首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jan CR  Yu CC  Huang JK 《Pharmacology》2001,62(4):218-223
The effect of fendiline, an antianginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of bladder female transitional carcinoma (BFTC) cells was explored using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 3 and 200 micromol/l increased [Ca2+]i in a concentration-dependent manner and the signal saturated at 100 micromol/l. The [Ca2+]i signal was biphasic, with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by about half in peak amplitude. Adding 3 mmol/l Ca2+ increased [Ca2+]i in cells pretreated with 100 micromol/l fendiline in Ca2+ -free medium, suggesting that fendiline induced Ca2+ influx via capacitative Ca2+ entry. In Ca2+ -free medium, pretreatment with 1 micromol/l thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store inhibited most of the 100 micromol/l fendiline-induced internal Ca2+ release; and conversely, pretreatment with 100 micromol/l fendiline partly inhibited 1 micromol/l thapsigargin-induced Ca2+ release. This indicates that the major internal Ca2+ store of fendiline-induced [Ca2+]i increases is located in the endoplasmic reticulum. The Ca2+ release induced by 100 micromol/l fendiline may be partly mediated by inositol 1,4,5-trisphosphate, because the [Ca2+]i increase was inhibited by 50% by inhibiting phospholipase C with 2 micromol/l U73122. Fendiline (100 micromol/l) decreased cell viability by 12-44% after being added to cells for 2- 30 min. Together, the findings indicate that in BFTC cells, fendiline exerts a dual effect: mobilization of intracellular Ca2+ and induction of cell death.  相似文献   

2.
This study investigated the effect of the anti-anginal drug, fendiline, on intracellular free Ca2+ levels ([Ca2+]i) in HA/ 22 human hepatoma cells by using fura-2 as a fluorescent Ca2+ dye. Fendiline (1-100 microM) increased [Ca2+]i with an EC50 of 25 microM. Removal of extracellular Ca2+ reduced the [Ca2+]i signals by 51 +/- 5%. Fendiline (10 microM)-induced Ca2+ release was abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Inhibition of phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) did not alter 10 microM fendiline-induced Ca2+ release. Several other calmodulin antagonists, such as phenoxybenzamine (100-200 microM), trifluoperazine (5-50 microM), and fluphenazine-N-chloroethane (2-100 microM), had no effect on [Ca2+]i. Together, it was found that fendiline increased [Ca2+]i in human hepatoma cells by discharging Ca2+ from the endoplasmic reticulum in an inositol 1,4,5-trisphosphate-independent manner and by inducing Ca2+ entry. This effect of fendiline does not appear to be via antagonism of calmodulin.  相似文献   

3.
1. Econazole is used clinically as an antifungal drug with many different in vitro effects. However, the effects of econazole on prostate cancer cells are unknown. The effects of econazole on intracellular Ca2+ concentrations ([Ca2+]i) in and the proliferation of human PC3 prostate cancer cells was explored in the present study using fura-2 and tetrazolium as fluorescent dyes. 2. At a concentration of 0.1 micromol/L, econazole started to increase [Ca2+]i in a concentration-dependent manner. The econazole-induced increase in [Ca2+]i was reduced by 48% by removal of extracellular Ca2+, suggesting that the econazole-induced increase in [Ca2+]i was composed of extracellular Ca2+ influx and intracellular Ca2+. 3. This econazole-induced Ca2+ influx was via an L-type Ca2+ channel-like pathway. In Ca2+-free medium, 1 micromol/L thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic increase in [Ca2+]i, after which the effect of econazole to increase [Ca2+]i was substantially inhibited. Conversely, pretreatment with 5 micromol/L econazole to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+. 4. The phospholipase C (PLC) inhibitor U73122 (2 micromol/L) abolished the increase in [Ca2+]i induced by 10 micromol/L ATP (a Ca2+ mobilizer that needs inositol 1,4,5-trisphosphate). 5. Overnight incubation with 1-30 micromol/L econazole inhibited proliferation of PC3 cells in a concentration-dependent manner. 6. These findings suggest that, in PC3 cells, econazole increases [Ca2+]i by stimulating Ca2+ influx into cells and Ca2+ release from the endoplasmic reticulum via a PLC-independent mechanism. Econazole is cytotoxic at submicromolar concentrations.  相似文献   

