首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We conducted a histomorphometrical study on the role of the bone marrow in cancellous bone metabolism using iliac bone specimens from 79 postmenopausal women. A gradual decrease in hematopoietic tissue of the bone marrow was proportionate to the decrease in cancellous bone and the ratio of osteoid perimeter/bone perimeter regardless of age. On the other hand, the ratio of eroded perimeter/bone perimeter remained almost steady until hematopoietic tissue decreased significantly. These findings suggest that a change in the bone marrow, that is, a decrease in hematopoietic tissue, causes an imbalance in bone formation and resorption and leads to bone loss.  相似文献   

2.
Biochemical serum markers of osteoblastic activity and collagen turnover were measured in a sheep model of distraction osteogenesis. Significant increases of the bone formation marker osteocalcin were found during the first part of the consolidation phase and peaked at a time point equalling the distraction phase. Collagen turnover parameters pyridinoline and the specific type I collagen marker desoxypyridinoline consistently increased during the distraction and consolidation phases. While pyridinoline peaked at a time point similar to osteocalcin, desoxypyridinoline increased to a later stage in consolidation, indicating continuous turnover of bone-specific type I collagen. The results indicate a characteristic pattern of osteoblast cellular activation during distraction osteogenesis with possible consequences for the timing of treatment.  相似文献   

3.
4.
5.
6.
We previously reported Rho kinase is involved in vessel hyper-permeability caused by burns. Here we further explore the Rho kinase downstream signaling, it is found that its specific inhibitor Y27632 significantly diminishes the activation of JNK and p38 MAPKs but not ERK that induced by serum from burned rats (burn-serum). JNK activation was found involved in the expression of HUVEC adhesion molecules following thermal injury, although not in the process of stress fiber formation. Inhibition of various MAPKs by specific inhibitors showed that SB203580 (inhibitor of p38), but neither SP600125 (inhibitor of JNK) nor PD98059 (inhibitor of ERK), abolish activation of the p38 downstream kinase MK2. Demonstration of stress fibers by fluorescent-labeled phalloidin showed that inhibition of MK2, either by its specific inhibitor or by dominant negative adeno-viral-carried constructs, significantly reduced burn-serum-induced HUVEC stress-fiber formation, while inhibition of another downstream p38 MAPK kinase, PRAK, had no such effects. Transfection of dominant negative adeno-viral MK2 (Ad-MK2(A)) significantly inhibited thermal injury-induced blood vessel hyper-permeability in rats and, moreover, prolonged the survival of burned rats beyond 72 h following thermal injury. One of the mechanisms behind these phenomena is that Ad-MK2(A) causes a significant depression of burn-serum-induced HSP27-phosphorylation, while the adeno-viral transported dominant negative PRAK (Ad-PRAK(A)) does not block. Although the effect of blockade of MK2 through its adeno-viral approach requires further study and investigation of alternatives to know for sure, we may have found a new pathway behind thermal-injury-induced blood vessel hyper-permeability, namely: Rho kinase > p38 > MK2 > HSP27.  相似文献   

7.
TAK-778, a derivative of ipriflavone, has been shown to induce bone growth both in vitro and in vivo. Recently, it has been shown that TAK-778 can enhance osteoblast differentiation of human bone marrow cells via an estrogen receptor (ER)-dependent pathway. However, the mechanism by which TAK-778 exerts its effect in vivo has not been determined. Considering the evidence that TAK-778 acts via ER-mediated signaling in vitro, in the present study we tested if TAK-778 induced osteogenesis via an ER-dependent pathway using an ovariectomized (OVX) rat model. Two weeks after test animals underwent ovariectomy, TAK-778 and/or tamoxifen was administered orally over 3 months. Vehicle-treated and sham-operated rats served as controls. The bone mineral density (BMD) of the lumbar vertebrae and sagittal two-dimensional images of the L3 vertebral body were measured. In addition, bone formation rates (BFR) and serum calcium and osteocalcin levels were measured. The results indicated that TAK-778 significantly increased BMD, serum calcium and osteocalcin levels, and BFR when compared to that of the vehicle-treated group. However, tamoxifen, a well-known ER antagonist, clearly inhibited the increase in these parameters induced by TAK-778. In addition, micro-computed tomography scans showed that treatment with TAK-778 increased the structure model index, bone volume/tissue volume, and trabecular thickness parameters and decreased the trabecular separation/spacing in OVX rats. Tamoxifen suppressed these effects when administered in combination with TAK-778. Taken together, the present study showed that TAK-778 enhanced bone formation in OVX rats and that this effect was dependent on an ER-mediated pathway.  相似文献   

8.
9.

