首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoporosis is a major healthcare problem which is conventionally assessed by dual energy X-ray absorptiometry (DXA). New technologies such as high resolution peripheral quantitative computed tomography (HRpQCT) also predict fracture risk. HRpQCT measures a number of bone characteristics that may inform specific patterns of bone deficits. We used cluster analysis to define different bone phenotypes and their relationships to fracture prevalence and areal bone mineral density (BMD). 177 men and 159 women, in whom fracture history was determined by self-report and vertebral fracture assessment, underwent HRpQCT of the distal radius and femoral neck DXA. Five clusters were derived with two clusters associated with elevated fracture risk. “Cluster 1” contained 26 women (50.0% fractured) and 30 men (50.0% fractured) with a lower mean cortical thickness and cortical volumetric BMD, and in men only, a mean total and trabecular area more than the sex-specific cohort mean. “Cluster 2” contained 20 women (50.0% fractured) and 14 men (35.7% fractured) with a lower mean trabecular density and trabecular number than the sex-specific cohort mean. Logistic regression showed fracture rates in these clusters to be significantly higher than the lowest fracture risk cluster [5] (p < 0.05). Mean femoral neck areal BMD was significantly lower than cluster 5 in women in cluster 1 and 2 (p < 0.001 for both), and in men, in cluster 2 (p < 0.001) but not 1 (p = 0.220). In conclusion, this study demonstrates two distinct high risk clusters in both men and women which may differ in etiology and response to treatment. As cluster 1 in men does not have low areal BMD, these men may not be identified as high risk by conventional DXA alone.  相似文献   

2.
3.
High‐resolution peripheral quantitative computed tomography (HR‐pQCT) has recently been introduced as a clinical research tool for in vivo assessment of bone quality. The utility of this technology to address important skeletal health questions requires translation to standardized multicenter data pools. Our goal was to evaluate the feasibility of pooling data in multicenter HR‐pQCT imaging trials. Reproducibility imaging experiments were performed using structure and composition‐realistic phantoms constructed from cadaveric radii. Single‐center precision was determined by repeat scanning over short‐term (<72 hours), intermediate‐term (3–5 months), and long‐term intervals (28 months). Multicenter precision was determined by imaging the phantoms at nine different HR‐pQCT centers. Least significant change (LSC) and root mean squared coefficient of variation (RMSCV) for each interval and across centers was calculated for bone density, geometry, microstructure, and biomechanical parameters. Single‐center short‐term RMSCVs were <1% for all parameters except cortical thickness (Ct.Th) (1.1%), spatial variability in cortical thickness (Ct.Th.SD) (2.6%), standard deviation of trabecular separation (Tb.Sp.SD) (1.8%), and porosity measures (6% to 8%). Intermediate‐term RMSCVs were generally not statistically different from short‐term values. Long‐term variability was significantly greater for all density measures (0.7% to 2.0%; p < 0.05 versus short‐term) and several structure measures: cortical thickness (Ct.Th) (3.4%; p < 0.01 versus short‐term), cortical porosity (Ct.Po) (15.4%; p < 0.01 versus short‐term), and trabecular thickness (Tb.Th) (2.2%; p < 0.01 versus short‐term). Multicenter RMSCVs were also significantly higher than short‐term values: 2% to 4% for density and micro–finite element analysis (µFE) measures (p < 0.0001), 2.6% to 5.3% for morphometric measures (p < 0.001), whereas Ct.Po was 16.2% (p < 0.001). In the absence of subject motion, multicenter precision errors for HR‐pQCT parameters were generally less than 5%. Phantom‐based multicenter precision was comparable to previously reported in in vivo single‐center precision errors, although this was approximately two to five times worse than ex vivo short‐term precision. The data generated from this study will contribute to the future design and validation of standardized procedures that are broadly translatable to multicenter study designs. © 2013 American Society for Bone and Mineral Research.  相似文献   

4.

Summary

In older women, the presence of lower leg arterial calcification assessed by high-resolution peripheral quantitative computed tomography is associated with relevant bone microstructure abnormalities at the distal tibia and distal radius.

Introduction

Here, we report the relationships of bone geometry, volumetric bone mineral density (BMD) and bone microarchitecture with lower leg arterial calcification (LLAC) as assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT).

