首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that calcium is an important second messenger in the cardiovascular system. However, recent studies suggest that, in addition to its many functions as an intracellular messenger, Ca(2+) may also be an extracellular first messenger through the calcium-sensing receptor (CaR). The CaR belongs to family C of the G-protein-coupled receptors, which are also known as seven transmembrane domain receptors. The CaR receptor is expressed in all major organs involved in Ca(2+) homeostasis. Furthermore, increasing evidence suggests that the CaR is also involved in regulating various cellular functions in tissues not involved in Ca(2+) homeostasis. Recently, expression of a functional CaR has also been reported in crucial components of the cardiovascular system. It has previously been shown that the CaR is functionally expressed in the atria and ventricle of the rat heart. In blood vessels, the CaR protein was first reported in perivascular nerves of rat mesenteric resistance arteries, and was proposed to modulate myogenic tone in the arteries. Since then, the CaR has been detected in homogenates of whole vessels from rat subcutaneous small arteries and in endothelial cells from rat mesenteric and porcine coronary arteries. Furthermore, a recent report demonstrated that the CaR is present in endothelial cells from human aorta and that it stimulates production of nitric oxide in these cells. Taken together, these results indicate that the CaR present in blood vessels may have a physiological role in modulation of arterial blood pressure. This review discusses CaR expression and function, with a focus on the role of the CaR in the cardiovascular system.  相似文献   

2.
The extracellular Ca(2+)-sensing receptor (CaR) links changes in the concentration of extracellular Ca(2+) to changes in cell function. For cells involved in the control of systemic Ca(2+) concentration, this provides an efficient receptor-mediated mechanism to rapidly counteract slight fluctuations in the circulating concentration of Ca(2+). However, all cells that express the CaR are not necessarily involved in Ca(2+) homeostasis. The recent localisation of CaR expression on a variety of cell types more usually associated with non-Ca(2+)-homeostatic endocrine function may have serious repercussions for the interpretation of data in those systems which routinely culture cells under standard hypercalcaemic conditions. This short commentary considers the literature surrounding the identification of the CaR and the potential effects of its localisation on endocrine cells not directly involved in the control of systemic Ca(2+ )homeostasis.  相似文献   

3.
The extracellular Ca(2+)-sensing receptor (CaR) is expressed in many different organs in various species, ranging from mammals to fish. In some of these organs, this G protein-coupled receptor is involved in the control of systemic Ca(2+) homeostasis, whereas in other organs its role is unclear (e.g. in the pituitary gland). We have characterized the CaR in the neuroendocrine melanotrope cell of the intermediate pituitary lobe of the South African clawed toad Xenopus laevis. First, the presence of CaR mRNA was demonstrated by RT-PCR and in situ hybridization. Then it was shown that activation of the CaR by an elevated extracellular Ca(2+) concentration and different CaR-activators, including L-phenylalanine and spermine, stimulates both Ca(2+) oscillations and secretion from the melanotrope. Furthermore, it was revealed that activation of the receptor stimulates Ca(2+) oscillations through opening of voltage-operated Ca(2+) channels in the plasma membrane of the melanotropes. Finally, it was shown that the CaR activator L-phenylalanine could induce the biosynthesis of proopiomelanocortin in the intermediate lobe. Thus, in this study it is demonstrated that the CaR is present and functional in a defined cell type of the pituitary gland, the amphibian melanotrope cell.  相似文献   

