首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanin concentrating hormone (MCH) and the orexins (A and B) have been identified as neuropeptides localized to the lateral hypothalamic area (LHA) and are potential regulators of energy homeostasis. Potential factors regulating expression of both MCH and the orexins include fasting and leptin. Previous studies have generated conflicting data and, as there is little leptin receptor expressed in the lateral hypothalamus, it is likely that any observed leptin effects on these peptides are indirect. In this study, we examined MCH and preproorexin expression in mice in physiological states of starvation, with or without leptin administration, in addition to characterizing MCH and preproorexin expression in well-known obesity models, including ob/ob and UCP-DTA mice. Neuropeptide Y (NPY) expression in the arcuate nucleus was used as a positive control. After a 60-h fast, expression of both NPY and MCH mRNA was increased (by 148 and 33%, respectively) while preproorexin expression in the murine LHA did not change. Leptin administration to fasted mice blunted the rise in MCH and NPY expression towards control levels. In contrast, there was a 78% increase in preproorexin expression in fasted mice in response to peripheral leptin administration. MCH expression was increased (by 116%) in ob/ob mice at baseline, as we have previously reported. In addition, leptin treatment of ob/ob mice blunted the increase in MCH expression. In contrast, preproorexin expression did not differ in the leptin-deficient ob/ob mice or in the obese hyperleptinemic brown adipose tissue deficient (UCP-DTA) mice in comparison with controls. In summary, MCH expression is increased in two states of decreased leptin, fasting and ob/ob mice, and leptin replacement blunts MCH expression in both paradigms. Thus, MCH expression appears to be regulated by leptin. In contrast, preproorexin expression does not respond acutely to fasting, although it is acutely increased by leptin treatment during fasting. These preproorexin responses are in contrast to those seen with well-characterized orexigenic neuropeptides, such as NPY and AgRP, suggesting that appetite regulation may not be a significant physiological role of orexins. This conclusion is further supported by the observation that orexin ablated mice have arousal and not feeding deficits.  相似文献   

2.
3.
4.
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY), agouti gene-related protein (AGRP), proopiomelanocortin (POMC), melanin-concentrating hormone (MCH) and hypocretin/orexin (HC/ORX) were investigated in the rat arcuate nucleus (Arc) and lateral hypothalamic area (LHA) 2 h after a single dose of the glucose antimetabolite 2-deoxy-D-glucose (2-DG; 600 mg/kg) or of the fatty acid oxidation inhibitor mercaptoacetate (MA; 600 mumol/kg). Two hours after 2-DG or MA injection food intake was significantly increased. NPY and AGRP mRNA levels in the Arc were increased by 2-DG but not affected by MA, and MCH mRNA levels in the LHA were increased by both antimetabolites. These results suggest that Arc neurons expressing NPY and AGRP are regulated by changes in glucose, but not fatty acid availability, whereas both factors affect MCH neurons in the LHA.  相似文献   

5.
6.
Maintaining glucose levels within the appropriate physiological range is necessary for survival. The identification of specific neuronal populations, within discreet brain regions, sensitive to changes in glucose concentration has led to the hypothesis of a central glucose-sensing system capable of directly modulating feeding behaviour. Glucokinase (GK) has been identified as a glucose-sensor responsible for detecting such changes both within the brain and the periphery. We previously reported that antagonism of centrally expressed GK by administration of glucosamine (GSN) was sufficient to induce protective glucoprivic feeding in rats. Here we examine a neurochemical mechanism underlying this effect and report that GSN stimulated food intake is highly correlated with the induction of the neuronal activation marker cFOS within two nuclei with a demonstrated role in central glucose sensing and appetite, the arcuate nucleus of the hypothalamus (ARC) and lateral hypothalamic area (LHA). Furthermore, GSN stimulated cFOS within the ARC was observed in orexigenic neurons expressing the endogenous melanocortin receptor antagonist agouti-related peptide (AgRP) and neuropeptide Y (NPY), but not those expressing the anorectic endogenous melanocortin receptor agonist alpha-melanocyte stimulating hormone (α-MSH). In the LHA, GSN stimulated cFOS was found within arousal and feeding associated orexin/hypocretin (ORX), but not orexigenic melanin-concentrating hormone (MCH) expressing neurons. Our data suggest that GK within these specific feeding and arousal related populations of AgRP/NPY and ORX neurons may play a modulatory role in the sensing of and appetitive response to hypoglycaemia.  相似文献   

