首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat smooth muscle cells (SMCs) stably transfected with the gene for the phenotype regulating protein cyclic guanosine monophosphate-dependent protein kinase (PKG) were used as a cell source in the preparation of three-dimensional (3D) collagen type I vascular constructs. PKG-transfected cells expressed severalfold higher levels of the contractile protein smooth muscle alpha-actin (SMA), relative to untransfected SMCs, both in monolayer culture and in 3D gels. The proliferation rate of PKG-transfected cells was lower than that of untransfected cells in both culture geometries. Three-dimensional collagen constructs made with PKG-transfected cells compacted to a similar degree as those made with untransfected cells, and this compaction could be augmented by biochemical stimulation with platelet-derived growth factor BB (PDGF) or transforming growth factor beta(1) (TGF). Application of cyclic mechanical strain to tubular collagen gels seeded with PKG-transfected cells resulted in a higher degree of gel compaction and circumferential matrix alignment, relative to statically grown controls, but cell proliferation and SMA expression were not affected. These results show that genetic modification of SMCs can be used as a tool to control cell function in vascular tissue engineering, and that the function of such cells can be further modulated by application of biochemical and mechanical stimulation.  相似文献   

2.
Biomaterials developed for tissue engineering and wound healing applications need to support robust cell adhesion, yet also need to be replaced by new tissue synthesized by those cells. In order to maintain mechanical integrity of the tissue, the cells must generate sufficient extracellular matrix before the scaffold is degraded. We have previously shown that materials containing cell adhesive ligands to promote or improve cell adhesion can decrease extracellular matrix production (Mann et al., Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials 1999;20:2281-6). Such decreased matrix production by cells in tissue engineering scaffolds may result in tissue failure. However, we have found that TGF-beta1 can be used in scaffolds to dramatically increase matrix production. Matrix production by vascular smooth muscle cells grown on adhesive ligand-modified glass surfaces and in PEG hydrogels containing covalently bound adhesive ligands was increased in the presence of 0.04 pmol/ml (1 ng/ml) TGF-beta1. TGF-beta1 can counteract the effect of these adhesive ligands on matrix production; matrix production could be increased even above that observed in the absence of adhesive peptides. Further, TGF-beta1 covalently immobilized to PEG retained its ability to increase matrix production. Tethering TGF-beta1 to the polymer scaffold resulted in a significant increase in matrix production over the same amount of soluble TGF-beta1.  相似文献   

3.
The influence of mechanical stimulation on cell populations not only helps maintain the specific cellular phenotype but also plays a significant role during differentiation and maturation of plastic cells. This is particularly true of tissue-engineered vascular tissue, where in vivo shear forces at the blood interface help maintain the function of the endothelium. Considerable effort has gone into the design and implementation of functional bioreactors that mimic the chemical and mechanical forces associated with the in vivo environment. Using a decellularized ex vivo porcine carotid artery as a model scaffold, we describe a number of important design criteria used to develop a vascular perfusion bioreactor and its supporting process-flow. The results of a comparative analysis of primary human vascular smooth muscle cells cultured under traditional"static conditions" and "dynamic loading" are described, where the expression of MMP-2 and 9 and cathepsin-L were assessed. Continued design improvements to perfusion bioreactors may improve cellular interactions, leading to constructs with improved biological function.  相似文献   

4.
Polyesterurethane foam scaffold for smooth muscle cell tissue engineering   总被引:4,自引:0,他引:4  
Reconstruction of the genitourinary tract, using engineered urological tissues, requires a mechanically stable biodegradable and biocompatible scaffold and cultured cells. Such engineered autologous tissue would have many clinical implications. In this study a highly porous biodegradable polyesterurethane-foam, DegraPol was evaluated with tissue engineered human primary bladder smooth muscle cells. The cell-polymer constructs were characterized by histology, scanning electron microscopy, immunohistochemistry and proliferation assays. Smooth muscle cells grown on DegraPol showed the same morphology as when grown on control polystyrene surface. Positive immunostaining with alpha smooth muscle actin indicated the preservation of the specific cell phenotype. Micrographs from scanning electron microscopy showed that the cells grew on the foam surface as well as inside the pores. In addition they grew as cell aggregates within the foam. The smooth muscle cells proliferated on the Degrapol; however, proliferation rate decreased due to apoptosis with time in culture. This study showed that Degrapol has the potential to be used as a scaffold.  相似文献   