4.
Using H-500 rat Leydig cancer cells as a model of humoral hypercalcemia of malignancy (HHM), we previously showed that high Ca(2+) induces PTH-related peptide (PTHrP) secretion via the calcium-sensing receptor (CaR) and mitogen- and stress-activated kinases, e.g. MAPK kinase 1 (MEK1), p38 MAPK, and stress-activated protein kinase 1/c-Jun N-terminal kinase. Because cellular proliferation is a hallmark of malignancy, we studied the role of the CaR in regulating the proliferation of H-500 cells. Elevated Ca(2+) has a mitogenic effect on these cells that is mediated by the CaR, because the calcimimetic NPS R-467 also induced proliferation. Inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 MAPK but not MEK1 abolished the mitogenic effect. Activation of PI3K by elevated Ca(2+) was documented by phosphorylation of its downstream kinase, protein kinase B. Because protein kinase B activation promotes cell survival, we speculated that elevated Ca(2+) might protect H-500 cells against apoptosis. Using terminal uridine deoxynucleotidyl nick end labeling staining, we demonstrated that high Ca(2+) (7.5 mM) and NPS R-467 indeed protect cells against apoptosis induced by serum withdrawal compared with low Ca(2+) (0.5 mM). Because the CaR induces PTHrP secretion, it is possible that the mitogenic and antiapoptotic effects of elevated Ca(2+) could be indirect and mediated via PTHrP. However, blocking the type 1 PTH receptor with PTH (7-34) peptide did not alter either high Ca(2+)-induced proliferation or protection against apoptosis. Taken together, our data show that activation of PI3K and p38 MAPK but not of MEK1/ERK by the CaR promotes proliferation of H-500 cells as well as affords protection against apoptosis. These effects are likely direct without the involvement of PTHrP in an autocrine mode.  相似文献   

5.
The system governing extracellular calcium (Ca2+o) homeostasis maintains near constancy of Ca2+o so as to ensure continual availability of calcium ions for their numerous intracellular and extracellular roles. In contrast to the intracellular ionized calcium concentration (Ca2+i), which varies substantially during intracellular signaling via this key second messenger, Ca2+o remains nearly invariant. Yet there must be a mechanism that senses small changes in Ca2+o so as to set into motion the homeostatic responses that return Ca2+o to its normal level. The recent identification and molecular cloning of the mechanism through which parathyroid cells and a number of other cell types sense Ca2+o, a G protein-coupled Ca2+o-sensing receptor (CaR), has proven unequivocally that extracellular calcium ions serve in an informational capacity. The CaR permits Ca2+o to function in a hormone-like role as an extracellular first messenger through which parathyroid, kidney, and other cells communicate with one another via the CaR. The identification of inherited human hypercalcemic and hypocalcemic disorders arising from inactivating and activating mutations of the CaR, respectively, has provided additional proof of the essential, nonredundant role of the CaR in mineral ion homeostasis. Moreover, CaR-active drugs are currently in clinical trials for the treatment of primary and uremic hyperparathyroidism, disorders in which there are acquired, tissue-specific reductions in CaR expression and, in turn, defective Ca2+o-sensing by pathological parathyroid cells. No doubt further studies of Ca2+o-sensing by the CaR will reveal additional functions of Ca2+o, not only as a systemic "hormone" but also in local, paracrine, and autocrine signaling through this novel Ca2+o-sensing receptor.  相似文献   

6.
L-amino acid sensing by the extracellular Ca2+-sensing receptor   总被引:8,自引:0,他引:8       下载免费PDF全文
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) recognizes and responds to (i.e., "senses") Ca(2+)(o) as its principal physiological ligand. In the present studies, we document that the CaR is activated not only by extracellular calcium ions but also by amino acids, establishing its capacity to sense nutrients of two totally different classes. l-Amino acids, especially aromatic amino acids, including l-phenylalanine and l-tryptophan, stereoselectively mobilized Ca(2+) ions in the presence of the CaR agonists, Ca(2+)(o), gadolinium (Gd(3+)(o)), and spermine in fura-2-loaded human embryonic kidney (HEK-293) cells stably transfected with the human CaR. l-amino acid-dependent effects were observed above, but not below, a threshold level of Ca(2+)(o) of approximately 1.0 mM. l-Amino acids, particularly aromatic amino acids, also stereoselectively enhanced the sensitivity of the CaR to its agonists, Ca(2+)(o) and spermine. Branched-chain amino acids were almost inactive, and charged amino acids, including arginine and lysine, were much less effective than aromatic and other amino acids. l-amino acid mixtures emulating the amino acid composition of fasting human plasma reproduced the effects of high concentrations of individual l-amino acids on Ca(2+) mobilization and enhanced the sensitivity of the CaR to Ca(2+)(o). The data presented herein identify the CaR as a molecular target for aromatic and other l-amino acids. Thus, the CaR can integrate signals arising from distinct classes of nutrients: mineral ions and amino acids. The actions of l-amino acids on the CaR may provide explanations for several long recognized but poorly understood actions of dietary protein on calcium metabolism.  相似文献   