Background

Hepatocellular carcinoma (HCC) is often diagnosed at an advanced stage, when it is not amenable for aggressive therapies such as surgical resection or liver transplantation. Current therapeutic options achieve clinical responses in only a small percentage of cases. As a consequence, effective approaches for prevention and treatment are greatly needed. Altered lipid metabolism has been recently linked to HCC pathogenesis. The aims of this study were to define the cellular and molecular mechanisms linking stearoyl-CoA desaturase (SCD), the rate-limiting enzyme and an essential regulator of lipid homeostasis in liver cells, to carcinogenesis in HCC.

Material and methods

HCC and normal liver specimens were collected. Human HCC cell lines: HepG2, Hep3B, and PLC/PLF/5 were used for immunoblot, cell viability, proliferation, and apoptosis assays. Small interfering RNAs were used for genetic inhibition, and 10, 12 conjugated linoleic acid was used for pharmacologic SCD inhibition.

Results

SCD was strongly expressed in surgically resected HCC (n = 64) and various human HCC cell lines (HepG2, Hep3B, and PLC/PLF/5). The levels of SCD negatively correlated with degree of tumor differentiation (P < 0.01). Treatment of these HCC cell lines with a panel of chemotherapeutic drugs resulted in a time-dependent, phosphatidylinositol 3 kinase- and c-Jun N-terminal kinases1/2–mediated upregulation of SCD expression, which paralleled the degree of resistance to drug-induced apoptosis. Specific genetic or pharmacologic SCD suppression resulted in inhibition of cell proliferation (P < 0.001) and significantly increased sensitivity to chemotherapy-induced apoptosis.

Conclusions

Our data suggest that increased SCD expression plays an important role in HCC development and resistance to chemotherapy-induced apoptosis, and this is in part mediated by phosphatidylinositol 3 kinase/c-Jun N-terminal kinases activation. Specific targeted interruption of this pathway in HCC could be a desirable approach in designing novel therapeutic strategies.  相似文献   

10.
11.
Yin Z  Jiang G  Fung JJ  Lu L  Qian S 《Microsurgery》2007,27(4):328-332
The authors have demonstrated a strong T-cell inhibitory activity of hepatic stellate cells (HSC), which may participate in the establishment of hepatic tolerance. The underlying mechanism is not completely understood. This study showed that intercellular adhesion molecule 1 (ICAM-1) was constitutively expressed on HSC, and up-regulated upon activation. ICAM-1 knockout mice was used to analyze the role of ICAM-1 expressed on HSC, and showed that deficiency in ICAM-1 expression partially reverses HSC immune inhibitory activity both in vitro and in vivo, but did not significantly affect their capacity to induce T-cell apoptosis.  相似文献   

12.
To clarify the relationship between the changes of trabecular bone turnover and bone marrow cell development during mechanical unloading and reloading, we performed experiments with tail-suspended mice. At 8 weeks of age, 150 male ddY mice were divided into three body weight-matched groups. Mice of group 1 were euthanized at the start of tail suspension (day 0) as a baseline control. The mice of group 2 were subjected to hindlimb unloading by tail suspension for 14 days and reloading for the subsequent 14 days. The mice of group 3 were normally loaded as age-matched controls. Mice of groups 2 and 3 were sacrificed at 7, 14, and 28 days after the start of the experiment. In the first experiment (histomorphometric study of tibiae), unloading for 7 and 14 days and reloading for the subsequent 14 days significantly decreased the bone volume compared with that in the age-matched controls, respectively. Unloading for 7 and 14 days also significantly reduced the bone formation rate (BFR/BS), respectively, but reloading for the subsequent 14 days restored BFR/BS to the control level. While the unloading for 7 and 14 days significantly increased both the osteoclast surface (Oc.S/BS) and the osteoclast number (Oc.N/BS), the reloading for the subsequent 14 days decreased Oc.S/BS and Oc. N/BS, respectively. In the second experiment (bone marrow cell culture study of tibiae), unloading for 7 and 14 days reduced the adherent stromal cell number, without significance. Unloading for 7 days significantly decreased the mineralized nodule formation. Reloading for the subsequent 14 days markedly increased the adherent stromal cell number and the mineralized nodule formation. Unloading for 7 days significantly increased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. These data clearly demonstrate that unloading reduces bone formation and increases bone resorption, and subsequent reloading restores reduced bone formation and suppresses increased bone resorption, closely associated with the changes in adherent stromal cell number, mineralized nodule formation, and the number of TRAP-positive multinucleated cells.  相似文献   