Methods

We utilized the Hertfordshire Cohort Study (HCS), where we were able to study associations between measures obtained from HR-pQCT of the distal radius and distal tibia in 341 participants with or without LLAC. Statistical analyses were performed separately for women and men. We used linear regression models to investigate the cross-sectional relationships between LLAC and bone parameters.

Results

The mean (SD) age of participants was 76.4 (2.6) and 76.1 (2.5)?years in women and men, respectively. One hundred and eleven of 341 participants (32.6 %) had LLAC that were visible and quantifiable by HR-pQCT. The prevalence of LLAC was higher in men than in women (46.4 % (n?=?83) vs. 17.3 % (n?=?28), p?<?0.001). After adjustment for confounding factors, we found that women with LLAC had substantially lower Ct.area (β?=??0.33, p?=?0.016), lower Tb.N (β?=??0.54, p?=?0.013) and higher Tb.Sp (β?=?0.54, p?=?0.012) at the distal tibia and lower Tb.Th (β?=??0.49, p?=?0.027) at the distal radius compared with participants without LLAC. Distal radial or tibial bone parameter analyses in men according to their LLAC status revealed no significant differences with the exception of Tb.N (β?=?0.27, p?=?0.035) at the distal tibia.

Conclusion

In the HCS, the presence of LLAC assessed by HR-pQCT was associated with relevant bone microstructure abnormalities in women. These findings need to be replicated and further research should study possible pathophysiological links between vascular calcification and osteoporosis.
  相似文献   

5.
6.
In clinical practice, fracture healing is evaluated by clinical judgment in combination with conventional radiography. Due to limited resolution, radiographs don't provide detailed information regarding the bone micro-architecture and bone strength. Recently, assessment of in vivo bone density, architectural and mechanical properties at the microscale became possible using high resolution peripheral quantitative computed tomography (HR-pQCT) in combination with micro finite element analysis (μFEA). So far, such techniques have been used mainly to study intact bone. The aim of this study was to explore whether these techniques can also be used to assess changes in bone density, micro-architecture and bone stiffness during fracture healing. Therefore, the fracture region in eighteen women, aged 50 years or older with a stable distal radius fracture, was scanned using HR-pQCT at 1–2 (baseline), 3–4, 6–8 and 12 weeks post-fracture. At 1–2 and 12 weeks post-fracture the distal radius at the contra-lateral side was also scanned as control. Standard bone density, micro-architectural and geometric parameters were calculated and bone stiffness in compression, torsion and bending was assessed using μFEA. A linear mixed effect model with time post-fracture as fixed effect was used to detect significant (p-value ≤ 0.05) changes from baseline. Wrist pain and function were scored using the patient-rated wrist evaluation (PRWE) questionnaire. Correlations between the bone parameters and the PRWE score were calculated by Spearman's correlation coefficient. At the fracture site, total and trabecular bone density increased by 11% and 20%, respectively, at 6–8 weeks, whereas cortical density was decreased by 4%. Trabecular thickness increased by 23–31% at 6–8 and 12 weeks and the intertrabecular area became blurred, indicating intertrabecular bone formation. Compared to baseline, calculated bone stiffness in compression, torsion and bending was increased by 31% after 12 weeks. A moderate negative correlation was found between the stiffness and the PRWE score. No changes were observed at the contra-lateral side. The results demonstrate that it is feasible to assess clinically relevant and significant longitudinal changes in bone density, micro-architecture and mechanical properties at the fracture region during the healing process of stable distal radius fractures using HR-pQCT.  相似文献   

