首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Kuo DY  Chen PN  Yu CH  Kuo MH  Hsieh YS  Chu SC 《Neuropharmacology》2012,63(5):842-850
Recently, we reported that an initial decrease followed by recovery of food intake was observed during four days of amphetamine (AMPH) treatment and suggested that these changes in response were mediated by changes in neuropeptide Y (NPY) and proopiomelanocortin (POMC). Here we investigated if Y1 receptor (Y1R) and/or Y5 receptor (Y5R) might be involved in this regulation. Rats were treated daily with AMPH for four days. Changes in the expression levels of Y1R, Y5R, melanocortin receptor 3 (MC3R), and NPY were assessed and compared. Results showed that Y1R and MC3R increased, with a maximal increase of about 210% on Day 2 but with a restoration to the normal level on Day 4. In contrast, NPY decreased with a biggest reduction of about 45% on Day 2 and the pattern of expression during AMPH treatment was opposite to those of Y1R and MC3R, while the expression of Y5R was not changed. Central inhibitions of NPY formation or Y1R activity modulated the anorectic response of AMPH and the reciprocal regulation of NPY and MC3R, revealing a crucial role of Y1R in this action. It is suggested that Y1R participates in the reciprocal regulation of NPY- and MC3R-containing neurons in the hypothalamus during the anorectic effect of AMPH. These results may further the understanding of Y1R in the control of eating.  相似文献   

2.
3.
4.
Numerous rodent and human studies have demonstrated that neuropeptide Y (NPY) is involved in the regulation of anxiety-related behaviors. In this study, we examined whether there were differences in NPY signaling between two inbred mouse strains (C57BL/6J and DBA/2J) that exhibit divergent basal and stress-induced anxiety phenotypes. We focused on the bed nucleus of the stria terminals (BNST), a structure in the extended amygdala that is important for the regulation of anxiety-like behavior and contains NPY receptors. While results from whole-cell voltage-clamp recordings and immunofluorescence histochemistry revealed no significant basal differences in NPY signaling or NPY and NPY Y2 receptor (Y2R) expression in the BNST, these measures were differentially altered by chronic restraint stress. Ten days of chronic restraint stress increased basal GABAergic transmission and decreased NPY's ability to inhibit evoked GABAergic transmission in the dorsolateral BNST (dlBNST) via Y2R in DBA/2J, but not C57BL/6J, mice. Additionally, restraint stress increased NPY and Y2R expression across subregions of the BNST of DBA/2J mice 24 h after the last stress exposure, but no changes were observed in C57BL/6J mice. Together, these results suggest that chronic restraint stress engages the NPY system and alters NPY modulation of inhibitory transmission in the dlBNST of DBA/2J mice, but not C57BL/6J mice, which may be related to increased expression of anxiety-related behaviors in this strain.  相似文献   

5.
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.  相似文献   

6.
Kash TL  Winder DG 《Neuropharmacology》2006,51(5):1013-1022
Neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) have opposing effects on stress and anxiety. Both can modify synaptic activity through their binding to NPY receptors (YRs) and CRF receptors (CRFRs) respectively. The bed nucleus of the stria terminalis (BNST) is a brain region with enriched expression of both NPY and YRs and CRF and CRFRs. A component of the "extended amygdala", the BNST is anatomically well-situated to integrate stress and reward-related processing in the CNS, regulating activation of the hypothalamic-pituitary-adrenal (HPA) axis and reward circuits. Using whole-cell recordings in a BNST slice preparation, we found that NPY and CRF inhibit and enhance GABAergic transmission, respectively. Pharmacological experiments suggest that NPY depresses GABAergic transmission through activation of the Y2 receptor (Y2R), while both pharmacological and genetic experiments suggest that CRF and urocortin enhance GABAergic transmission through activation of the CRF receptor 1 (CRFR1). Further, the data suggest that NPY acts to regulate GABA release, while CRF enhances postsynaptic responses to GABA. These results suggest potential anatomical and cellular substrates for the robust behavioral interactions between NPY and CRF.  相似文献   