7.
Circulating calcium (Ca(2+)) is a primary regulator of bone homeostasis through its action on PTH secretion. Extracellular Ca(2+) modulates PTH secretion through a cell surface G protein-coupled receptor, the calcium-sensing receptor (CaR). The expression of the CaR suggests a critical role in cellular regulation by calcium in various organs, including parathyroid gland, bone, and kidney. Despite an obvious pharmacological utility for CaR antagonists in the treatment of disease, only a limited number of such classes of compounds exist. We have identified a novel class of small molecules with specific activity at the CaR. This class of compounds is represented by compound 1. It possesses potent antagonist activity at the human CaR with IC(50) values of 64 nm and 230 nm in inhibiting intracellular Ca(2+) flux and inositol phosphate generation in vitro, respectively. When administered to male rats in vivo, compound 1 robustly increased serum PTH levels. The stimulation of PTH secretion was rapid and transient when administered either iv or orally. The pharmacokinetic profile of compound 1 after oral administration revealed that maximal plasma levels of compound were reached within 1 h and the half-life of the compound to be approximately 2 h in rats. These data describe a representative compound of a novel chemical class than previously described allosteric modulators that offer a new avenue for the development of improved treatments of osteoporosis.  相似文献   

8.
Rodriguez L  Tu C  Cheng Z  Chen TH  Bikle D  Shoback D  Chang W 《Endocrinology》2005,146(12):5294-5303
The extracellular Ca(2+)-sensing receptor (CaR) plays an essential role in mineral homeostasis. Studies to generate CaR-knockout (CaR(-/-)) mice indicate that insertion of a neomycin cassette into exon 5 of the mouse CaR gene blocks the expression of full-length CaRs. This strategy, however, allows for the expression of alternatively spliced CaRs missing exon 5 [(Exon5(-))CaRs]. These experiments addressed whether growth plate chondrocytes (GPCs) from CaR(-/-) mice express (Exon5(-))CaRs and whether these receptors activate signaling. RT-PCR and immunocytochemistry confirmed the expression of (Exon5(-))CaR in growth plates from CaR(-/-) mice. In Chinese hamster ovary or human embryonic kidney-293 cells, recombinant human (Exon5(-))CaRs failed to activate phospholipase C likely due to their inability to reach the cell surface as assessed by intact-cell ELISA and immunocytochemistry. Human (Exon5(-))CaRs, however, trafficked normally to the cell surface when overexpressed in wild-type or CaR(-/-) GPCs. Immunocytochemistry of growth plate sections and cultured GPCs from CaR(-/-) mice showed easily detectable cell-membrane expression of endogenous CaRs (presumably (Exon5(-))CaRs), suggesting that trafficking of this receptor form to the membrane can occur in GPCs. In GPCs from CaR(-/-) mice, high extracellular [Ca(2+)] ([Ca(2+)](e)) increased inositol phosphate production with a potency comparable with that of wild-type GPCs. Raising [Ca(2+)](e) also promoted the differentiation of CaR(-/-) GPCs as indicated by changes in proteoglycan accumulation, mineral deposition, and matrix gene expression. Taken together, our data support the idea that expression of (Exon5(-))CaRs may compensate for the loss of full-length CaRs and be responsible for sensing changes in [Ca(2+)](e) in GPCs in CaR(-/-) mice.  相似文献   

9.
Parathyroid hormone (PTH) is secreted by the chief cells of the parathyroid gland in response to changes in ionized calcium (Ca(2+)) concentrations. In this study, we measured PTH secretion, and PTH mRNA and calcium-sensing receptor (CaR) mRNA expression by equine parathyroid chief cells in vitro. We also evaluated the effects of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha on PTH secretion, and PTH and CaR mRNA expression. The relationship between PTH and Ca(2+) was inversely related. PTH secretion decreased from 100% (day 0) to 13% (day 30). PTH mRNA expression declined from 100% (day 0) to 25% (day 30). CaR mRNA decreased from 100% (day 0) to 16% (day 30). Chief cells exposed to high (2.0 mM) Ca(2+) concentrations had a lower PTH mRNA expression compared with low Ca(2+) concentrations. Ca(2+) concentrations had no effect on CaR mRNA expression. The inhibitory effect of high Ca(2+) concentrations on PTH secretion also declined over time. After day 10, there was no significant difference in PTH secretion between low and high Ca(2+ )concentrations. IL-1beta decreased both PTH secretion (75%) and PTH mRNA expression (73%), and resulted in a significant overexpression of CaR mRNA (up to 142%). The effects of IL-1beta were blocked by an IL-1 receptor antagonist. IL-1beta decreased the Ca(2+) set-point from 1.4 mM to 1.2 mM. IL-6 decreased PTH secretion (74%), but had no effect on PTH and CaR mRNA expression. TNF-alpha had no effect on PTH secretion, and PTH and CaR mRNA expression. In summary, the decreased responsiveness of parathyroid cells to Ca(2+) from 0 to 30 days can be explained, in part, by the reduced CaR expression. IL-1beta and IL-6 but not TNF-alpha affected parathyroid function in vitro and may be important in influencing PTH secretion in the septic horse.  相似文献   