7.
High resolution-peripheral quantitative computed tomography (HR-pQCT) measurements are carried out in clinical research protocols to analyze cortical bone. Micro-computed tomography (micro-CT) is a standard tool for ex vivo examination of bone in 3D. The aim of this work was to evaluate cortical measurements derived from HR-pQCT images compared to those from synchrotron radiation (SR) micro-CT in a distal position (4.2 cm from the distal pilon).Twenty-nine tibia specimens were scanned with HR-pQCT using protocols provided by the manufacturer. The standard measured outcomes included volumetric bone density (g HA/cm3) of the cortical region (Dcomp), and the cortical thickness (Ct.Th, mm). New features, such as cortical porosity (Ct.Po) and mean pore diameter (Ct.Po.Dm), were measured by an auto-contouring process. All tibias were harvested from the posterior region and imaged with SR micro-CT (voxel size = 7.5μm). The cortical thickness, (Ct.Thmicro-CT), porosity (PoV/TV), pore diameter, pore spacing, pore number, and degree of mineralization of bone (DMB) were obtained for SR micro-CT images. For standard measurements on HR-pQCT images, site matched analyses with micro-CT were completed to obtain Dcomplocal and Ct.Thlocal.Dcomp was highly correlated to PoV/TV (r =  0.84,p < 10 4) but not to DMB. Dcomplocal was correlated to PoV/TV (r =  0.72, p < 10 4) and to DMB (r = 0.40, p > 0.05). Ct.Thlocal and Ct.Thmicro-CT were moderately correlated (r = 0.53,p < 0.01). Ct.Th and Ct.Po results from the autocontouring process are influenced by the level of trabecularization of the cortical bone and need manual correction of the endosteal contour.Distal tibia is a reliable region to study cortical bone with Dcomp as the best parameter because it reflects both the micro-porosity (Havers canals) and macro-porosity (resorption lacunae) of the cortical bone.  相似文献   

8.
This study intended to compare bone density and architecture in three groups of women: young women with anorexia nervosa (AN), an age-matched control group of young women, and healthy late postmenopausal women. Three-dimensional peripheral quantitative high resolution computed-tomography (HR-pQCT) at the ultradistal radius, a technology providing measures of cortical and trabecular bone density and microarchitecture, was performed in the three cohorts. Thirty-six women with AN aged 18–30 years (mean duration of AN: 5.8 years), 83 healthy late postmenopausal women aged 70–81 as well as 30 age-matched healthy young women were assessed. The overall cortical and trabecular bone density (D100), the absolute thickness of the cortical bone (CTh), and the absolute number of trabecules per area (TbN) were significantly lower in AN patients compared with healthy young women. The absolute number of trabecules per area (TbN) in AN and postmenopausal women was similar, but significantly lower than in healthy young women.The comparison between AN patients and post-menopausal women is of interest because the latter reach bone peak mass around the middle of the fertile age span whereas the former usually lose bone before reaching optimal bone density and structure. This study shows that bone mineral density and bone compacta thickness in AN are lower than those in controls but still higher than those in postmenopause. Bone compacta density in AN is similar as in controls. However, bone inner structure in AN is degraded to a similar extent as in postmenopause. This last finding is particularly troubling.  相似文献   

9.
Sarcopenia is associated with a greater fracture risk. This relationship was originally thought to be explained by an increased risk of falls in sarcopenic individuals. However, in addition, there is growing evidence of a functional muscle‐bone unit in which bone health may be directly influenced by muscle function. Because a definition of sarcopenia encompasses muscle size, strength, and physical performance, we investigated relationships for each of these with bone size, bone density, and bone strength to interrogate these hypotheses further in participants from the Hertfordshire Cohort Study. A total of 313 men and 318 women underwent baseline assessment of health and detailed anthropometric measurements. Muscle strength was measured by grip strength, and physical performance was determined by gait speed. Peripheral quantitative computed tomography (pQCT) examination of the calf and forearm was performed to assess muscle cross‐sectional area (mCSA) at the 66% level and bone structure (radius 4% and 66% levels; tibia 4% and 38% levels). Muscle size was positively associated with bone size (distal radius total bone area β = 17.5 mm2/SD [12.0, 22.9]) and strength (strength strain index (β = 23.3 mm3/SD [18.2, 28.4]) amongst women (p < 0.001). These associations were also seen in men and were maintained after adjustment for age, height, weight‐adjusted‐for‐height, limb‐length‐adjusted‐for‐height, social class, smoking status, alcohol consumption, calcium intake, physical activity, diabetes mellitus, and in women, years since menopause and estrogen replacement therapy. Although grip strength showed similar associations with bone size and strength in both sexes, these were substantially attenuated after similar adjustment. Consistent relationships between gait speed and bone structure were not seen. We conclude that although muscle size and grip strength are associated with bone size and strength, relationships between gait speed and bone structure and strength were not apparent in this cohort, supporting a role for the muscle‐bone unit. © 2013 American Society for Bone and Mineral Research  相似文献   