7.
1. Neuropeptide Y (NPY) is one of the most potent stimulants of food intake. It has been debated which receptor subtype mediates this response. Initially Y(1) was proposed, but later Y(5) was announced as a 'feeding' receptor in rats and mice. Very little is known regarding other mammals. The present study attempts to characterize the role of NPY in feeding behaviour in the distantly related guinea-pig. When infused intracerebroventricularly, NPY dose-dependently increased food intake. 2. PYY, (Leu(31),Pro(34))NPY and NPY(2 - 36) stimulated feeding, whereas NPY(13 - 36) had no effect. These data suggest that either Y(1) or Y(5) receptors or both may mediate NPY induced food intake in guinea-pigs. 3. The Y(1) receptor antagonists, BIBO 3304 and H 409/22 displayed nanomolar affinity for the Y(1) receptor (K(i) values 1.1+/-0.2 nM and 5.6+/-0.9 nM, respectively), but low affinity for the Y(2) or Y(5) receptors. When guinea-pigs were pretreated with BIBO 3304 and H 409/22, the response to NPY was inhibited. 4. The Y(5) antagonist, CGP 71683A had high affinity for the Y(5) receptor (K(i) 1.3+/-0.05 nM) without having any significant activities at the Y(1) and Y(2) receptors. When CGP 71683A was infused into brain ventricles, the feeding response to NPY was attenuated. 5. The present study shows that NPY stimulates feeding in guinea-pigs through Y(1) and Y(5) receptors. As the guinea-pig is very distantly related to the rat and mouse, this suggests that both Y(1) and Y(5) receptors may mediate NPY-induced hyperphagia also in other orders of mammals.  相似文献   

8.
The distribution of neuropeptide Y (NPY)-immunorective nerves and the receptors involved in the effects of NPY upon electrical field stimulation (EFS)- and noradrenaline (NA)-elicited contractions were investigated in horse penile small arteries. NPY-immunoreactive nerves were widely distributed in the erectile tissues with a particularly high density around penile intracavernous small arteries. In small arteries isolated from the proximal part of the corpora cavernosa, NPY (30 nM) produced a variable modest enhancement of the contractions elicited by both EFS and NA. At the same concentration, the NPY Y(1) receptor agonist, [Leu(31), Pro(34)]NPY, markedly potentiated responses to EFS and NA, whereas the NPY Y(2) receptor agonist, NPY(13-36), enhanced exogenous NA-induced contractions. In arteries precontracted with NA, NPY, peptide YY (PYY), [Leu(31), Pro(34)]NPY and the NPY Y(2) receptor agonists, N-acetyl[Leu(28,31)]NPY (24-36) and NPY(13-36), elicited concentration-dependent contractile responses. Human pancreatic polypeptide (hPP) evoked a biphasic response consisting of a relaxation followed by contraction. NPY(3-36), the compound 1229U91 (Ile-Glu-Pro-Dapa-Tyr-Arg-Leu-Arg-Tyr-NH2, cyclic(2,4')diamide) and eventually NPY(13-36) relaxed penile small arteries. The selective NPY Y(1) receptor antagonist BIBP3226 ((R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide) (0.3 microM) shifted to the right the concentration-response curves to both NPY and [Leu(31), Pro(34)]NPY and inhibited the contractions induced by the highest concentrations of hPP but not the relaxations observed at lower doses. In the presence of the selective NPY Y(2) receptor antagonist BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2, 4-triazol-4-yl]ethyl]-argininamide) (0.3 microM), the Y(2) receptor agonists NPY(13-36) and N-acetyl[Leu(28,31)]NPY (24-36) evoked potent slow relaxations in NA-precontracted arteries, under conditions of nitric oxide (NO) synthase blockade. Mechanical removal of the endothelium markedly enhanced contractions of NPY on NA-precontracted arteries, whereas blockade of the neuronal voltage-dependent Ca(2+) channels did not alter NPY responses. These results demonstrate that NPY can elicit dual contractile/relaxing responses in penile small arteries through a heterogeneous population of postjunctional NPY receptors. Potentiation of the contractions evoked by NA involve both NPY Y(1) and NPY Y(2) receptors. An NO-independent relaxation probably mediated by an atypical endothelial NPY receptor is also shown and unmasked in the presence of selective antagonists of the NPY contractile receptors.  相似文献   

