antagonist, 4-(2-[7-amino-2(2-furyl)(1,2,4)triazolo (2,3-a)(1,3,5)triazin-5-ylamino]ethyl)phenol (ZM 241385, 50 nM), but not the A receptor antagonist, 8-cyclopentyltheophylline (200 nM), prevented the neuronal cell death caused by exposure of rat cultured cerebellar granule neurons to fragment 25-35 of beta-amyloid protein (25 micro M for 48 h), that by itself caused a near three-fold increase of propidium iodide-labeled cells. This constitutes the first in vitro evidence to suggest that adenosine A(2A) receptors may be the molecular target responsible for the observed beneficial effects of caffeine consumption in the development of Alzheimer's disease.  相似文献   

12.
Efficacy in stimulating adenylyl cyclase (AC) has traditionally been used to distinguish dopamine D1-like receptor agonists from dopamine D2-like receptor agonists. However, there is a limited association between the effects of D1-like agonists in behavioral assays and their effectiveness at stimulating AC. Other second messenger actions might contribute to the behavioral effects of D1-like agonists, as there is evidence for a link to the hydrolysis of phosphoinositide (PI). The present study compared the locomotor stimulant effects of five D1-like receptor agonists having different efficacies in assays of AC and PI activity. All D1-like agonists produced long-lasting biphasic effects on locomotor activity. SKF 38393, the prototypical partial agonist (based on AC activity), produced limited changes in locomotor activity, whereas the partial agonists SKF 75670 and SKF 77434 produced locomotor stimulant effects that were similar to or greater than those of the full efficacy agonists SKF 82958 and SKF 81297. However, there did not appear to be a relationship between maximal behavioral effects and AC stimulation or PI hydrolysis. The results suggest a complex relationship between the behavioral effects of D1-like agonists and their intrinsic efficacies as measured by AC and /or PI stimulation. Although a limited number of compounds were examined, neither second messenger system alone appears to account fully for these behavioral effects. The current classification of D1-like agonists according to their intrinsic efficacies as defined by AC stimulation needs further scrutiny.  相似文献   

13.
The purpose of our study was to determine the cardio-respiratory pattern exerted by the systemic injection of neurotensin, contribution of neurotensin NTS(1) receptors and the neural pathways mediating the responses. The effects of an intravenous injection (i.v.) of neurotensin were investigated in anaesthetized, spontaneously breathing rats in following experimental schemes: (i) control animals before and after midcervical vagotomy; (ii) in three separate subgroups of rats: neurally intact, vagotomized at supranodosal level and initially midcervically vagotomized exposed to section of the carotid sinus nerves (CSNs); (iii) in the intact rats 2 minutes after blockade of neurotensin NTS(1) receptors with SR 142948. Intravenous injection of 10μg/kg of neurotensin in the intact rats evoked prompt increase in the respiratory rate followed by a prolonged slowing down coupled with augmented tidal volume. Midcervical vagotomy precluded the effects of neurotensin on the frequency of breathing, while CSNs section reduced the increase in tidal volume. In all the neural states neurotensin caused significant fall in mean arterial blood pressure preceded by prompt hypertensive response. The cardio-respiratory effects of neurotensin were blocked by pre-treatment with NTS(1) receptor antagonist. The results of this study showed that neurotensin acting through NTS(1) receptors augments the tidal component of the breathing pattern in a large portion via carotid body afferentation whereas the respiratory timing response to neurotensin depends entirely on the intact midcervical vagi. Blood pressure effects evoked by an intravenous neurotensin occur outside vagal and CSNs pathways and might result from activation of the peripheral vascular NTS(1) receptors.  相似文献   

14.
The involvement of adenosine A(1) and A(2A) receptors in the motor effects of caffeine is still a matter of debate. In the present study, counteraction of the motor-depressant effects of the selective A(1) receptor agonist CPA and the A(2A) receptor agonist CGS 21680 by caffeine, the selective A(1) receptor antagonist CPT, and the A(2A) receptor antagonist MSX-3 was compared. CPT and MSX-3 produced motor activation at the same doses that selectively counteracted motor depression induced by CPA and CGS 21680, respectively. Caffeine also counteracted motor depression induced by CPA and CGS 21680 at doses that produced motor activation. However, caffeine was less effective than CPT at counteracting CPA and even less effective than MSX-3 at counteracting CGS 21680. On the other hand, when administered alone in habituated animals, caffeine produced stronger motor activation than CPT or MSX-3. An additive effect on motor activation was obtained when CPT and MSX-3 were coadministered. Altogether, these results suggest that the motor-activating effects of acutely administered caffeine in rats involve the central blockade of both A(1) and A(2A) receptors. Chronic exposure to caffeine in the drinking water (1.0 mg/ml) resulted in tolerance to the motor effects of an acute administration of caffeine, lack of tolerance to amphetamine, apparent tolerance to MSX-3 (shift to the left of its 'bell-shaped' dose-response curve), and true cross-tolerance to CPT. The present results suggest that development of tolerance to the effects of A(1) receptor blockade might be mostly responsible for the tolerance to the motor-activating effects of caffeine and that the residual motor-activating effects of caffeine in tolerant individuals might be mostly because of A(2A) receptor blockade.  相似文献   