4.
The effect of gossypol, a compound found in cottonseed, on intracellular free Ca2+ levels ([Ca2+](i)) in Chang liver cells were evaluated using fura-2 as a fluorescent Ca2+ indicator. Gossypol (0.2-5microM) increased [Ca2+](i) in a concentration-dependent manner with an EC(50) value of 1.5microM. The [Ca2+](i) response was composed of an initial rise and a slow decay to a sustained phase within 5min after drug application. Removal of extracellular Ca2+ markedly reduced the [Ca2+](i) signals by 80+/-2%. Preincubation with 0.1mM La3+ or 10microM nimodipine abolished the Ca2+ influx. Gossypol (5microM)-induced release of intracellular Ca2+ was reduced by 75% by pretreatment with 1microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+. Conversely, pretreatment with gossypol abolished thapsigargin-induced Ca2+ release. After pretreatment with 5microM gossypol in Ca2+-free medium for several min, addition of 3mM Ca2+ induced a [Ca2+](i) increase of a magnitude nine-fold greater than control. Gossypol (5microM)-induced Ca2+ release was not affected by inhibiting phospholipase C with 2microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Together, this study shows that gossypol induced significant [Ca2+](i) increases in Chang liver cells by releasing Ca2+ from intracellular pools in a phospholipase C-dissociated fashion and by causing La3+- and nimodipine-sensitive Ca2+ influx.  相似文献   

5.
In human MG63 osteosarcoma cells, the effect of calmidazolium on [Ca(2+)](i) and proliferation was explored using fura-2 and ELISA, respectively. Calmidazolium, at concentrations greater than 0.1 micromol/L, caused a rapid increase in [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 0.5 micromol/L). The calmidazolium-induced [Ca(2+)](i) increase was reduced by 66% by removal of extracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic increase in [Ca(2+)](i), after which the effect of calmidazolium to increase [Ca(2+)](i) was completely inhibited. U73122, an inhibitor of phospholipase C (PLC), abolished histamine (but not calmidazolium)-induced increases in [Ca(2+)](i). Pretreatment with phorbol 12-myristate 13-acetate to activate protein kinase C inhibited the calmidazolium-induced increase in [Ca(2+)](i) in Ca(2+)-containing medium by 47%. Separately, it was found that overnight treatment with 2-10 micromol/L calmidazolium inhibited cell proliferation in a concentration-dependent manner. These results suggest that calmidazolium increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing release of intracellular Ca(2+) from the endoplasmic reticulum in a PLC-independent manner. Calmidazolium may be cytotoxic to osteosarcoma cells.  相似文献   

6.
The effects of BAY 41-2272, a nitric oxide-independent activator of soluble guanylyl cyclase, on Ca2+ signalling and ion currents were investigated in pituitary GH3 cells. Intracellular Ca2+ concentrations ([Ca2+]i) in these cells were increased by BAY 41-2272. Removing extracellular Ca2+ abolished the BAY 41-2272-induced increase in [Ca2+]i. After [Ca2+]i was elevated by BAY 41-2272 (300 nmol/L), subsequent application of 1-benzyl-3-(5'-hydroxymethyl-2'-furyl) indazole (YC-1; 1 micromol/L) did not increase [Ca2+]i further. In whole-cell recordings, BAY 41-2272 reversibly stimulated Ca2+-activated K+ current (I(K(Ca))) with an EC50 of 225 +/- 8 nmol/L. At 3 micromol/L, BAY 41-2272 slightly and significantly decreased L-type Ca2+ current.In the cell-attached configuration, BAY 41-2272 (300 nmol/L) enhanced the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels. After BK(Ca) channel activity was stimulated by spermine NONOate (30 micromol/L) or YC-1 (10 micromol/L) in cell-attached patches, subsequent application of BAY 41-2272 (300 nmol/L) further increased the channel open probability. In the inside-out configuration, BAY 41-2272 applied to the intracellular surface of excised patches enhanced BK(Ca) channel activity. Unlike 1 micromol/L paxilline, 1H-[1,2,4]oxadiazolol-[4,3a] quinoxalin-1-one (ODQ; 10 micromol/L) or heme (10 micromol/L) had no effect on BAY 41-2272-stimulated channel activity. BAY 41-2272 caused no shift in the activation curve of BK(Ca) channels; however, it did increase the Ca2+ sensitivity of these channels. At 300 nmol/L, BAY 41-2272 reduced the firing rate of spontaneous action potentials stimulated by thyrotropin-releasing hormone (10 micromol/L). The BK(Ca) channel activity was also enhanced by 300 nmol/L BAY 41-2272 in neuroblastoma IMR-32 cells. Therefore, the BAY 41-2272-induced increase in [Ca2+]i is primarily explained by an increase in Ca2+ influx. The BAY 41-2272-mediated simulation of IK(Ca) may result from direct activation of BKCa channels and indirectly as a result of elevated [Ca2+]i.  相似文献   

