首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundThe role of children in the transmission of SARS-CoV-2 during the early pandemic was unclear.AimWe aimed to review studies on the transmission of SARS-CoV-2 by children during the early pandemic.MethodsWe searched MEDLINE, Embase, the Cochrane Library, Europe PubMed Central and the preprint servers medRxiv and bioRxiv from 30 December 2019 to 10 August 2020. We assessed the quality of included studies using a series of questions adapted from related tools. We provide a narrative synthesis of the results.ResultsWe identified 28 studies from 17 countries. Ten of 19 studies on household and close contact transmission reported low rates of child-to-adult or child-to-child transmission. Six studies investigated transmission of SARS-CoV-2 in educational settings, with three studies reporting 183 cases from 14,003 close contacts who may have contracted COVID-19 from children index cases at their schools. Three mathematical modelling studies estimated that children were less likely to infect others than adults. All studies were of low to moderate quality.ConclusionsDuring the early pandemic, it appeared that children were not substantially contributing to household transmission of SARS-CoV-2. School-based studies indicated that transmission rates in this setting were low. Large-scale studies of transmission chains using data collected from contact tracing and serological studies detecting past evidence of infection would be needed to verify our findings.  相似文献   

2.
Coronavirus disease 2019 (COVID-19) has claimed the lives of millions of people worldwide since it first emerged. The impact of the COVID-19 pandemic on public health and the global economy has highlighted the medical need for the development of broadly acting interventions against emerging viral threats. Galidesivir is a broad-spectrum antiviral compound with demonstrated in vitro and in vivo efficacy against several RNA viruses of public health concern, including those causing yellow fever, Ebola, Marburg, and Rift Valley fever. In vitro studies have shown that the antiviral activity of galidesivir also extends to coronaviruses. Herein, we describe the efficacy of galidesivir in the Syrian golden hamster model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Treatment with galidesivir reduced lung pathology in infected animals compared with untreated controls when treatment was initiated 24 h prior to infection. These results add to the evidence of the applicability of galidesivir as a potential medical intervention for a range of acute viral illnesses, including coronaviruses.  相似文献   

3.
The effects of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in women on the gestation course and the health of the fetus, particularly in the first and second trimesters, remain very poorly explored. This report describes a case in which the normal development of pregnancy was complicated immediately after the patient had experienced Coronavirus disease 2019 (COVID-19) at the 21st week of gestation. Specific conditions included critical blood flow in the fetal umbilical artery, fetal growth restriction (1st percentile), right ventricular hypertrophy, hydropericardium, echo-characteristics of hypoxic-ischemic brain injury (leukomalacia in periventricular area) and intraventricular hemorrhage at the 25th week of gestation. Premature male neonate delivered at the 26th week of gestation died after 1 day 18 h due to asystole. The results of independent polymerase chain reaction (PCR), mass spectrometry and immunohistochemistry analyses of placenta tissue, umbilical cord blood and child blood jointly indicated vertical transmission of SARS–CoV-2 from mother to the fetus, which we conclude to be the major cause for the development of maternal vascular malperfusion in the studied case.  相似文献   

4.
Significant efforts are being made in many countries around the world to respond to the COVID-19 pandemic by developing diagnostic reagent kits, identifying infected people, determining treatment methods, and finally producing effective vaccines. However, novel coronavirus variants may potentially reduce the effectiveness of all these efforts, demonstrating increased transmissibility and abated response to therapy or vaccines, as well as the possibility of false negative results in diagnostic procedures based on nucleic acid amplification methods. Since the end of 2020, several variants of concern have been discovered around the world. When information about a new, potentially more dangerous strain of pathogen appears, it is crucial to determine the moment of its emergence in a region. Eventually, that permits taking timely measures and minimizing new risks associated with the spreading of the virus. Therefore, numerous nations have made tremendous efforts to identify and trace these virus variants, which necessitates serious technological processes to sequence a large number of viral genomes. Here, we report on our experience as one of the primary laboratories involved in monitoring SARS-CoV-2 variants in Russia. We discuss the various approaches used, describe effective protocols, and outline a potential technique combining several methods to increase the ability to trace genetic variants while minimizing financial and labor costs.  相似文献   