10.
Chang W  Tu C  Pratt S  Chen TH  Shoback D 《Endocrinology》2002,143(4):1467-1474
Previous studies in chondrogenic RCJ3.1C5.18 (C5.18) cells showed that growth of these cells at high extracellular Ca(2+) concentrations ([Ca(2+)](o)) reduced the expression of markers of early chondrocyte differentiation. These studies addressed whether raising [Ca(2+)](o) accelerates C5.18 cell differentiation and whether Ca(2+) receptors (CaRs) are involved in coupling changes in [Ca(2+)](o) to cellular responses. We found that high [Ca(2+)](o) increased expression of osteopontin (OP), osteonectin, and osteocalcin, all markers of terminal differentiation, in C5.18 cells and increased the production of matrix mineral. Overexpression of wild-type CaR cDNA in C5.18 cells suppressed proteoglycan synthesis and aggrecan RNA, two early differentiation markers, and increased OP expression. The sensitivity of these parameters to changes in [Ca(2+)](o) was significantly increased, as indicated by left-shifted dose-responses. In contrast, stable expression of a signaling-defective CaR mutant (Phe707Trp CaR) in C5.18 cells, presumably through dominant-negative inhibition of endogenous CaRs, blocked the suppression of aggrecan RNA levels and proteoglycan accumulation and the enhancement of OP expression by high [Ca(2+)](o). These data support a role for CaRs in mediating high [Ca(2+)](o)-induced differentiation of C5.18 cells.  相似文献   

11.
The extracellular calcium-sensing receptor (CaR) is usually associated with systemic Ca(2+) homeostasis, but the CaR is also expressed in many other tissues, including pancreatic islets of Langerhans. In the present study, we have used human islets and an insulin-secreting cell line (MIN6) to investigate the effects of CaR activation using the calcimimetic R-568, a CaR agonist that activates the CaR at physiological concentrations of extracellular Ca(2+). CaR activation initiated a marked but transient insulin secretory response from both human islets and MIN6 cells at a sub-stimulatory concentration of glucose, and further enhanced glucose-induced insulin secretion. CaR-induced insulin secretion was reduced by inhibitors of phospholipase C or calcium-calmodulin-dependent kinases, but not by a protein kinase C inhibitor. CaR activation was also associated with an activation of p42/44 mitogen-activated protein kinases (MAPK), and CaR-induced insulin secretion was reduced by an inhibitor of p42/44 MAPK activation. We suggest that the beta-cell CaR is activated by divalent cations co-released with insulin, and that this may be an important mechanism of intra-islet communication between beta-cells.  相似文献   

12.
The extracellular calcium ion (Ca(2+)(e))-sensing receptor (CaR) enables key tissues that maintain Ca(2+)(e) homeostasis to sense changes in the Ca(2+)(e) concentration. These tissues respond to changes in Ca(2+)(e) with functional alterations that will help restore Ca(2+)(e) to normal. For instance, decreases in Ca(2+)(e) act via the CaR to stimulate secretion of parathyroid hormone-a Ca(2+)(e)-elevating hormone-and to increase renal tubular calcium reabsorption; each response helps promote normalization of Ca(2+)(e) levels. Further work is needed to determine whether the CaR regulates other parameters of renal function (e.g. 1,25-dihydroxyvitamin D(3) synthesis, intestinal absorption of mineral ions, and/or bone turnover). Identification of the CaR has also elucidated the pathogenesis and pathophysiology of inherited disorders of mineral and electrolyte metabolism; moreover, acquired abnormalities of Ca(2+)(e)-sensing can result from autoimmunity to the CaR, and reduced CaR expression in the parathyroid may contribute to the abnormal parathyroid secretory control that is observed in primary and secondary hyperparathyroidism. Finally, calcimimetics-allosteric activators of the CaR-treat secondary hyperparathyroidism effectively in end-stage renal failure.  相似文献   