9.
10.
1. Neuropeptide Y (NPY) is colocalized with catecholamines in central regions involved in blood pressure regulation and exerts depressor responses in the nucleus tractus solitarius (NTS). Ageing is accompanied by a decline in baroreflex function and a reduction in NPY concentrations in some brain areas. The present study investigated whether the cardiovascular response to NPY microinjection into the NTS and medullary NPY concentrations were conserved in aged rats. 2. Neuropeptide Y (6 pmol in 100 nL) unilaterally injected into the NTS of anaesthetized 3- or 17-month-old male Sprague-Dawley rats produced a prompt 9–10% fall in mean arterial pressure (MAP), which tended to last longer in aged rats. Decreases in heart rate (HR) observed following NPY administration into the NTS were modest but more prolonged than the depressor responses, ANOVA with repeated measures demonstrated no significant effect of age on the MAP or HR response to NPY injection into the NTS. Neuropeptide Y concentrations in the dorsomedial and ventrolateral medulla were not different between the two age groups. 3. Thus, the depressor and bradycardic responses to exogenous NPY administration in the NTS were maintained with age, in keeping with the observation of similar medullary NPY concentrations in adult and aged rats.  相似文献   

11.
Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain were performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression.  相似文献   

12.
13.
1. The aim of this study was to provide a pharmacological characterization of the Y receptor types responsible for neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) effects upon electrogenic ion transport in isolated human colonic mucosa. 2. Preparations of descending colon were voltage-clamped at 0 mV in Ussing chambers and changes in short-circuit current (I(sc)) continuously recorded. Basolateral PYY, NPY, human PP (hPP), PYY(3 - 36), [Leu(31), Pro(34)]PYY (Pro(34)PYY) and [Leu(31), Pro(34)]-NPY (Pro(34)NPY) all reduced basal I(sc) in untreated colon. Of all the Y agonists tested PYY(3 - 36) responses were most sensitive to tetrodotoxin (TTX) pretreatment, indicating that Y(2)-receptors are located on intrinsic neurones as well as epithelia in this tissue. 3. The EC(50) values for Pro(34)PYY, PYY(3 - 36) and hPP were 9.7 nM (4.0 - 23.5), 11.4 nM (7.6 - 17.0) and 14.5 nM (10.2 - 20.5) and response curves exhibited similar efficacies. The novel Y(5) agonist [Ala(31), Aib(32)]-NPY had no effect at 100 nM. 4. Y(1) receptor antagonists, BIBP3226 and BIBO3304 both increased basal I(sc) levels per se and inhibited subsequent PYY and Pro(34)PYY but not hPP or PYY(3 - 36) responses. The Y(2) antagonist, BIIE0246 also raised basal I(sc) levels and attenuated subsequent PYY(3 - 36) but not Pro(34)PYY or hPP responses. 5. We conclude that Y(1) and Y(2) receptor-mediated inhibitory tone exists in human colon mucosa. PYY and NPY exert their effects via both Y(1) and Y(2) receptors, but the insensitivity of hPP responses to either Y(1) or Y(2) antagonism, or to TTX, indicates that Y(4) receptors are involved and that they are predominantly post-junctional in human colon.  相似文献   

14.
Neuropeptide Y (NPY) is a potent feeding stimulant. The orexigenic effect of NPY might be caused in part by the action of Y1 receptors. However, the existence of multiple NPY receptors including a possible novel feeding receptor has made it difficult to determine the relative importance of the Y1 receptor in feeding regulation. Herein we certified that the Y1 receptor is a major feeding receptor of NPY by using the potent and selective Y1 antagonist (-)-2-[1-(3-chloro-5-isopropyloxycarbonylaminophenyl)ethylamino]-6-[2-(5-ethyl-4-methyl-1,3-thiazol-2-yl)ethyl]-4-morpholinopyridine (J-115814) and Y1 receptor-deficient (Y1-/-) mice. J-115814 displaced (125)I-peptide YY binding to cell membranes expressing cloned human, rat, and murine Y(1) receptors with K(i) values of 1.4, 1.8, and 1.9 nM, respectively, and inhibited NPY (10 nM)-induced increases in intracellular calcium levels via human Y1 receptors (IC(50) = 6.8 nM). In contrast, J-115814 showed low affinities for human Y2 (K(i) > 10 microM), Y4 (K(i) = 640 nM) and Y5 receptors (K(i) = 6000 nM). Intracerebroventricular (ICV) (10-100 microg) and intravenous (IV) (0.3-30 mg/kg) administration of J-115814 significantly and dose-dependently suppressed feeding induced by ICV NPY (5 microg) in satiated Sprague-Dawley rats. Intraperitoneal (IP) administration of J-115814 (3-30 mg/kg) significantly attenuated spontaneous feeding in db/db and C57BL6 mice. Feeding induced by ICV NPY (5 microg) was unaffected by IP-injected J-115814 (30 mg/kg) in Y1-/- mice and was suppressed in wild-type and Y5-/- mice. These findings clearly suggest that J-115814 inhibits feeding behaviors through the inhibition of the typical Y1 receptor. We conclude that the Y1 receptor plays a key role in regulating food intake.  相似文献   