5.
The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.

In December 2019, a cluster of viral pneumonia cases was observed in Wuhan, Hubei Province, China (1). The etiologic agent of this infection was found to be a novel coronavirus that we now call severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (2). By early 2020, the virus was rapidly spreading, leading to infections on all seven continents and in every country around the world. There have since been over 550 million cases and six million deaths from this virus (3). Despite the rapid development and deployment of vaccines, the pandemic persists.SARS-CoV-2 is a single-stranded positive-sense RNA virus that is 79% identical in sequence to SARS-CoV-1, the virus responsible for localized epidemic outbreaks beginning in February 2003 (4). The genome of this and other beta coronaviruses is composed of Open Reading Frames (ORFs), which are functionally divided between replicase proteins, structural proteins, and accessory proteins, the latter of which are unique to each CoV species (5, 6). From the 5′ to the 3′ end, the virus encodes the replicase (ORF1a/b) and the four ORFS for the structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). The replicase is responsible for encoding 16 nonstructural proteins that compose the replicative machinery of the virus. Additionally, interspersed with the structural proteins at the 3′ end of the genome are a variety of accessory ORFs. The accessory ORFs encode proteins that are not essential for viral replication in vitro but contribute to viral pathogenesis. The accessory ORFs of SARS-CoV-2 are very similar to those of SARS-CoV-1, and many of the functions of these ORFs have been inferred based on the previously identified functions of the SARS-CoV-1 accessory ORFs (5).The functions of the accessory ORFs of SARS-CoV-2 involve modulation of several different host pathways including antagonism of the innate immune response. For example, SARS-CoV-2 ORF3b has been shown to antagonize interferon (IFN) signaling, and ORF7a has been shown to interfere with the IFN-stimulated gene (ISG) BST2 (79). SARS-CoV-2 ORF6 also participates in this antagonism of the innate immune response, as it has been shown to antagonize the IFN-induced nuclear translocation of STAT1, resulting in the reduced expression of ISGs (10). While ORF3a, ORF6, and ORF7a have been shown to be antagonists of the innate immune system, SARS-CoV-2 ORF8 has been shown to act as an agonist for the interleukin 17 (IL-17) receptor, functionally stimulating receptor signaling (11).The continuation of the COVID-19 pandemic is largely due to the emergence of mutated strains, or “variants,” of SARS-CoV-2. The variants differ most notably in the sequence of their spike proteins, which bind to the receptor angiotensin-converting enzyme 2 (ACE2) to allow for internalization of the virus. As the spike protein is the immunodominant antigen, the emergence of variants has raised concerns regarding the breadth of protection of the SARS-CoV-2 vaccines. However, it is important to note that many of the variants of SARS-CoV-2 possess mutations in one or more of the accessory proteins. The impact of such mutations outside of the spike protein on the pathogenesis of these variants remains understudied.To elucidate the role of the accessory proteins of SARS-CoV-2 in pathogenesis, we developed a synthetic genomics assembly approach based on transformation-associated recombination (TAR) in yeast for the creation of infectious clones of SARS-CoV-2 (1215). We then synthesized deletion viruses of ORFs 3a/3b, 6, 7a/7b, and 8 in the prototype SARS-CoV-2 (isolate USA/-WA1/2020 or WA-1) strain of SARS-CoV-2. We then investigated the replicative fitness of these viruses in vitro before proceeding to characterization of the effect of these accessory deletions on pathogenesis in a murine model. To begin to characterize the impact of naturally occurring accessory mutations and nonspike mutations found in the variants on the pathogenesis of SARS-CoV-2, we developed recombinant variant spike proteins in the WA-1 backbone (B.1.1.7, B.1.351, and P.1). We then compared the replicative fitness in vitro of these recombinant viruses to the parent variants and characterized differences in pathogenesis in a mouse model.  相似文献   