13.
14.
Calcium ions (Ca(2+)) are particularly important in cellular homeostasis and activity. To elicit physiologically relevant timing and spatial patterns of Ca(2+) signaling, ion channels in the surface of each cell precisely control Ca(2+) influx across the plasma membrane. A group of surface membrane ion channels called receptor-activated cation/Ca(2+) channels (RACCs) are activated by diverse cellular stimuli from the surrounding extracellular environment via receptors and other pathways such as heat, osmotic pressure, and mechanical and oxidative stress. An important clue to understanding the molecular mechanisms underlying the functional diversity of RACCs was first attained by molecular identification of the transient receptor potential (trp) protein (TRP), which mediates light-induced depolarization in Drosophila photoreceptor cells, and its homologues from various biological species. Recent studies have revealed that respective TRP channels are indeed activated by characteristic cellular stimuli. Furthermore, the involvement of TRP channels has been demonstrated in the signaling pathways essential for tissue-specific functions as well as ubiquitous biological responses, such as cell proliferation, differentiation, and death. These findings encourage the usage of TRP channels and their signalplexes as powerful tools for developing novel pharmaceutical targets.  相似文献   

15.
16.
A reduced expression of calcium-sensing receptor (CaR) messenger ribonucleic acid and protein accompanied by abnormalities in parathyroid cell proliferation and PTH secretion are present in primary hyperparathyroidism. We studied the expression of CaR protein by immunohistochemistry in 36 sporadic parathyroid adenomas and investigated the relationship between CaR expression and several preoperative clinical parameters, including the set-point of Ca(2+)-regulated PTH secretion (measured in vivo). The adenomas were classified in 4 categories according to the intensity of immunohistochemical staining: 5 (14%) showed a CaR staining intensity similar to that of normal parathyroid ( ), 10 (27%) showed moderate staining (++), 16 (45%) showed weak staining (+), and 5 (14%) were negative (-). The intensity of CaR staining was not related to preoperative serum Ca(2+), PTH levels or adenoma volume. Twenty-nine patients underwent preoperatively the calcium infusion test to evaluate the PTH-Ca(2+) set-point. Individual values of PTH-Ca(2+) set-point ranged from 1.38-1.93 mmol/L and were significantly correlated with basal Ca(2+) levels (r = 0.96; P: = 0. 0001) and adenoma volume (r = 0.5; P: = 0.01). The mean PTH-Ca(2+) set-point values were significantly different in the 4 groups of patients classified according to immunohistochemical staining intensity of their adenoma (P: = 0.025; F = 3.78); the mean PTH-Ca(2+) set-point was significantly higher in the groups classified as negative than in those classified as weak or moderate. No correlation was observed between the PTH-Ca(2+) set-point and basal PTH levels or between the percent maximal PTH inhibition and adenoma volume and basal PTH or Ca(2+) levels. In summary, our data suggest that there is a relationship between apparent CaR protein expression and PTH-Ca(2+) set-point abnormality, suggesting that a reduced receptor content might have an important role in the pathogenesis of primary hyperparathyroidism.  相似文献   

17.
Ca(2+) in neurons is vital to processes such as neurotransmission, neurotoxicity, synaptic development, and gene expression. Disruption of Ca(2+) homeostasis occurs in brain aging and in neurodegenerative disorders. Membrane transporters, among them the calmodulin (CaM)-activated plasma membrane Ca(2+) ATPases (PMCAs) that extrude Ca(2+) from the cell, play a key role in neuronal Ca(2+) homeostasis. Using X-exome sequencing we have identified a missense mutation (G1107D) in the CaM-binding domain of isoform 3 of the PMCAs in a family with X-linked congenital cerebellar ataxia. PMCA3 is highly expressed in the cerebellum, particularly in the presynaptic terminals of parallel fibers-Purkinje neurons. To study the effects of the mutation on Ca(2+) extrusion by the pump, model cells (HeLa) were cotransfected with expression plasmids encoding its mutant or wild-type (wt) variants and with the Ca(2+)-sensing probe aequorin. The mutation reduced the ability of the PMCA3 pump to control the cellular homeostasis of Ca(2+). It significantly slowed the return to baseline of the Ca(2+) transient induced by an inositol-trisphosphate (InsP(3))-linked plasma membrane agonist. It also compromised the ability of the pump to oppose the influx of Ca(2+) through the plasma membrane capacitative channels.  相似文献   