10.
MacNeil JA  Boyd SK 《BONE》2007,41(1):129-137
A 3D high resolution peripheral quantitative computed tomography scanner (HR-pQCT) (XtremeCT, Scanco Medical, voxel size 82 microm) has been recently developed that can perform in vivo human measurements on peripheral sites, including the wrist and tibia. The goals of this study were to use HR-pQCT measurements to determine the ability of morphological and density measurements to predict bone apparent stiffness and apparent Young's modulus in the distal radius and tibia, to determine the relative importance of cortical and trabecular bone in carrying load in the human distal radius and tibia. Furthermore, the ability of a sub-volume of trabecular bone apparent Young's modulus to predict the Young's modulus of a whole radius and tibia section was determined. A total of 25 measurements of the radius and 12 measurements of the tibia were used for morphological and finite element analyses of sections, and sub-volume cubes of trabecular bone from the distal radius and tibia. The subjects were chosen to obtain a large variation in age ranges and bone architecture and density. By combining multiple measurements, a strong ability to predict bone apparent stiffness and apparent Young's modulus was found for morphological and density measurements in the radius and tibia (R(2)>0.80). The relative importance of the trabecular and cortical bone in carrying load was also found to vary consistently with location in the sample for both the radius and the tibia. This indicates that measurements of the cortical and trabecular bone are required for assessing fracture risk. A cubic section of trabecular bone was found to be insufficient to accurately represent the apparent bone Young's modulus of a radius or tibia section. Morphological and density measurements of the distal radius and tibia have been shown in this study to predict bone apparent Young's modulus and apparent stiffness, and may indicate when a more time consuming finite element analysis is warranted. It should be noted that these results may be an overestimation of the predictive ability of structural parameters, as the influence of bone density is removed from the finite element analyses, and the results were only influenced by bone structure. A measurement of bone apparent Young's modulus is independent of subject size (as opposed to reaction force), and may provide the ability to distinguish between two patients that have similar mean morphological and density measurements; but different overall structures, and therefore, different fracture risk.  相似文献   

11.
Following parathyroidectomy (PTX), bone mineral density (BMD) increases in patients with primary hyperparathyroidism (PHPT), yet information is scarce concerning changes in bone structure and strength following normalization of parathyroid hormone levels postsurgery. In this 1‐year prospective controlled study, high‐resolution peripheral quantitative computed tomography (HR‐pQCT) was used to evaluate changes in bone geometry, volumetric BMD (vBMD), microarchitecture, and estimated strength in female patients with PHPT before and 1 year after PTX, compared to healthy controls. Twenty‐seven women successfully treated with PTX (median age 62 years; range, 44–75 years) and 31 controls (median age 63 years; range, 40–76 years) recruited by random sampling from the general population were studied using HR‐pQCT of the distal radius and tibia as well as with dual‐energy X‐ray absorptiometry (DXA) of the forearm, spine, and hip. The two groups were comparable with respect to age, height, weight, and menopausal status. In both radius and tibia, cortical (Ct.) vBMD and Ct. thickness increased or were maintained in patients and decreased in controls (p < 0.01). Radius cancellous bone architecture was improved in patients through increased trabecular number and decreased trabecular spacing compared with changes in controls (p < 0.05). No significant cancellous bone changes were observed in tibia. Estimated bone failure load by finite element modeling increased in patients in radius but declined in controls (p < 0.001). Similar, albeit borderline significant changes in estimated failure load were found in tibia (p = 0.06). This study showed that females with PHPT had improvements in cortical bone geometry and increases in cortical and trabecular vBMD in both radius and tibia along with improvements in cancellous bone architecture and estimated strength in radius 1 year after PTX, reversing or attenuating age‐related changes observed in controls. © 2012 American Society for Bone and Mineral Research.  相似文献   