7.
1. The effect of maprotiline, an antidepressant, on human prostate cells is unclear. In the present study, the effect of maprotiline on [Ca2+]i and growth in PC3 human prostate cancer cells was measured using the fluorescent dyes fura-2 and tetrazolium, respectively. 2. Maprotiline caused a rapid, concentration-dependent increase in [Ca2+]i (EC50 = 200 micromol/L). The maprotiline-induced [Ca2+]i increase was reduced by removal of extracellular Ca2+ or pretreatment with nicardipine. 3. The maprotiline-induced Mn2+ influx-associated fura-2 fluorescence quench directly suggests that maprotiline caused Ca2+ influx. 4. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i increase, after which the effects of maprotiline of increasing [Ca2+]i were abolished. In addition, pretreatment with maprotiline reduced a major portion of the thapsigargin-induced increase in [Ca2+]i. 5. U73122, an inhibitor of phospholipase C, abolished the ATP (but not maprotiline)-induced increase in [Ca2+]i. 6. Overnight incubation with 1-10 micromol/L maprotiline did not alter cell proliferation, although incubation with 30-50 micromol/L maprotiline decreased cell proliferation. 7, These findings suggest that maprotiline rapidly increases [Ca2+]i in human prostate cancer cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release and that it may modulate cell proliferation in a concentration-dependent manner.  相似文献   

8.
1. We studied how membrane depolarization directly affected intracellular Ca2+ signalling when voltage-operated Ca2+ channels (VOCC) were not available in guinea-pig tracheal smooth muscle. To block VOCC, we used 3 micromol/L verapamil, which completely abolished high K+ (20-60 mmol/L)-induced contraction, and elevation of fura-2 signal. 2. Muscle tone was generated by adding Ca2+ to the extracellular Ca2+-free solution containing prostaglandin (PG)E2 (100 nmol/L) after abolishing basal tone with indomethacin (1 micromol/L). 3. In the absence of verapamil, high K+ (20-60 mmol/L) solution potentiated 2.4 mmol/l Ca2+-induced sustained contractions. Even in the presence of 3 micromol/L verapamil, replacement with 20 and 40 mmol/L K+ solution induced tonic potentiation, which was changed to attenuation with a higher K+ solution (60 mmol/L), lower extracellular Ca2+ concentration ([Ca2+]o) and pretreatment with cyclopiazonic acid (10 micromol/L), a Ca2+ sequestration inhibitor. 4. These results indicate that the balance between depolarization-dependent Ca2+ release and receptor-operated cation channel inhibition may determine whether tonic potentiation or attenuation is manifested, depending on the availability of VOCC, the magnitude of the depolarization, [Ca2+]o and Ca2+ content in the sarcoplasmic reticulum.  相似文献   

9.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored by using fura-2 as a Ca(2+) indicator. Fendiline at concentrations between 1 and 200 microM increased [Ca(2+)](i) in a concentration-dependent manner and the signal saturated at 100 microM. The Ca(2+) signal was inhibited by 65+/-5% by Ca(2+) removal and by 38+/-5% by 10 microM nifedipine, but was unchanged by 10 microM La(3+) or verapamil. In Ca(2+)-free medium, pre-treatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store inhibited fendiline-induced intracellular Ca(2+) release. The Ca(2+) release induced by 50 microM fendiline appeared to be independent of IP(3) because the [Ca(2+)](i) increase was unaltered by inhibiting phospholipase C with 2 microM U73122. Collectively, the results suggest that in MG63 cells fendiline caused an increase in [Ca(2+)](i) by inducing Ca(2+) influx and Ca(2+) release in an IP(3)-independent manner.  相似文献   