15.
It is well known that tolerance develops to the actions of caffeine, which acts as an antagonist on adenosine A(1) and A(2A) receptors. Since selective adenosine A(2A) antagonists have been proposed as adjuncts to 3,4-dihydroxyphenylalanine (L-DOPA) therapy in Parkinson's disease we wanted to examine if tolerance also develops to the selective A(2A) receptor antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2, 4-triazolo [1,5-c]pyrimidine (SCH 58261). SCH 58261 (0.1 and 7.5 mg/kg) increased basal locomotion and the motor stimulation afforded by apomorphine. Neither effect was subject to tolerance following long-term treatment with the same doses given intraperitoneally twice daily. There were no adaptive changes in A(1) and A(2A) adenosine receptors or their corresponding messenger RNA or in dopamine D(1) or D(2) receptors. These results demonstrate that the tolerance that develops to caffeine is not secondary to its inhibition of adenosine A(2A) receptors. The results also offer hope that long-term treatment with an adenosine A(2A) receptor antagonist may be possible in man.  相似文献   

16.
Rationale Caffeine is a non-selective adenosine receptor antagonist in vitro, but involvement of different adenosine receptor subtypes, particularly adenosine A1 and A2A receptors, in the central effects of caffeine remains a matter of debate.Objective Investigate the role of adenosine A1 and A2A receptors in the discriminative-stimulus effects of caffeine.Methods Rats were trained to discriminate an injection of 30 mg/kg (i.p.) caffeine from saline. The selective A1 receptor antagonist CPT, the selective A2A receptor antagonist MSX-3 and the non-selective adenosine receptor antagonist DMPX were assessed for their ability to produce caffeine-like discriminative effects. The ability of CPT, MSX-3, the A1 receptor agonist CPA and the A2A receptor agonist CGS21680 to reduce the discriminative effects of caffeine was also tested. Radioligand binding experiments with membrane preparations from rat striatum and transfected mammalian cell lines were performed to characterize binding affinity profiles of the different adenosine antagonists used in the present study (caffeine, DMPX, CPT and MSX-3) in relation to all known adenosine receptors (A1, A2A, A2B, A3).Results DMPX and CPT, but not MSX-3, produced significant caffeine-like discriminative effects. MSX-3, but not CPT, markedly reduced the discriminative effects of caffeine and the caffeine-like discriminative effects of CPT. Furthermore, the A1 receptor agonist CPA, but not the A2A agonist CGS21680, reduced caffeines discriminative effects.Conclusions Adenosine A1 receptor blockade is involved in the discriminative-stimulus effects of behaviorally relevant doses of caffeine; A2A receptor blockade does not play a central role in caffeines discriminative effects and counteracts the A1 receptor-mediated discriminative-stimulus effects of caffeine.  相似文献   

17.
18.
 Contemporary theories of drug abuse suggest that behavioral sensitization plays an important role in addiction. However, few studies have examined the mechanisms underlying behavioral sensitization to ethanol. The present study examined the ability of THIP (2, 4, or 8 mg/kg) and baclofen (5.0, 6.25, or 7.5 mg/kg), GABAA and GABAB agonists, respectively, to prevent development of sensitization to the locomotor stimulant effects of ethanol (2 g/kg) in DBA/2 J mice. Ethanol was administered immediately before four 5-min activity trials conducted at 48-h intervals. Administration of ethanol on each of the four trials resulted in behavioral sensitization in control groups. While having few effects on activity when given alone, both GABA agonists completely blocked the acute stimulant response to ethanol on the first trial. Administration of THIP prior to ethanol on each trial failed to prevent development of sensitization. In contrast, all doses of baclofen blocked sensitization. Assessment of blood ethanol levels 15, 50 and 100 min after administration of ethanol indicated that baclofen did not change the pharmacokinetics of ethanol. These results indicate an important role for GABAB receptors, but not GABAA receptors, in development of sensitization to the locomotor stimulant effects of ethanol. Received: 11 April 1998 / Final version: 24 June 1998  相似文献   

19.
Recent evidence suggests an important relationship between dopamine (DA) modulation of feeding and locomotor activity. To investigate this relationship, the free-feeding and locomotor behavior of rats under the influence of D(1)/D(2) antagonist cis-flupenthixol was examined. DA antagonists are known to produce within-session declines in reinforced behavior, with behavioral suppression occurring only after a number of normal responses have been emitted. In the present study, cis-flupenthixol (0.30 mg/kg ) produced a within-session decrement in both free-feeding behavior and in locomotor/exploratory activity of animals in an environment that had never been paired with food. In addition to producing similar patterns of disruption in feeding and locomotion, the drug also produced a similar magnitude of suppression in the two behaviors. The results show that disruption of DA activity suppresses locomotor/exploratory activity in a manner that closely mirrors neuroleptic suppression of feeding. Although neuroleptic-induced suppression of locomotion and feeding are traditionally presumed to reflect an attenuation of DA motor and reward functions, respectively, the present results suggest that DA plays a similar role in the modulation of these two behaviors.  相似文献   

20.
Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号