12.
13.
High‐resolution peripheral quantitative computed tomography (HR‐pQCT) is a newly developed in vivo clinical imaging modality. It can assess the 3D microstructure of cortical and trabecular bone at the distal radius and tibia and is suitable as an input for microstructural finite element (µFE) analysis to evaluate bone's mechanical competence. In order for microstructural and image‐based µFE analyses to become standard clinical tools, validation with a current gold standard, namely, high‐resolution micro‐computed tomography (µCT), is required. Microstructural measurements of 19 human cadaveric distal tibiae were performed for the registered HR‐pQCT and µCT images, respectively. Next, whole bone stiffness, trabecular bone stiffness, and elastic moduli of cubic subvolumes of trabecular bone in both HR‐pQCT and µCT images were determined by µFE analysis. The standard HR‐pQCT patient protocol measurements, derived bone volume fraction (BV/TVd), trabecular number (Tb.N*), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and cortical thickness (Ct.Th), as well as the voxel‐based direct measurements, BV/TV, Tb.N*, Tb.Th*, Tb.Sp*, Ct.Th, bone surface‐to‐volume ratio (BS/BV), structure model index (SMI), and connectivity density (Conn.D), correlated well with their respective gold standards, and both contributed to µFE‐predicted mechanical properties in either single or multiple linear regressions. The mechanical measurements, although overestimated by HR‐pQCT, correlated highly with their gold standards. Moreover, elastic moduli of cubic subvolumes of trabecular bone predicted whole bone or trabecular bone stiffness in distal tibia. We conclude that microstructural measurements and mechanical parameters of distal tibia can be efficiently derived from HR‐pQCT images and provide additional information regarding bone fragility. © 2010 American Society for Bone and Mineral Research  相似文献   

14.
Aseptic loosening after total hip arthroplasty is related to bone loss of the operated leg. The aim of the present study was to investigate the effect of aseptic loosening on volumetric bone mineral density (vBMD) and bone geometry in the operated leg, in postmenopausal women with a loosened cemented femoral implant using peripheral quantitative computed tomography (pQCT). We matched 12 postmenopausal women with aseptic loosening of cemented femoral implant, with 12 women without aseptic loosening (control group) according to age, BMI, and years from operation. All patients underwent pQCT of both tibias, DXA of the lumbar spine, and determination of biochemical markers of bone turnover. pQCT values in the control group as well as the nonoperated legs between groups had no significant difference. In the aseptic loosening group, there was significant reduction of cortical vBMD (cort vBMD) at 14% and 38% sites (cortical site), cortical thickness at 38% site, and of polar stress strength index (SSIp) at 14% site (transition zone) in the operated compared with the nonoperated leg. Similarly, there was significant reduction of cort vBMD at 14% and 38% sites and total vBMD and trabecular vBMD (trab vBMD) at the 14% site in the operated legs between the two groups. The aseptic loosening group had increased osteocalcin and serum collagen cross-linked N- and C-telopeptides (sNTX and sCTX) levels compared with controls. Aseptic loosening is associated with significant decrease of cortical and trabecular vBMD, and impairment of bone geometry and strength only in the operated leg. Increased bone turnover probably represents a local phenomenon, and is not associated with systemic skeletal disease.  相似文献   

15.
Generalized bone loss within the femoral neck accounts for only 15% of the increase in intracapsular hip fracture risk between the ages of 60 and 80 years. Conventional histology has shown that there is no difference in cancellous bone area between cases of intracapsular fracture and age and sex-matched controls. Rather, a loss of cortical bone thickness and increased porosity is the key feature with the greatest change occurring in those regions maximally loaded during a fall (the inferoanterior [IA] to superoposterior [SP] axis). We have now reexamined this finding using peripheral quantitative computed tomography (pQCT) to analyze cortical and cancellous bone areas, density, and mass in a different set of ex vivo biopsy specimens from cases of intracapsular hip fracture (female, n = 16, aged 69-92 years) and postmortem specimens (female, n = 15, aged 58-95 years; male, n = 11, aged 56-86 years). Within-neck location was standardized by using locations at which the ratio of maximum to minimum external diameters was 1.4 and at more proximal locations. Cortical widths were analyzed using 72 radial profiles from the center of area of each of the gray level images using a full-width/half-maximum algorithm. In both male and female controls, cancellous bone mass increased toward the femoral head and the rate of change was gender independent. Cancellous bone mass was similar in cases and controls at all locations. Overall, cortical bone mass was significantly lower in the fracture cases (by 25%; p < 0.001) because of significant reductions in both estimated cortical area and density. These differences persisted at locations that are more proximal. The mean cortical width in the cases was significantly lower in the IA (22.2%;p = 0.002) and inferior regions (19%;p < 0.001). The SP region was the thinnest in both cases and controls. These data confirm that a key feature in the etiology of intracapsular hip fracture is the site-specific loss of cortical bone, which is concentrated in those regions maximally loaded during a fall on the greater trochanter. An important implication of this work is that the pathogenesis of bone loss leading to hip fracture must be by a mechanism that varies in its effect according to location within the femoral neck Key candidate mechanisms would include those involving locally reduced mechanical loading. This study also suggests that the development of noninvasive methodologies for analyzing the thickness and estimated densities of critical cortical regions of the femoral neck could improve detection of those at risk of hip fracture.  相似文献   