18.
Heterozygous inactivating mutations of the calcium-sensing receptor (CaR) cause familial hypocalciuric hypercalcemia, whereas homozygous or compound heterozygous inactivating mutations normally cause neonatal severe hyperparathyroidism. In a case of neonatal severe hyperparathyroidism characterized by moderately severe hypercalcemia and very high PTH levels, coupled with evidence of hyperparathyroidism and effects on brain development not previously demonstrated, we detected point mutations on separate alleles of the CaR, resulting in premature stop codon substitutions at G94 and R648. This led to severely truncated receptors and an effective so-called knockout of functional CaR. FLAG-tagged, truncated receptors were expressed in HEK293 cells for functional analysis. Confocal microscopy demonstrated cytoplasmic localization of the G94stop receptor, whereas the R648stop receptor was present both in the cytoplasm and associated with the cell membrane. Only the R648stop receptor could be detected by Western analysis. Functional assays in which R648stop and wild-type receptor were cotransfected into HEK293 cells demonstrated a reduction in wild-type Ca(2+)-responsiveness by the R648stop receptor, even at physiological Ca(2+) levels, thus simulating familial hypocalciuric hypercalcemia in relatives of the infant who were heterozygous for the R648stop mutation. The R648stop receptor alone was nonresponsive to Ca(2+). This case contributes to our understanding of the clinical manifestation of a CaR knockout.  相似文献   

19.
The cloning of the CaR has made it possible to show definitively that the CaR is a critical mediator of the inhibitory effect of high Cao2+ on PTH secretion and parathyroid cellular proliferation. The receptor may also mediate the suppressive action of high Cao2+ on PTH gene expression, while its involvement in several other known actions of Cao2+ on parathyroid function remain to be examined. Alterations in CaR expression and/or function are clearly involved in hyper- and hypocalcemic disorders caused by inactivating or activating CaR mutations, respectively, and could contribute to the deranged Cao(2+)-sensing in primary and uremic secondary HPT. Finally, CaR activators offer promise as the first truly effective mode of medical therapy for these latter two conditions.  相似文献   

20.
Rogers KV  Conklin RL  Lowe SH  Petty BA 《Endocrine》1995,3(11):769-774
Extracellular ionized calcium (Ca(2+)) is the primary physiological regulator of parathyroid hormone (PTH) secretion and the G protein-coupled receptor (CaR) that mediates this response has been cloned from bovine and human parathyroid glands. The Ca(2+) set-point for the regulation of PTH secretion is right-shifted in primary hyperparathyroidism (1°HPT), but whether there is a similar shift in 2°HPT is unclear. Additionally, the molecular defects associated with such changes in the set-point remain uncharacterized. These experiments were designed to determine (1) if changes in set-point occur in rats with 2°HPT induced by chronic renal insufficiency (CRI) or dietary Ca deficiency, and (2) whether any changes in set-point are mirrored by changes in steady-state mRNA levels for the parathyroid CaR. CaR mRNA levels were quantified in pairs of glands from individual rats using a solution hybridization assay. Blood urea nitrogen and PTH levels were ~ 4-fold higher in rats with CRI induced by 5/6 nephrectomy 7 weeks earlier. Rats with CRI were also significantly hypocalcemic and hyperphosphatemic. The setpoint was unchanged in CRI rats and CaR mRNA levels were also unaffected. Normal rats fed a 0.02% Ca diet for 6 weeks were markedly hypocalcemic, and had 10- and 15-fold increases in plasma PTH and 1,25-dihydroxyvitamin D(3) levels, respectively. Technical problems prevented assessment of the set-point in these animals, but parathyroid gland CaR mRNA levels were identical in both dietary groups. Thus, neither alterations in mRNA levels for the CaR nor changes in the set-point play demonstrable roles in the pathogenesis of 2°HPT in these models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号