13.
14.
While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col‐Cre Egfrf/f), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant‐negative allele, Wa5, and generated Col‐Cre EgfrWa5/f mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony‐forming unit–fibroblast (CFU‐F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild‐type mice caused a significant reduction in trabecular bone volume. In contrast, EgfrDsk5/+ mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism. © 2011 American Society for Bone and Mineral Research.  相似文献   

15.
[目的]通过在体实验,研究低频振动对骨髓基质干细胞(bone marrow stromal cells,BMSCs)成骨能力及其OPG基因、RANKL基因表达的影响,并初步探讨其机制.[方法]实验用新西兰兔80只,制作骨缺损模型,骨缺损区植入脱钙骨基质明胶及BMSCs复合物,随机分组:对照组(A组);12.5 Hz振动频率组(B组);25 Hz振动频率组(C组);50 Hz振动频率组(D组);100Hz振动频率组(E组).振动组于第7 d开始接受振动干预5周;振动结束后对不同频率振动组别OPG mRNA、RANKL mRNA进行检测.[结果]振动组BMSCs OPG、RANKL基因表达明显上调(P<0.05),以25 Hz显著(P<0.01);100 Hz振动组BMSCs OPG、RANKL基因表达下调(P<0.05).[结论]低频振动可调控BMSCs的骨向分化并且促进其成骨能力,可能与其促进OPG基因表达上调有关.  相似文献   

16.
BACKGROUND: This study addresses the question of the mechanism for maintaining tolerance to donor alloantigen in the absence of antigen and the role of secondary lymphoid tissues. METHODS: Depleting anti-CD4 antibody administration in conjunction with allogeneic heart transplantation generates donor-specific operational tolerance. Primary C57BL/6 heart grafts were transplanted into the neck cavity of the anti-CD4 antibody pretreated C3H/He mice. At day 50, functioning heart grafts were removed from tolerant mice. At day 100, a secondary C57BL/6 or a third-party heart was transplanted into the abdomen. RESULTS: Anti-CD4 antibody therapy induced CD4CD25 regulatory T cells by 50 days after transplantation, as depleting anti-CD25 treatment in tolerant mice abrogated graft prolongation when spleen leukocytes were adoptively transferred to syngeneic mice. Tolerance was maintained by CD4CD25 regulatory T cells via a CTLA-4 signal at 100 days, even after removal of the primary graft at day 50. Administration of anti-CD25 antibody immediately after removal of the primary graft did not break tolerance, as five out of six second allografts transplanted at day 100 were accepted. Anti-CD25 antibody therapy in conjunction with splenectomy, but not thymectomy, immediately after removal of primary heart grafts at day 50 broke tolerance at day 100; all allografts were rejected. CONCLUSION: The spleen is important in maintaining CD4CD25 regulatory T cells after primary allograft removal.  相似文献   

17.

Purpose

Prostate cells are dependent on androgens for growth and proliferation. Androgen deprivation therapy is the recommended treatment for advanced/metastatic prostate cancer. Under this therapy, prostate cancer will inevitably progress to castration resistant prostate cancer (CRPC). Despite putative castration resistance, testosterone might still play a crucial role in the progression of CRPC. The goal of this study was to determine the role of testosterone in the formation of metastases of CRPC in both in vitro and in vivo settings.

Methods

In vitro, the effect of testosterone and the non-aromatizable androgen methyltrienolone on migration, invasion and proliferation of a castration-resistant prostate cancer rat cell line (Dunning R3327-MATLyLu) was assessed using a transwell assay and a sulforhodamine B assay and immunohistochemical detection of ki67. Androgen receptor status was determined using Western blot. In vivo, Copenhagen rats were divided in four groups (males, females, castrated males and females with testosterone suppletion) and inoculated with MATLyLu cells. Tumor size was assessed daily.