5.
The discovery of the endothelial progenitor cell (EPC) has led to an intensive research effort into progenitor cell-based tissue engineering of (small-diameter) blood vessels. Herein, EPC are differentiated to vascular endothelial cells and serve as the inner lining of bioartificial vessels. As yet, a reliable source of vascular smooth muscle progenitor cells has not been identified. Currently, smooth muscle cells (SMC) are obtained from vascular tissue biopsies and introduce new vascular pathologies to the patient. However, since SMC are mesenchymal cells, endothelial-to-mesenchymal transdifferentiation (EnMT) may be a novel source of SMC. Here we describe the differentiation of smooth muscle-like cells through EnMT. Human umbilical cord endothelial cells (HUVEC) were cultured either under conditions favoring endothelial cell growth or under conditions favoring mesenchymal differentiation (TGF-beta and PDGF-BB). Expression of smooth muscle protein 22alpha and alpha-smooth muscle actin was induced in HUVEC cultured in mesenchymal differentiation media, whereas hardly any expression of these markers was found on genuine HUVEC. Transdifferentiated endothelial cells lost the ability to prevent thrombin formation in an in vitro coagulation assay, had increased migratory capacity towards PDGF-BB and gained contractile behavior similar to genuine vascular smooth muscle cells. Furthermore, we showed that EnMT could be induced in three-dimensional (3D) collagen sponges. In conclusion, we show that HUVEC can efficiently transdifferentiate into smooth muscle-like cells through endothelial-to-mesenchymal transdifferentiation. Therefore, EnMT might be used in future progenitor cell-based vascular tissue engineering approaches to obtain vascular smooth muscle cells, and circumvent a number of limitations encountered in current vascular tissue engineering strategies.  相似文献   

6.
Proliferation potential and extracellular matrix production were compared in cultured porcine glomerular mesangial cells and arterial and venous smooth muscle cells. Mesangial and arterial smooth muscle cells proliferated more rapidly than venous smooth muscle cells. In immunofluorescence studies, mesangial and arterial smooth muscle cells stained strongly for collagen types I, III, and V; venous smooth muscles showed weaker staining for collagens III and V. Total collagen synthesis in cultured mesangial and arterial smooth muscle cells was lower than in venous smooth muscle cells. Electrophoretic analysis showed type I collagen predominated in all cell types, although levels were highest in mesangial and arterial smooth muscle cells. Collagen V (alpha 3) occurred only in venous smooth muscle cells. Mesangial and arterial smooth muscle cells showed cellbound fibronectin and laminin, which also were secreted into the medium. Venous smooth muscle cells secreted fibronectin, but all laminin was cell bound. The findings suggest a strong similarity between mesangial and arterial smooth muscle cells.  相似文献   

7.
Wolf MT  Daly KA  Reing JE  Badylak SF 《Biomaterials》2012,33(10):2916-2925
Biologic scaffolds prepared from the extracellular matrix (ECM) of decellularized mammalian tissues have been shown to facilitate constructive remodeling in injured tissues such as skeletal muscle, the esophagus, and lower urinary tract, among others. The ECM of every tissue has a unique composition and structure that likely has direct effects on the host response and it is plausible that ECM harvested from a given tissue would provide distinct advantages over ECM harvested from nonhomologous tissues. For example, a tissue specific muscle ECM scaffold may be more suitable for constructive remodeling of skeletal muscle than non-homologous ECM tissue sources. The present study describes an enzymatic and chemical decellularization process for isolating skeletal muscle ECM scaffolds using established decellularization criteria and characterized the structure and chemical composition of the resulting ECM. The results were compared to those from a non-muscle ECM derived from small intestine (SIS). Muscle ECM was shown to contain growth factors, glycosaminoglycans, and basement membrane structural proteins which differed from those present in SIS. Myogenic cells survived and proliferated on muscle ECM scaffolds in vitro, and when implanted in a rat abdominal wall injury model in vivo was shown to induce a constructive remodeling response associated with scaffold degradation and myogenesis in the implant area; however, the remodeling outcome did not differ from that induced by SIS by 35 days post surgery. These results suggest that superior tissue remodeling outcomes are not universally dependent upon homologous tissue derived ECM scaffold materials.  相似文献   