15.
1. The present study addressed the role of neuropeptide (NPY) Y2 receptors in neurogenic contraction of mesenteric resistance arteries from female spontaneously hypertensive rats (SHR). Arteries were suspended in microvascular myographs, electrical field stimulation (EFS) was performed, and protein evaluated by Western blotting and immunohistochemistry. 2. In vasopressin-activated endothelium-intact arteries, NPY and fragments with selectivity for Y1 receptors, [Leu31,Pro34]NPY, Y2 receptors, NPY(13-36), and rat pancreatic polypeptide evoked more pronounced contractions in segments from SHR than in Wistar Kyoto (WKY) arteries, even in the presence of the Y1 receptor antagonist, BIBP3226 (0.3 microM, (R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide). 3. In the presence of prazosin and during vasopressin activation, EFS-evoked contractions were larger in arteries from SHR compared to WKY. EFS contractions were enhanced by the Y2 receptor selective antagonist BIIE0246TF (0.5 microM, (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide), reduced by BIBP3226, and abolished by the combination of BIBP3226 and BIIE0246TF. 4. Immunoblotting showed NPY Y1 and Y2 receptor expression to be similar in arteries from WKY and SHR, although a specific Y2 receptor band at 80 kDa was detected only in arteries from WKY. 5. Immunoreaction for NPY was enhanced in arteries from SHR. In contrast to arteries from WKY, BIIE0246TF increased NPY immunoreactivity in EFS-stimulated arteries from SHR. 6. The present results suggest that postjunctional neuropeptide Y1 and Y2 receptors contribute to neurogenic contraction of mesenteric small arteries. Moreover, both enhanced NPY content and altered neuropeptide Y1 and Y2 receptor activation apparently contribute to the enhanced neurogenic contraction of arteries from SHR.  相似文献   

16.
Kask A  Harro J 《Neuropharmacology》2000,39(7):1292-1302
Neuropeptide Y (NPY) has an important role in the regulation of stress responses and feeding behaviour. There is evidence that some effects elicited by NPY occur due to modulation of action of regular neurotransmitters. The main objective of the present study was to test behavioural effects of the novel neuropeptide Y (NPY) Y(1) receptor antagonist (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N(2)-(diphe nylacetyl)-argininamide trifluoroacetate (BIBO 3304) on dopamine-dependent behaviour. Intracerebroventricular administration of BIBO 3304 (1, 10, 50 nmol) had no effect on locomotor activity as measured by number of rearings and number of squares visited in an open field test in rats, but at 50 nmol dose defecation was significantly increased. BIBO 3304 (10 nmol) reduced amphetamine-induced increases in horizontal and vertical activity whereas its S-configurated enantiomer BIBO 3457 was inactive. In an open field test BIBO 3304 (10 nmol) inhibited purposeless running in rats sensitized to direct dopaminergic agonist apomorphine (0.5 mg/kg, s.c.). BIBO 3304 (10 nmol but not 1 nmol, i.c.v.) reduced fighting in apomorphine-induced aggression paradigm. Apomorphine-induced aggression was reduced by another, structurally similar, but less potent NPY Y(1) receptor antagonist BIBP 3226 (10 nmol, i.c.v.). A lower dose of BIBP 3226 (1 nmol, i.c.v.) was inactive. Concomitant administration of BIBO 3304 (10 nmol) with low doses of apomorphine (0.5 mg/kg s.c.) over the course of 10 days failed to prevent the development of apomorphine-induced aggressiveness. These data demonstrate that behavioural response to indirectly (amphetamine) and directly (apomorphine) acting dopaminergic stimulants is inhibited by NPY Y(1) receptor antagonists and suggest that NPY Y(1) receptor activation might be important in pathophysiology of disorders associated with hyperactivity of dopaminergic pathways, such as psychosis, schizophrenia and drug abuse. We propose that the effects of BIBO 3304 on amphetamine/apomorphine-induced locomotion and apomorphine-induced aggressiveness are due to modulation of postsynaptic dopaminergic responses rather than direct effects of NPY Y(1) receptor antagonists on dopamine or NPY release.  相似文献   