10.
1. The present study was undertaken to examine the effect of aldosterone on arginine vasopressin (AVP)-induced Ca2+ kinetics in cultured rat vascular smooth muscle cells (VSMC). The pre-incubation of cells with 1 x 10(-6) mol/L aldosterone for 24 h did not affect the basal cytosolic free Ca2+ [( Ca2+]i) but enhanced the AVP-induced mobilization of [Ca2+]i (1 x 10(-8) mol/L AVP; 287 vs 401, 1 x 10(-6) mol/L AVP; 430 vs 714 nmol/L). 2. The pre-incubation of cells with 1 x 10(-7) mol/L aldosterone for 24 h did not show this enhancing effect on the AVP-induced mobilization of [Ca2+]i. Without the preincubation, aldosterone did not change the basal [Ca2+]i or the AVP-induced mobilization of [Ca2+]i. This enhancement was still observed in the Ca2+-free solution containing 0.1 mmol/L EGTA (1 x 10(-8) mol/L AVP; 169 vs 341 nmol/L). 3. The enhancement by aldosterone of the AVP-mobilized [Ca2+]i was completely blocked by the simultaneous administration of 1 x 10(-4) mol/L spironolactone (1 x 10(-8) mol/L AVP; 258 vs 265 nmol/L). The treatment with aldosterone also stimulated the AVP-produced [45Ca2+] efflux during a 3 min period (1 x 10(-8) mol/L AVP; 32 vs 49, 1 x 10(-6) mol/L AVP; 50 vs 58% released from the resting intracellular [45Ca2+]-contents). 4. The present results indicate that aldosterone enhances the vascular action of AVP mediated through the stimulation of Ca2+ kinetics which may be dependent on the changes in the cellular signal transduction systems.  相似文献   

11.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca2+ dye. Histamine increased ([Ca2+](i)) in a concentration-dependent fashion with an EC(50) value of 0.5 microM. Extracellular Ca2+ removal inhibited the ([Ca2+](i)) signals. Histamine failed to increase ([Ca2+](i)) in Ca2+-free medium after cells were pretreated with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Addition of Ca2+ induced concentration-dependent ([Ca2+](i)) increases after preincubation with histamine in Ca2+-free medium. Histamine-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). The ([Ca2+](i)) increase induced by histamine in Ca2+ medium was abolished by cimetidine, but was not altered by pyrilamine, nifedipine, verapamil, and La(3+). Together, this study shows that histamine increased in ([Ca2+](i)) in osteosarcoma cells by stimulating H2 histamine receptors. The Ca2+ signal was caused by Ca2+ release from the endoplasmic reticulum in a phospholipase C-dependent manner. The Ca2+ release was accompanied by Ca(2+) influx.  相似文献   

12.
目的研究环维黄杨星D(CD)对大鼠心室肌细胞内Ca2+动员和L型钙电流(ICa-L/sub>)的影响。方法采用全细胞膜片钳和激光扫描共聚焦显微术研究CD对心肌细胞ICa-L/sub>以及氯化钾、咖啡因诱发心肌细胞内Ca2+动员的影响。结果CD浓度依赖性抑制ICa-L/sub>。指令电压为10 mV时,1和10 μmol·L-1 CD分别使ICa-L/sub>电流密度从(-9.9±1.8)pA/pF降至(-6.4±1.4)pA/pF和(-4.2±0.6)pA/pF。共聚焦实验显示1和10 μmol·L-1 CD不影响静息心肌细胞[Ca2+i?/sub>,对氯化钾诱发[Ca2+i?/sub>升高水平无明显抑制作用;咖啡因引起的细胞内Ca2+动员可被CD进一步增强。结论CD浓度依赖性抑制大鼠心室肌细胞ICa-L/sub>,并有促进咖啡因诱发心肌细胞内Ca2+释放的作用。  相似文献   