8.
Pathologic neointima formation requires directional smooth muscle cell (SMC) migration from media to intima. The very direction of SMC migration thus becomes a potential therapeutic target. Here, we hypothesize that proliferating SMC after injury can be redirected using engineered chemotactic gradients of elastin degradation to limit late pathologic neointima formation. Buffered bioerodible polymeric microspheres (MS) were constructed to provide 4-week sustained release of elastase, heat-killed elastase, or polymer only. In vitro elastase function and timecourse of release at 37 degrees C, physiologic pH, and shear was determined. Curves revealed an initial bolus followed by sustained linear release for elastase MS, while controls exhibited baseline hydrolysis of substrate. We then employ controlled perivascular release of elastase after angioplasty to engineer modified in vivo gradients of elastin degradation in rabbit femoral arteries. NZW rabbits (n = 8 each) underwent balloon angioplasty of the common femoral artery followed by perivascular distribution of MS. Significant early perivascular elastin degradation resulted. Concurrently, proliferating SMC were guided peripherally (further from lumen) with treatment without significant changes in total proliferation or inflammation. At 28 days, treatment significantly reduces neointima by 42% relative to controls. These results confirm that directionally guiding SMC responses after injury achieves favorable arterial remodeling and limits development of pathologic neointima. Thus, a potential class of therapeutics and the paradigm of in vivo vascular engineering emerge from this work.  相似文献   

9.
Decellularized tissues composed of extracellular matrix (ECM) have been clinically used to support the regeneration of various human tissues and organs. Most decellularized tissues so far have been derived from animals or cadavers. Therefore, despite the many advantages of decellularized tissue, there are concerns about the potential for immunogenicity and the possible presence of infectious agents. Herein, we present a biomaterial composed of ECM derived from human adipose tissue, the most prevalent, expendable, and safely harvested tissue in the human body. The ECM was extracted by successive physical, chemical, and enzymatic treatments of human adipose tissue isolated by liposuction. Cellular components including nucleic acids were effectively removed without significant disruption of the morphology or structure of the ECM. Major ECM components were quantified, including acid/pepsin-soluble collagen, sulfated glycosaminoglycan (GAG), and soluble elastin. In an in vivo experiment using mice, the decellularized ECM graft exhibited good compatibility to surrounding tissues. Overall results suggest that the decellularized ECM containing biological and chemical cues of native human ECM could be an ideal scaffold material not only for autologous but also for allograft tissue engineering.  相似文献   

10.
目的研究层黏蛋白(laminin,LN)、纤维连接蛋白(fibronectin,FN)、I型胶原(collagen I,Col I)3种不同细胞外基质(extracelluar matrix,ECM)蛋白对血小板生长因子(platelet derived growth factor-BB,PDGF-BB)诱导的气道平滑肌细胞(airway smooth muscle cells,ASMCs)形态及收缩变化的影响。方法将ASMCs分别附着在LN、ColI、FN表衬的细胞培养皿中,并分成2组,分别在有或无PDGF-BB(10 mg/L)的无血清培养基中培养0~5 d。然后采用显微图像方法观测细胞形态和宽长比,光学磁微粒扭转细胞测量方法测量细胞受KCl或组胺(histamine)刺激时的收缩反应。结果在有PDGF-BB的培养条件下,ASMCs形态总体上变细变长,即细胞宽长比减小,但附着在LN上的ASMCs比附着在Col I或FN上的细胞宽长比相对要大。在无PDGF-BB的培养条件下,ASMCs对KCl刺激的收缩响应随培养时间增加而增加,但不受ECM蛋白成分的影响。而在有PDGF-BB的培养条件下,ASMCs对KCl或Histamine刺激的收缩响应总体上随培养时间呈下降趋势,但附着在LN上的ASMCs收缩响应下降程度相对较小。结论 ASMCs受PDGF-BB作用时,其形态和收缩性的变化与不同ECM蛋白成分有关,相对于Col I和FN,附着在LN的细胞形态和收缩性的变化较小。ECM蛋白成分对PDGF-BB诱导的ASMCs形态和收缩性变化的差异性影响,对于深入认识基质蛋白、炎症因子与气道平滑肌细胞的相互作用及其与哮喘病理生理机制的关系具有重要意义。  相似文献   