Results

Testosterone increased cell migration and invasion in a concentration-dependent manner in vitro. Testosterone did not affect in vitro cell proliferation. No difference was shown between the effect of testosterone and methyltrienolone. In vivo, in groups with higher levels of circulating testosterone, more rats had (micro)metastases compared with groups with low levels of testosterone. No effect was observed on primary tumor size/growth.

Conclusions

Despite assumed castration resistance, progression of prostate cancer is still influenced by androgens. Therefore, continuous suppression of serum testosterone in patients who show disease progression during castration therapy is still warranted.  相似文献   

18.
The carotid bodies are sensitive to glucose in vitro and can be stimulated to cause hyperglycemia in vivo. The aim of this study was to determine if the carotid bodies are involved in basal glucoregulation or the counterregulatory response to an insulin-induced decrement in arterial glucose in vivo. Dogs were surgically prepared >16 days before the experiment. The carotid bodies and their associated nerves were removed (carotid body resected [CBR]) or left intact (Sham), and infusion and sampling catheters were implanted. Removal of carotid bodies was verified by the absence of a ventilatory response to NaCN. Experiments were performed in 18-h fasted conscious dogs and consisted of a tracer ([3-3H]glucose) equilibration period (-120 to -40 min), a basal period (-40 to 0 min), and an insulin infusion (1 mU x kg(-1) x min(-1)) period (0-150 min) during which glucose was infused as needed to clamp at mildly hypoglycemic (65 mg/dl) or euglycemic (105 mg/dl) levels. Basal (8 microU/ml) and clamp (40 microU/ml) insulin levels were similar in both groups. Basal arterial glucagon was reduced in CBR compared with Sham (30 + 2 vs. 40 +/- 2 pg/ml) and remained reduced in CBR during hypoglycemia (peak levels of 36 +/- 3 vs. 52 +/- 7 pg/ml). Cortisol levels were not significantly different between the 2 groups in the basal state, but were reduced during the hypoglycemic clamp in CBR. Catecholamine levels were not significantly different between the 2 groups in the basal and hypoglycemic periods. The glucose infusion rate required to clamp glucose at 65 mg/dl was 2.5-fold greater in CBR compared with Sham (4.0 +/- 0.4 vs. 1.6 +/- 0.4 mg x kg(-1) x min(-1)). Basal endogenous glucose appearance (R(a)) was equal in CBR and Sham (2.5 +/- 0.1 vs. 2.5 +/- 0.2 mg x kg(-1) x min(-1)). During the hypoglycemic clamp, insulin suppressed R(a) in CBR but not Sham (1.1 +/- 0.2 vs. 2.5 +/- 0.2 mg x kg(-1) x min(-1) during the last 30 min of the clamp), reflecting impaired counterregulation. Glucose disappearance (R(d)) in the basal state was similar in CBR and Sham, whereas it was elevated in CBR during the hypoglycemic clamp (4.8 +/- 0.1 vs. 3.9 +/- 0.1 mg x kg(-1) x min(-1) during the last 30 min of the clamp). R(d) was also elevated in euglycemic clamp studies, indicating an effect of carotid body resection independent of hypoglycemia. There were no other measured systematic endocrine or metabolic effects of carotid body resection during euglycemic clamps. In conclusion, we found that the carotid bodies (or receptors anatomically close by) play an important role in the insulin-induced counterregulatory response to mild hypoglycemia.  相似文献   

19.
20.
Since little is known about the in vivo disposition of circulating somatostatin-14 (SRIF-14), we examined hepatic processing of SRIF-14 in the rat. Three minutes after the intraportal injection of iodine 125 (125I)-labeled SRIF-14, 16.0 +/- 2.0% of the injected dose is localized to the liver. In the presence of unlabeled SRIF-14, hepatic uptake can be decreased by 68%. Five minutes after the intraportal injection of 125I-SRIF-14, 9.5 +/- 1.4% of the tracer is localized to the liver, more than any other organ tested. Serial collections of bile reveal peak radioactivity at between 10 and 20 minutes. Simultaneous administration of unlabeled SRIF-14 decreases biliary radioactivity by 40%. HPLC analysis of radioactive bile reveals a chromatographic profile similar to that of intact SRIF and is 73% immunoprecipitable by an anti-SRIF antibody. Pretreatment with chloroquine, a lysosomal enzyme inhibitor, does not significantly decrease biliary radioactivity. We conclude that the data are consistent with saturable hepatic uptake and predominantly nonlysosomal transcellular transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号