13.
1. We have reported previously that isolated single smooth muscle cells from guinea-pig taenia caecum respond to acetylcholine (ACh) in an all-or-none manner. 2. To clarify the roles of intracellular Ca(2+) stores in the all-or-none response of isolated smooth muscle cells from guinea-pig taenia caecum to ACh, we examined the inositol 1,4,5-trisphosphate (IP(3))-induced contractile response in Staphylococcus aureus alpha-toxin-permeabilized smooth muscle cells and the effect of depletion of intracellular Ca(2+) stores on the all-or-none response to ACh in intact smooth muscle cells. 3. alpha-Toxin-permeabilized smooth muscle cells responded to 3-30 nmol/L or 0.3-3 nmol/L IP(3) in the presence of 0.2 micromol/L Ca(2+) with 1 mmol/L EGTA or 0.1 mmol/L EGTA, respectively, in an all-or-none manner. These results suggest that Ca(2+) release induced by IP(3) is Ca(2+) dependent and is evoked in an all-or-none manner. 4. In the presence of the Ca(2+) ionophore A23187 (0.1 micromol/L) or the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid (1 micromol/L), the shortening of intact smooth muscle cells induced by increasing concentrations of ACh showed a graded response, but not an all-or-none response. 5. In conclusion, the results suggest that Ca(2+) release from Ca(2+) stores induced by IP(3) plays an important role in the all-or-none response of intact smooth muscle cells to ACh.  相似文献   

14.
李忠东  李培忠  洪文清 《中国药房》2003,14(12):719-721
目的 :探讨爱大霉素 (EM )和庆大霉素 (GM )对胞浆Ca2 +影响的初步机制。方法 :以Fura -2/AM为探针测定EM和GM在不同浓度时对LLC -PK1肾上皮细胞胞浆Ca2 +的影响 ,同位素示踪法测定EM和GM对线粒体Ca2 +摄取和内质网Ca2 +摄取的影响。结果 :EM和GM在1mmol/L时对胞浆Ca2 +浓度无显著影响 (P>0 05) ;在10mmol/L时可使胞浆Ca2 +显著上升 (P<0 01)。EM和GM在1mmol/L时显著促进线粒体Ca2 +摄取 (P<0 05) ;在10mmol/L时 ,二者显著抑制线粒体Ca2 +摄取。EM和GM在>3 4×10-1mmol/L时显著抑制内质网Ca2 +摄取 (P<0 05或P<0 01)。结论 :低浓度EM和GM未能引起胞浆Ca2 +升高 ,可能与其促进线粒体Ca2 +摄取与抑制内质网Ca2 +摄取相互平衡有关 ;高浓度EM和GM引起胞浆Ca2 +升高 ,可能与其均抑制线粒体和内质网Ca2 +摄取有关  相似文献   

15.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells and the underlying mechanism were evaluated using fura-2 as a Ca2+ dye. Histamine at concentrations between 0.1 and 50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1 microM. The [Ca2+]i response comprised an initial rise and a slow decay, which returned to baseline within 3 min. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In the absence of extracellular Ca2+, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 10 microM histamine did not increase [Ca2+]i. After pretreatment with 10 microM histamine in a Ca2+-free medium for several minutes, addition of 3 mM Ca2+ induced [Ca2+]i increases. Histamine (10 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3- methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 10 microM pyrilamine but was not altered by 50 microM cimetidine. Collectively, the present study shows that histamine induced [Ca2+]i transients in PC3 human prostate cancer cells by stimulating H1 histamine receptors leading to Ca2+ release from the endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, and by inducing Ca2+ entry.  相似文献   

16.
蚓激酶的心肌保护作用及机制   总被引:5,自引:0,他引:5  
目的研究蚓激酶对心肌缺血的保护作用,并进一步探讨其可能机制。方法采用结扎大鼠左冠状动脉前降支制备急性心肌缺血模型,观察蚓激酶对心肌缺血的保护作用;应用全细胞膜片钳和激光扫描共聚焦技术,研究蚓激酶对L-型钙电流(ICa-L)和细胞内游离钙离子浓度的影响。结果蚓激酶80,40和20 mg·kg-1剂量组均可缩小心肌梗死面积。膜片钳研究结果表明,当刺激电压为+10 mV时,10和50 μmol·L-1蚓激酶使ICa-L降低共聚焦结果显示,在静息状态下,10 μmol·L-1蚓激酶对[Ca2+i无明显影响;但10 μmol·L-1蚓激酶对60 mmol·L-1 KCl诱导的[Ca2+i升高却有明显抑制作用,并且在整个实验过程中(240 s)并未出现明显的峰值。结论蚓激酶对大鼠心肌缺血具有保护作用,其机制可能与抑制ICa-L及下调[Ca2+i有关。  相似文献   