17.
18.
The peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure, known as PP-fold. Within this family of peptides, NPY, a highly conserved 36-aminoacid residue peptide, is involved in the regulation of a wide range of physiological functions, such as food intake and energy metabolism, as well as in the promotion of some remarkable aspects of tumor progression, including cell proliferation, matrix invasion, metastatization, and angiogenesis. NPY exerts its biological effects through five G-protein coupled receptors, named Y1-, Y2-, Y4-, Y5-, and y6-R, which appear associated with different aspects of oncogenesis. Y1-R seems involved in the modulation of cancer cell proliferation, whereas Y2-R activation appears to promote angiogenesis. The development of NPY receptor subtype selective analogs has helped to elucidate the physiological and pathophysiological role and localization of each receptor and may contribute to a better understanding of the receptor-ligand interaction. The NPY system appears to be variously associated with specific tumors, including neural crest-derived tumors, breast and prostate cancers. In addition to NPY, PYY is also able to affect cancer cell growth in a dose-dependent manner and through Y-Rs. In conclusion, peptides of the NPY family and the related receptors play an important role in the progression of different cancer types, with some molecular specificity according to each step of this process. On this basis, future studies may be directed to the implementation of novel diagnostic and therapeutic approaches targeting this system.  相似文献   

19.
The behavioral effects induced by intra-amygdala stimulation of the neuropeptide Y (NPY) Y(2) and the NPY Y(5) receptor subtypes were assessed in the social interaction (SI) test. Microinjections of NPY(3-36), an NPY Y(2) preferring agonist, into the basolateral nucleus of the amygdala (BLA) produced bi-directional dose-response curve. At low doses NPY(3-36) has an anxiogenic effect while at higher doses it produced an anxiolytic effect. Pretreatment with the NPY Y(5) receptor antagonist Novartis 1(1 nmol), an analog of CGP71683A synthesized by Eli Lilly and Company, IN, blocked the anxiolytic effects of NPY(3-36) (80 pmol), while pretreatment with BIBO 3304 (200 pmol), a Y(1) antagonist, had no effect, suggesting that the Y(5), but not the Y(1) receptor was involved in the anxiolytic behavior produced following intra-amygdalar NPY(3-36) administration. In addition, the Y(5) antagonist had no behavioral effect when given alone at 1.0 nmol. These findings support the hypothesis that amygdalar Y(2) receptors may play a role in mediating anxiogenic effects, while Y(5) receptors may be involved in the anxiolytic behaviors of NPY.  相似文献   

20.
Previously we reported that basal neuropeptide Y (NPY)-like immunoreactivity-(LI) in hippocampus of the "depressed" Flinders Sensitive Line (FSL) rats was lower compared to the control Flinders Resistant Line (FRL) and that electroconvulsive stimuli (ECS) raise NPY-LI in discrete brain regions. Here we studied NPY mRNA expression, NPY Y(1) receptor (Y(1)) mRNA expression and binding sites, and behavior under basal conditions (Sham) and after repeated ECS. Baseline NPY and Y(1) mRNAs in the CA1-2 regions and dentate gyrus were lower while the Y(1) binding was higher in the FSL. ECS had larger effects on both NPY and behavior in the FSL rats. ECS increased NPY mRNA in the CA1-2, dentate gyrus and hypothalamus in FSL, but only in the dentate gyrus in FRL. ECS also increased Y(1) mRNA in the CA1-2, dentate gyrus and the parietal cortex in both strains, while in the hypothalamus the increase was observed only in the FSL rats. Consistently with Y(1) mRNA increase, Y(1) binding was downregulated in the corresponding regions. ECS decreased FSL immobility in the Porsolt swim test. These findings suggest that NPY is involved in depressive disorder and that antidepressant effects of ECS may in part be mediated through NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号