6.
In the past year and a half, SARS-CoV-2 has caused 240 million confirmed cases and 5 million deaths worldwide. Autophagy is a conserved process that either promotes or inhibits viral infections. Although coronaviruses are known to utilize the transport of autophagy-dependent vesicles for the viral life cycle, the underlying autophagy-inducing mechanisms remain largely unexplored. Using several autophagy-deficient cell lines and autophagy inhibitors, we demonstrated that SARS-CoV-2 ORF3a was able to induce incomplete autophagy in a FIP200/Beclin-1-dependent manner. Moreover, ORF3a was involved in the induction of the UPR (unfolded protein response), while the IRE1 and ATF6 pathways, but not the PERK pathway, were responsible for mediating the ORF3a-induced autophagy. These results identify the role of the UPR pathway in the ORF3a-induced classical autophagy process, which may provide us with a better understanding of SARS-CoV-2 and suggest new therapeutic modalities in the treatment of COVID-19.  相似文献   

7.
Domestic cats are susceptible to SARS-CoV-2 virus infection and given that they are in close contact with people, assessing the potential risk cats represent for the transmission and maintenance of SARS-CoV-2 is important. Assessing this risk implies quantifying transmission from humans-to-cats, from cats-to-cats and from cats-to-humans. Here we quantified the risk of cat-to-cat transmission by reviewing published literature describing transmission either experimentally or under natural conditions in infected households. Data from these studies were collated to quantify the SARS-CoV-2 reproduction number R0 among cats. The estimated R0 was significantly higher than one, hence cats could play a role in the transmission and maintenance of SARS-CoV-2. Questions that remain to be addressed are the risk of transmission from humans-to-cats and cats-to-humans. Further data on household transmission and data on virus levels in both the environment around infected cats and their exhaled air could be a step towards assessing these risks  相似文献   

8.
Since its emergence in 2019, SARS-CoV-2 has spread and evolved globally, with newly emerged variants of concern (VOCs) accounting for more than 500 million COVID-19 cases and 6 million deaths. Continuous surveillance utilizing simple genetic tools is needed to measure the viral epidemiological diversity, risk of infection, and distribution among different demographics in different geographical regions. To help address this need, we developed a proof-of-concept multilocus genotyping tool and demonstrated its utility to monitor viral populations sampled in 2020 and 2021 across six continents. We sampled globally 22,164 SARS-CoV-2 genomes from GISAID (inclusion criteria: available clinical and demographic data). They comprised two study populations, “2020 genomes” (N = 5959) sampled from December 2019 to September 2020 and “2021 genomes” (N = 16,205) sampled from 15 January to 15 March 2021. All genomes were aligned to the SARS-CoV-2 reference genome and amino acid polymorphisms were called with quality filtering. Thereafter, 74 codons (loci) in 14 genes including orf1ab polygene (N = 9), orf3a, orf8, nucleocapsid (N), matrix (M), and spike (S) met the 0.01 minimum allele frequency criteria and were selected to construct multilocus genotypes (MLGs) for the genomes. At these loci, 137 mutant/variant amino acids (alleles) were detected with eight VOC-defining variant alleles, including N KR203&204, orf1ab (I265, F3606, and L4715), orf3a H57, orf8 S84, and S G614, being predominant globally with > 35% prevalence. Their persistence and selection were associated with peaks in the viral transmission and COVID-19 incidence between 2020 and 2021. Epidemiologically, older patients (≥20 years) compared to younger patients (<20 years) had a higher risk of being infected with these variants, but this association was dependent on the continent of origin. In the global population, the discriminant analysis of principal components (DAPC) showed contrasting patterns of genetic clustering with three (Africa, Asia, and North America) and two (North and South America) continental clusters being observed for the 2020 and 2021 global populations, respectively. Within each continent, the MLG repertoires (range 40–199) sampled in 2020 and 2021 were genetically differentiated, with ≤4 MLGs per repertoire accounting for the majority of genomes sampled. These data suggested that the majority of SARS-CoV-2 infections in 2020 and 2021 were caused by genetically distinct variants that likely adapted to local populations. Indeed, four GISAID clade-defined VOCs - GRY (Alpha), GH (Beta), GR (Gamma), and G/GK (Delta variant) were differentiated by their MLG signatures, demonstrating the versatility of the MLG tool for variant identification. Results from this proof-of-concept multilocus genotyping demonstrates its utility for SARS-CoV-2 genomic surveillance and for monitoring its spatiotemporal epidemiology and evolution, particularly in response to control interventions including COVID-19 vaccines and chemotherapies.  相似文献   