16.
Romosozumab inhibits sclerostin, thereby increasing bone formation and decreasing bone resorption. This dual effect of romosozumab leads to rapid and substantial increases in areal bone mineral density (aBMD) as measured by dual-energy X-ray absorptiometry (DXA). In a phase 1b, randomized, double-blind, placebo-controlled study, romosozumab or placebo was administered to 32 women and 16 men with low aBMD for 3 months, with a further 3-month follow-up: women received six doses of 1 or 2 mg/kg every 2 weeks (Q2W) or three doses of 2 or 3 mg/kg every 4 weeks (Q4W); men received 1 mg/kg Q2W or 3 mg/kg Q4W. Quantitative computed tomography (QCT) scans at lumbar (L1–2) vertebrae and high-resolution QCT (HR-QCT) scans at thoracic vertebra (T12) were analyzed in a subset of subjects at baseline, month 3, and month 6. The QCT subset included 24 romosozumab and 9 placebo subjects and the HR-QCT subset included 11 romosozumab and 3 placebo subjects. The analyses pooled the romosozumab doses. Linear finite element modeling of bone stiffness was performed. Compared with placebo, the romosozumab group showed improvements at month 3 for trabecular BMD by QCT and HR-QCT, HR-QCT trabecular bone volume fraction (BV/TV) and separation, density-weighted cortical thickness, and QCT stiffness (all p < 0.05). At month 6, improvements from baseline were observed in QCT trabecular BMD and stiffness, and in HR-QCT BMD, trabecular BV/TV and separation, density-weighted cortical thickness, and stiffness in the romosozumab group (all p < 0.05 compared with placebo). The mean (SE) increase in HR-QCT stiffness with romosozumab from baseline was 26.9% ± 6.8% and 35.0% ± 6.8% at months 3 and 6, respectively; subjects administered placebo had changes of − 2.7% ± 13.4% and − 6.4% ± 13.4%, respectively. In conclusion, romosozumab administered for 3 months resulted in rapid and large improvements in trabecular and cortical bone mass and structure as well as whole bone stiffness, which continued 3 months after the last romosozumab dose.  相似文献   

17.

Summary  

An automated image processing method is presented for simulating areal bone mineral density measures using high-resolution peripheral quantitative computed tomography (HR-pQCT) in the ultra-distal radius. The accuracy of the method is validated against clinical dual X-ray absorptiometry (DXA). This technique represents a useful reference to gauge the utility of novel 3D quantification methods applied to HR-pQCT in multi-center clinical studies and potentially negates the need for separate forearm DXA measurements.  相似文献   