17.
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations.  相似文献   

18.
目的:研究粉防己碱对培养乳牛基底动脉平滑肌细胞游离钙浓度([Ca^2 ]i)的影响。方法:利用AR-CM-MIC阳离子测定系统,采用Fura 2-AM为指示剂,测量单个细胞内[Ca^2 ]i。结果:粉防己碱10-100μmol/L对培养乳牛基底动脉平滑肌细胞静息[Ca^2 ]i无明显影响。在细胞外钙为1.3mmol/L,粉防己碱可浓度依赖性地抑制KC1引起[Ca^2 ]i的升高。咖啡因10mmol/L可诱导一次[Ca^2 ]i瞬间快速升高,随后自发回复到静息水平,粉防己碱10和30μmol/L对咖啡因诱导的[Ca^2 ]i瞬间升高没有作用,但高浓度(100μmol/L)粉防己碱抑制了[Ca^2 ]i瞬间升高。在细胞外钙为1.3mmol/L,苯肾上腺素10μmol/L可引起双相[Ca^2 ]i变化,包括快速升高相和持续升高相。在细胞外钙为零,苯肾上腺素仅引起[Ca^2 ]i的快速升高相。粉防己碱可浓度依赖性地抑制苯肾上腺素引起[Ca^2 ]i快速升高相。结论:在培养乳牛基底动脉平滑肌细胞,粉防己碱可能通过影响电压依赖性和苯肾上腺素受体介导的钙通道而抑制钙内流。高浓度粉防己碱也可能影响肌浆网钙释放或钙摄取。  相似文献   

19.
In the presence of external Ca2+, pretreatment of neutrophils with 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) inhibited the cyclopiazonic acid (CPA)-induced [Ca2+](i) elevation in a concentration- but not a time-dependent manner, while YC-1 had no effect on the Ca2+ signals in a Ca2+-free medium. YC-1 failed to inhibit ATP- and interleukin-8 (IL-8)-induced [Ca2+](i) changes. Addition of YC-1 after cell activation strongly inhibited the CPA-induced [Ca2+](i) changes. In a classical Ca2+ readdition protocol, a similar extent inhibition of Ca2+ spike by YC-1 introduced either prior to or after CPA stimulation was obtained. In rat neutrophils, mRNA for endothelial differentiation gene (edg)1, edg5, edg6 and edg8, the putative targets for sphingosine 1-phosphate (S1P), could be detected. However, S1P was found to have little effect on Ca(2+) signals. YC-1 did not inhibit but enhanced the sphingosine-induced [Ca2+](i) changes. Inhibition by YC-1 of CPA-induced [Ca2+](i) changes was not prevented by 7-nitroindazole and N-(3-aminomethyl)benzylacetamidine (1400W), two nitric oxide synthase (NOS) inhibitors, by aristolochic acid, a phospholipase A(2) inhibitor, or by suspension in a Na(+)-deprived medium. YC-1 did not affect the mitochondrial membrane potential. Moreover, YC-1 did not alter [Ca2+](i) changes in response to ionomycin after CPA and formyl-Met-Leu-Phe (fMLP) stimulation in a Ca2+-free medium. YC-1 had no effect on the basal [Ca2+](i) level, the pharmacologically isolated plasma membrane Ca2+-ATPase activity, and Ba2+ entry into CPA-activated cells. YC-1 alone resulted in the accumulation of actin filaments in neutrophils, while significantly reduced the intensity of actin filament staining in the subsequent activation with CPA. These results indicate that YC-1 inhibited CPA-activated store-operated Ca2+ entry (SOCE) probably through the direct blockade of channel activation and/or the disruption of the integrity of the actin cytoskeleton necessary for supporting Ca2+ entry pathway in neutrophils.  相似文献   

20.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations > or = 5 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 microM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 microM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号