11.
The goal of this study was to develop a system to rapidly generate engineered tissue constructs from aggregated cells and cell-derived extracellular matrix (ECM) to enable evaluation of cell-derived tissue structure and function. Rat aortic smooth muscle cells seeded into annular agarose wells (2, 4 or 6 mm inside diameter) aggregated and formed thick tissue rings within 2 weeks of static culture (0.76 mm at 8 days; 0.94 mm at 14 days). Overall, cells appeared healthy and surrounded by ECM comprised of glycosoaminoglycans and collagen, although signs of necrosis were observed near the centers of the thickest rings. Tissue ring strength and stiffness values were superior to those reported for engineered tissue constructs cultured for comparable times. The strength (100-500 kPa) and modulus (0.5-2 MPa) of tissue rings increased with ring size and decreased with culture duration. Finally, tissue rings cultured for 7 days on silicone mandrels fused to form tubular constructs. Ring margins were visible after 7 days, but tubes were cohesive and mechanically stable, and histological examination confirmed fusion between ring subunits. This unique system provides a versatile new tool for optimization and functional assessment of cell-derived tissue, and a new approach to creating tissue-engineered vascular grafts.  相似文献   

12.
组织工程血管支架材料的研究进展   总被引:1,自引:0,他引:1  
组织工程血管支架是血管组织工程学中的一个重要组成部分.过去几十年时间里,组织工程血管支架材料由简单的天然材料发展到高分子可降解材料和生物材料的复合物,设计和加工的方式由单纯的手工发展到电镀旋压成型技术,取得了很大进步.目前组织工程血管支架材料的设计加工方法还不够成熟,性能还有待完善,应主要着眼于支架材料的机械性能和生物活性的完善方面的研究.  相似文献   

13.
目的探讨在高血压动脉重建中microRNA-21(miR-21)对血管平滑肌细胞(vascular smooth muscle cells,VSMCs)细胞外基质(extracellular matrix,ECM)的调控作用及其机制。方法建立腹主动脉缩窄型大鼠高血压模型,大鼠分为假手术对照组、高血压2周组和高血压4周组;对体外培养的大鼠主动脉VSMCs施加频率为1.25 Hz周期性张应变,加载幅度分别为0%(静态对照组)、5%(正常张应变组)、15%(模拟高血压状态的高张应变组),加载持续时间均为12 h。采用Western blotting和Real time RT-PCR技术,分别检测动脉和细胞样品ECM以及miR-21的表达。用miR-21特异干扰片段抑制培养的VSMCs miR-21表达,然后检测VSMCs的ECM、miR-21和Smad 7表达变化。结果与假手术对照组相比,高血压2周组胸主动脉ECM和miR-21的表达显著上升;高血压4周组胸主动脉的I型胶原、III型胶原和miR-21表达显著上升。与静态对照组和5%张应变组相比,15%张应变组VSMCs的I型胶原表达无显著变化,而III型胶原表达显著升高,Smad 7表达显著下降,周期性张应变增强VSMCs的miR-21表达。干扰miR-21降低周期性张应变状态下VSMCs的miR-21表达以及III型胶原蛋白水平表达,上调VSMCs的Smad 7表达。结论高血压血管重建导致大鼠胸主动脉ECM和miR-21高表达。周期性高张应变可诱导VSMCs的miR-21高表达,再通过其调节Smad 7蛋白,进而调控VSMCs的ECM,尤其是III型胶原的表达,参与高血压血管重建。  相似文献   