9.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that causes COVID-19. Being aware of the presence of the virus on different types of surfaces and in different environments, and having a protocol for its detection, is important to understand the dynamics of the virus and its shedding patterns. In Ecuador, the detection of viral RNA in urban environmental samples has not been a priority. The present study analyzed samples from two densely populated neighborhoods and one public transportation system in Quito, Ecuador. Viral RNA presence was assessed using RT-LAMP. Twenty-eight out of 300 surfaces tested positive for SARS-CoV-2 RNA (9.33%). Frequently touched surfaces, especially in indoor spaces and on public transportation, were most likely to be positive for viral RNA. Positivity rate association for the two neighborhoods and for the surface type was not found. This study found viral RNA presence on urban surfaces; this information provides an insight into viral dissemination dynamics. Monitoring environmental SARS-CoV-2 could support the public health prevention strategies in Quito, Ecuador.  相似文献   

10.
《Viruses》2020,12(12)
Severe Acute Respiratory Syndrome Coronavirus 2 is the third highly pathogenic human coronavirus in history. Since the emergence in Hubei province, China, during late 2019, the situation evolved to pandemic level. Following China, Europe was the second epicenter of the pandemic. To better comprehend the detailed founder mechanisms of the epidemic evolution in Central-Eastern Europe, particularly in Hungary, we determined the full-length SARS-CoV-2 genomes from 32 clinical samples collected from laboratory confirmed COVID-19 patients over the first month of disease in Hungary. We applied a haplotype network analysis on all available complete genomic sequences of SARS-CoV-2 from GISAID database as of 21 April 2020. We performed additional phylogenetic and phylogeographic analyses to achieve the recognition of multiple and parallel introductory events into our region. Here, we present a publicly available network imaging of the worldwide haplotype relations of SARS-CoV-2 sequences and conclude the founder mechanisms of the outbreak in Central-Eastern Europe.  相似文献   

11.
We analyze data from the fall 2020 pandemic response efforts at the University of Colorado Boulder, where more than 72,500 saliva samples were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using qRT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously observed in symptomatic individuals. Regardless of symptomatic status, ∼50% of individuals who test positive for SARS-CoV-2 seem to be in noninfectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral “supercarriers” and possibly also superspreaders.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that emerged into the human population in late 2019 (1), presumably from animal reservoirs (2, 3). During the ensuing world-wide pandemic, already more than 3 million lives have been lost due to the virus. Spread of SARS-CoV-2 has thus far been extremely difficult to contain. One key reason for this is that both presymptomatic and asymptomatic infected individuals can transmit the virus to others (413). Further, it is becoming clear that certain individuals play a key role in seeding superspreading events (1417). Here, we analyzed data from a large university surveillance program. Viral loads were measured in saliva, which has proven to be an accessible and reliable biospecimen in which to identify carriers of this respiratory pathogen, and the most likely medium for SARS-CoV-2 transmission (1820). Our dataset is unique in that all SARS-CoV-2−positive individuals reported no symptoms at the time of saliva collection, and therefore were infected but asymptomatic or presymptomatic. We find that the distribution of SARS-CoV-2 viral loads on our campus is indistinguishable from what has previously been observed in symptomatic and hospitalized individuals. Strikingly, these datasets demonstrate dramatic differences in viral levels between individuals, with a very small minority of the infected individuals harboring the vast majority of the infectious virions.  相似文献   