18.
Idiopathic osteoporosis (IOP) in premenopausal women is a poorly understood entity in which otherwise healthy women have low‐trauma fracture or very low bone mineral density (BMD). In this study, we applied individual trabeculae segmentation (ITS)–based morphological analysis to high‐resolution peripheral quantitative computed tomography (HR‐pQCT) images of the distal radius and distal tibia to gain greater insight into skeletal microarchitecture in premenopausal women with IOP. HR‐pQCT scans were performed for 26 normal control individuals and 31 women with IOP. A cubic subvolume was extracted from the trabecular bone compartment and subjected to ITS‐based analysis. Three Young's moduli and three shear moduli were calculated by micro–finite element (µFE) analysis. ITS‐based morphological analysis of HR‐pQCT images detected significantly decreased trabecular plate and rod bone volume fraction and number, decreased axial bone volume fraction in the longitudinal axis, increased rod length, and decreased rod‐to‐rod, plate‐to‐rod, and plate‐to‐plate junction densities at the distal radius and distal tibia in women with IOP. However, trabecular plate and rod thickness did not differ. A more rod‐like trabecular microstructure was found in the distal radius, but not in the distal tibia. Most ITS measurements contributed significantly to the elastic moduli of trabecular bone independent of bone volume fraction (BV/TV). At a fixed BV/TV, plate‐like trabeculae contributed positively to the mechanical properties of trabecular bone. The results suggest that ITS‐based morphological analysis of HR‐pQCT images is a sensitive and promising clinical tool for the investigation of trabecular bone microstructure in human studies of osteoporosis. © 2010 American Society for Bone and Mineral Research  相似文献   

19.
J Dawson  H Fewins  J Desmond  M Lynch    D Graham 《Thorax》2001,56(8):622-627
BACKGROUND: Fibrosing alveolitis (FA) is a common and serious complication of rheumatoid arthritis (RA). Before the availability of high resolution computed tomographic (HRCT) scanning, it was difficult to diagnose accurately without recourse to biopsy. Prospective studies have reported a prevalence of interstitial lung disease (ILD) of 19-44%. The term ILD used by these authors encompasses a variety of appearances on HRCT scans. This prospective study used HRCT scanning to determine the true prevalence of FA in hospital outpatients with RA, and to study associated clinical characteristics. METHODS: One hundred and fifty consecutive patients with RA were selected from a hospital outpatient department, irrespective of the presence or absence of chest disease. All underwent a detailed clinical assessment, chest HRCT scanning, and conventional chest radiography within 4 weeks of full pulmonary function tests. RESULTS: Seventy percent of patients were current or reformed cigarette smokers. Twenty eight (19%) had FA, most frequently of reticular pattern, and 12 of this group (43%) also had emphysematous bullae. None of the previously suggested risk factors for developing FA were confirmed. Fifty four percent of patients with HRCT evidence of FA had bilateral basal chest crackles, 82% had a reduced carbon monoxide transfer factor (TLCO), 14% had restrictive pulmonary function tests, and 14% had bilateral chest radiographic signs of FA. CONCLUSIONS: HRCT evidence of FA was present in 19% of hospital outpatients with RA. Abnormalities on chest examination or on full pulmonary function tests, even without restrictive changes or chest radiographic abnormalities, should prompt physicians to request a chest HRCT scan when investigating dyspnoea in patients with RA.  相似文献   

20.
Peripheral quantitative computed tomography (pQCT) is an established diagnostic method for assessment of bone mineral density in the diagnosis of osteoporosis. However, the capacity of structural parameters of cancellous bone measured by high-resolution computed tomography remains to be explored. In 33 patients, bone mineral density (BMD) of the proximal femur was measured in vitro by pQCT using cylindrical biopsies from the intertrochanteric region harvested before the implantation of an artificial hip joint. By digital image analysis of CT scans, parameters derived from histomorphometry describing the microarchitecture of cancellous bone were measured. The biopsies were also loaded to failure by an uniaxial compression test to determine the biomechanical parameters, Young's modulus, strength, and maximum energy absorption (E(max)). Strong correlations were found for BMD vs. mechanical parameters (r = 0.73 for Young's modulus, r = 0.82 for strength, and r = 0.79 for E(max); p < 0.001, n = 29). The morphological parameters, bone volume per trabecular volume (BV/TV), apparent trabecular thickness (app.Tb.Th), apparent trabecular separation (app.Tb.Sp), and trabecular number (Tb.N), correlated significantly with all mechanical parameters. The combination of morphological parameters with BMD in a multivariate regression model led to an overall, but only moderate, increase in R(2) in all cases. Our data confirm the high predictive value of BMD for the mechanical competence of cancellous bone of the intertrochanteric region. However, quantification of cancellous bone structure by image analysis of CT scans may provide additional qualitative information for the analysis of bone strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号