14.
目的 探讨尼古丁对大鼠胸主动脉血管平滑肌细胞(VSMCs)的细胞外基质(ECM)表达的影响及可能的机制.方法 用终浓度为100μmol/L的尼古丁作用于体外培养的大鼠VSMCs 24 h,以不加尼古丁的细胞为对照组,采用反转录-聚合酶链式反应(RT-PCR)、免疫印迹(Western blotting)方法检测ECM包括Ⅰ型胶原、纤维黏连蛋白和膜受体整合素表达的差异,以及可能参与信号转导的蛋白激酶p38的活性变化.结果 与对照组相比,尼古丁刺激组细胞的两种细胞外基质包括I型胶原和纤维黏连蛋白及膜受体整合素β1的表达均升高,分别为对照组的1.8倍、1.7倍和1.6倍,差异显著(P<0.05);尼古丁刺激组的蛋白激酶p38的活性比对照组高1.95倍,差异极其显著(P<0.01);p38的活性被特异抑制剂SB202190抑制后,尼古丁诱导的I型胶原的表达也随之下降.结论 p38参与尼古丁诱导的细胞外基质的高表达.  相似文献   

15.
Fibrin: a natural biodegradable scaffold in vascular tissue engineering   总被引:1,自引:0,他引:1  
Arterial occlusive disease remains a major health issue in the developed world and a rapidly growing problem in the developing world. Although a growing number of patients are now being effectively treated with minimally invasive techniques, there remains a tremendous pressure on the vascular community to develop a synthetic small-diameter vascular graft with improved long-term patency rates. The field of tissue engineering offers an exciting alternative in the search for living organ replacement structures. Several methodologies have emerged for constructing blood vessel replacements with biological functionality. Common strategies include cell-seeded biodegradable synthetic scaffolds, cell self-assembly, cell-seeded gels and xenogeneic acellular materials. A wide range of materials are being investigated as potential scaffolds for vascular tissue engineering applications. Some are commercialised and others are still in development. Recently, researchers have studied the role of fibrin gel as a three-dimensional scaffold in vascular tissue engineering. This overview describes the properties of fibrin gel in vascular tissue engineering and highlights some recent progress and difficulties encountered in the development of cell fibrin scaffold technology.  相似文献   

16.
Xu C  Inai R  Kotaki M  Ramakrishna S 《Tissue engineering》2004,10(7-8):1160-1168
Substantial effort is being invested by the bioengineering community to develop biodegradable polymer scaffolds suitable for tissue-engineering applications. An ideal scaffold should mimic the structural and purposeful profile of materials found in the natural extracellular matrix (ECM) architecture. To accomplish this goal, poly (L-lactide-co-epsilon-caprolactone) [P(LLA-CL)] (75:25) copolymer with a novel architecture produced by an electrospinning process has been developed for tissue-engineering applications. The diameter of this electrospun P(LLA-CL) fiber ranges from 400 to 800 nm, which mimicks the nanoscale dimension of native ECM. The mechanical properties of this structure are comparable to those of human coronary artery. To evaluate the feasibility of using this nanofibrous scaffold as a synthetic extracellular matrix for culturing human smooth muscle cells and endothelial cells, these two types of cells were seeded on the scaffold for 7 days. The data from scanning electron microscopy, immunohistochemical examination, laser scanning confocal microscopy, and a cell proliferation assay suggested that this electrospun nanofibrous scaffold is capable of supporting cell attachment and proliferation. Smooth muscle cells and endothelial cells seeded on this scaffold tend to maintain their phenotypic shape. They were also found to integrate with the nanofibers to form a three-dimensional cellular network. These results indicate a favorable interaction between this synthetic nanofibrous scaffold with the two types of cells and suggest its potential application in tissue engineering a blood vessel substitute.  相似文献   

17.
Williamson MR  Black R  Kielty C 《Biomaterials》2006,27(19):3608-3616
A new compliant scaffold suitable for small-diameter vascular grafts has been developed that promotes strong attachment of endothelial cells. Composite scaffolds were produced by wet spinning polycaprolactone (PCL) fibres which form the luminal surface, then electrospinning porous polyurethane (PU) onto the back of the PCL fibres to form the vessel wall substitute. Human endothelial cells demonstrated strong attachment to the composite PCL-PU scaffold, and proliferated to form a monolayer with strong PECAM-1 expression and cobblestone morphology. Attached cells demonstrated abundant release of von Willebrand factor, nitric oxide and ICAM-1 under physiological stimuli, and exhibited an immune response to lipopolysaccharide. The composite scaffold may also deliver bioactive molecules. Active trypsin, used as a test molecule, had a defined 48 h pattern of release from luminal PCL fibres. These data confirm the potential of this novel composite scaffold in vascular tissue engineering.  相似文献   