12.
The world is now apparently at the last/recovery stage of the COVID-19 pandemic, starting from 29 December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the progression of time, several mutations have taken place in the original SARS-CoV-2 Wuhan strain, which have generated variants of concern (VOC). Therefore, combatting COVID-19 has required the development of COVID-19 vaccines using several platforms. The immunity induced by those vaccines is vital to study in order to assure total protection against SARS-CoV-2 and its emerging variants. Indeed, understanding and identifying COVID-19 protection mechanisms or the host immune responses are of significance in terms of designing both new and repurposed drugs as well as the development of novel vaccines with few to no side effects. Detecting the immune mechanisms for host protection against SARS-CoV-2 and its variants is crucial for the development of novel COVID-19 vaccines as well as to monitor the effectiveness of the currently used vaccines worldwide. Immune memory in terms of the production of neutralizing antibodies (NAbs) during reinfection is also very crucial to formulate the vaccine administration schedule/vaccine doses. The response of antigen-specific antibodies and NAbs as well as T cell responses, along with the protective cytokine production and the innate immunity generated upon COVID-19 vaccination, are discussed in the current review in comparison to the features of naturally induced protective immunity.  相似文献   

13.
14.
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.  相似文献   

15.
The emergence of multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the importance of possible animal-to-human (zoonotic) and human-to-animal (zooanthroponotic) transmission and potential spread within animal species. A range of animal species have been verified for SARS-CoV-2 susceptibility, either in vitro or in vivo. However, the molecular bases of such a broad host spectrum for the SARS-CoV-2 remains elusive. Here, we structurally and genetically analysed the interaction between the spike protein, with a particular focus on receptor binding domains (RBDs), of SARS-CoV-2 and its receptor angiotensin-converting enzyme 2 (ACE2) for all conceivably susceptible groups of animals to gauge the structural bases of the SARS-CoV-2 host spectrum. We describe our findings in the context of existing animal infection-based models to provide a foundation on the possible virus persistence in animals and their implications in the future eradication of COVID-19.  相似文献   

16.
Data regarding COVID-19 in the adult population and hospitalized children is rapidly evolving, but little is known about children infected with severe acute respiratory syndrome coronavirus 2 who do not require hospitalization.In an observational, retrospective study we analyzed risk factors, demographics and clinical course of non-hospitalized patients ≤ 21 years of age with COVID-19 infection.Of the 1,796 patients evaluated, 170 were infected, and 40 participated in a telephone survey. Children older >10 years of age (OR: 2.19), Hispanic ethnicity (OR: 3) and residing in counties with higher rates of poverty (OR: 1.5) were associated with higher risk of infection, while older girls were more likely to experience prolonged duration of symptoms (median: 32 days). Consistent with prior reports, fever and cough were present in most of our patients. Shortness of breath, diarrhea, anosmia, and ageusia were more common in our outpatient population than previously reported.Larger studies addressing the clinical and psychosocial impact of CoVID-19 infection in children living in high-risk environments are warranted.  相似文献   

17.
COVID-19 caused by SARS-CoV-2 is continuing to spread around the world and drastically affect our daily life. New strains appear, and the severity of the course of the disease itself seems to be decreasing, but even people who have been ill on an outpatient basis suffer post-COVID consequences. Partly, it is associated with the autoimmune reactions, so debates about the development of new vaccines and the need for vaccination/revaccination continue. In this study we performed an analysis of the antibody response of patients with COVID-19 to linear and conformational epitopes of viral proteins using ELISA, chip array and western blot with analysis of correlations between antibody titer, disease severity, and complications. We have shown that the presence of IgG antibodies to the nucleoprotein can deteriorate the course of the disease, induce multiple direct COVID-19 symptoms, and contribute to long-term post-covid symptoms. We analyzed the cross reactivity of antibodies to SARS-CoV-2 with own human proteins and showed that antibodies to the nucleocapsid protein can bind to human proteins. In accordance with the possibility of HLA presentation, the main possible targets of the autoantibodies were identified. People with HLA alleles A01:01; A26:01; B39:01; B15:01 are most susceptible to the development of autoimmune processes after COVID-19.  相似文献   