18.
背景:胶原与透明质酸均有利于组织培养中细胞的黏附、增殖和分化。 目的:观察血管内皮细胞、平滑肌细胞与胶原/透明质酸膜、明胶海绵的细胞相容性,并筛选最佳种植方法。 方法:将第3-5代兔血管平滑肌细胞种植在胶原/透明质酸膜(或明胶海绵)材料上,连续培养2周后将兔内皮细胞接种在平滑肌细胞-胶原/透明质酸膜(或明胶海绵)复合体上,并设置单纯平滑肌细胞与内皮细胞共同接种组。 结果与结论:①光镜和扫描电镜观察:细胞在两种材料上均随着培养时间,接种次数增加而生长加快,其中在胶原/透明质酸膜上的细胞生长更好,细胞连接更致密。②WST-1法检测:胶原/透明质酸膜组平滑肌细胞的黏附率及增殖率均高于明胶海绵组(P < 0.05),且细胞在材料上的生长随着接种次数的增加有不同程度提高。③3H-TDR掺入法检测DNA合成率:在胶原/透明质酸膜上的细胞DNA合成最高,明胶海绵上的较差。表明胶原/透明质酸膜具有较理想的细胞相容性,采用适当间隔、反复接种的方法可提高细胞的黏附和增殖。  相似文献   

19.
Repair of soft tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were proved by immunohistochemical analysis and DNA quantification. Scanning electron microscopic examination showed a three-dimensional nanofibrous architecture in hDAM. The hDAM included collagen, sulfated glycosaminoglycan, and vascular endothelial growth factor, but lacked major histocompatibility complex antigen I. hASC viability and proliferation on hDAM were proven in vitro. hDAM implanted subcutaneously in Fischer rats did not cause an immunogenic response, and it underwent remodeling, as indicated by host cell infiltration, neovascularization, and adipose tissue formation. Fresh fat grafts (Coleman technique) and engineered fat grafts (hDAM combined with hASCs) were implanted subcutaneously in nude rats. The implanted engineered fat grafts maintained their volume for 8 weeks, and the hASCs contributed to adipose tissue formation. In summary, the combination of hDAM and hASCs provides not only a clinically translatable platform for adipose tissue engineering, but also a vehicle for elucidating fat grafting mechanisms.  相似文献   

20.
Guo W  Gong K  Shi H  Zhu G  He Y  Ding B  Wen L  Jin Y 《Biomaterials》2012,33(5):1291-1302
Tissue engineering strategies to reconstruct tooth roots are an effective therapy for the treatment of tooth loss. However, strategies to successfully regenerate tooth roots have not been developed and optimized. In the present study, rat dental follicle stem cells (DFCs) were characterized, followed by a thorough investigation of tooth roots regeneration for a combination of DFCs seeding cells, treated dentin matrix (TDM) scaffolds, and an inductive alveolar fossa microenvironment. Eighteen clones derived from single DFCs were harvested; however, only three clones were amplified successfully more than five passages and 90-95 days in culture. Following 270 days or 30 passages, the heterogeneous DFCs showed suitable characteristics for seeding cells to regenerate tooth roots. However, various features, such as variable proliferation rates, differentiation characteristics, apoptosis rates, and total lifespan were observed in DFCs and the three clones. Importantly, upon transplantation of DFCs combined with TDM for four weeks, root-like tissues stained positive for markers of dental pulp and periodontal tissues were regenerated in the alveolar fossa, but not in the skull and omental pockets. These results indicate that tooth roots were successfully regenerated and suggest that the combination of DFCs with TDM in the alveolar fossa is a feasible strategy for tooth roots regeneration. This strategy could be a promising approach for the treatment of clinical tooth loss and provides a perspective with potential applications to regeneration of other tissues and organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号