18.
The continuous and rapid spread of the COVID-19 pandemic has emphasized the need to seek new therapeutic and prophylactic treatments. Peptide inhibitors are a valid alternative approach for the treatment of emerging viral infections, mainly due to their low toxicity and high efficiency. Recently, two small nucleotide signatures were identified in the genome of some members of the Coronaviridae family and many other human pathogens. In this study, we investigated whether the corresponding amino acid sequences of such nucleotide sequences could have effects on the viral infection of two representative human coronaviruses: HCoV-OC43 and SARS-CoV-2. Our results showed that the synthetic peptides analyzed inhibit the infection of both coronaviruses in a dose-dependent manner by binding the RBD of the Spike protein, as suggested by molecular docking and validated by biochemical studies. The peptides tested do not provide toxicity on cultured cells or human erythrocytes and are resistant to human serum proteases, indicating that they may be very promising antiviral peptides.  相似文献   

19.
IntroductionCOVID-19 is a worldwide public health threat. Diagnosis by RT-PCR has been employed as the standard method to confirm viral infection. Sample pooling testing can optimize the resources by reducing the workload and reagents shortage, and be useful in laboratories and countries with limited resources. This study aims to evaluate SARS-CoV-2 detection by sample pooling testing in comparison with individual sample testing.Materials and methodsWe created 210 pools out of 245 samples, varying from 4 to 10 samples per pool, each containing a positive sample. We conducted detection of SARS-CoV-2-specific RdRp/E target sites.ResultsPooling of three samples for SARS-CoV-2 detection might be an efficient strategy to perform without losing RT-PCR sensitivity.ConclusionsConsidering the positivity rate in Dominican Republic and that larger sample pools have higher probabilities of obtaining false negative results, the optimal sample size to perform a pooling strategy shall be three samples.  相似文献   

20.
Obese patients with non-alcoholic steatohepatitis (NASH) are prone to severe forms of COVID-19. There is an urgent need for new treatments that lower the severity of COVID-19 in this vulnerable population. To better replicate the human context, we set up a diet-induced model of obesity associated with dyslipidemia and NASH in the golden hamster (known to be a relevant preclinical model of COVID-19). A 20-week, free-choice diet induces obesity, dyslipidemia, and NASH (liver inflammation and fibrosis) in golden hamsters. Obese NASH hamsters have higher blood and pulmonary levels of inflammatory cytokines. In the early stages of a SARS-CoV-2 infection, the lung viral load and inflammation levels were similar in lean hamsters and obese NASH hamsters. However, obese NASH hamsters showed worse recovery (i.e., less resolution of lung inflammation 10 days post-infection (dpi) and lower body weight recovery on dpi 25). Obese NASH hamsters also exhibited higher levels of pulmonary fibrosis on dpi 25. Unlike lean animals, obese NASH hamsters infected with SARS-CoV-2 presented long-lasting dyslipidemia and systemic inflammation. Relative to lean controls, obese NASH hamsters had lower serum levels of angiotensin-converting enzyme 2 activity and higher serum levels of angiotensin II—a component known to favor inflammation and fibrosis. Even though the SARS-CoV-2 infection resulted in early weight loss and incomplete body weight recovery, obese NASH hamsters showed sustained liver steatosis, inflammation, hepatocyte ballooning, and marked liver fibrosis on dpi 25. We conclude that diet-induced obesity and NASH impair disease recovery in SARS-CoV-2-infected hamsters. This model might be of value for characterizing the pathophysiologic mechanisms of COVID-19 and evaluating the efficacy of treatments for the severe forms of COVID-19 observed in obese patients with NASH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号