7.
Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3-R, MC4-R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex-specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3-R and MC4-R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3-R and MC4-R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex-specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex-specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex-specificity, setting the stage for acquiring obesity after weaning.  相似文献   

8.
During lactation, hypothalamic levels of neuropeptide Y (NPY) and agouti related protein (AGRP) mRNA are increased, while pro-opiomelanocortin (POMC) mRNA is decreased. Serum leptin levels are also decreased during lactation. These changes may underlie the large increases of both food and water intake that occur in concert with milk production. However, additional hypothalamic substances, such as the novel peptide, orexin, may be involved. In addition, in the presence of chronically suppressed levels of serum leptin, there may be a change in leptin receptor expression in the hypothalamus. The objectives of the present study were to determine if orexin and leptin receptor mRNA levels were changed during lactation. Rats were studied on dioestrus of the oestrous cycle or on day 10 postpartum (the lactating animals were suckling eight pups). Orexin mRNA levels in the lateral hypothalamus did not differ between dioestrus and lactation. There was a significant increase in leptin receptor mRNA levels in the supraoptic nucleus during lactation compared to dioestrus. Furthermore, leptin receptor protein, as determined by immunocytochemistry, was colocalized in virtually all vasopressin and oxytocin cells in the supraoptic nucleus. Lactating animals exhibited a decrease in leptin receptor mRNA in the ventromedial hypothalamic nucleus whereas no change was apparent in other hypothalamic areas compared to the dioestrus animals. These results demonstrate that changes in orexin do not appear to contribute to the increase in food intake during lactation. It is likely that the increases in NPY and ARGP, coupled with the decrease in POMC, are primarily responsible for sustaining the chronic hyperphagia of lactation. The changes observed in leptin receptor expression in the hypothalamus, along with the suppression of serum leptin levels, also suggest that the leptin signalling system may play a significant role in the regulation of food and water intake during lactation.  相似文献   

9.
Exposure to maternal diabetes in utero (GD) may 'program' for obesity. Orexigenic neuropeptides, like neuropeptide Y (NPY) and agouti-related peptide (AGRP), and anorexigenic neuropeptides, like proopiomelanocortin (POMC) and alpha-melanocyte-stimulating hormone (MSH), are decisively involved in body weight regulation. We investigated consequences of GD and its treatment by pancreatic islet transplantation in rats for development of neuropeptidergic neurons in the arcuate hypothalamic nucleus (ARC) in weanling offspring. In GD, islet transplantation on d15 of pregnancy led to normalized blood glucose. Sham-transplanted GD mothers (TSGD) remained hyperglycemic. Twenty-one-day-old TSGD offspring developed hypothalamic 'malorganization'. Despite of normal leptin and insulin levels in TSGD offspring, increased immunopositivity of NPY and AGRP appeared. TSGD offspring showed unchanged POMC, but decreased MSH-immunopositivity. In conclusion, untreated diabetes in pregnant rats leads to 'malprogramming' of hypothalamic neuropeptidergic neurons in offspring, probably contributing to later development of overweight. These acquired alterations are preventable by treatment of maternal GD.  相似文献   

10.
Ghrelin is an orexigenic peptide made both in the periphery and in the central nervous system. Relatively little is known about the factors that regulate ghrelin secretion. Because both ghrelin and glucocorticoids are increased during fasting, we hypothesised that ghrelin secretion from the stomach is stimulated by glucocorticoids. Plasma ghrelin concentrations were determined by radioimmunoassay in fed and fasted adrenalectomised (ADX) and sham-operated rats. Fasting plasma ghrelin concentrations were significantly increased in ADX relative to sham rats and were normalised by glucocorticoid replacement. Several lines of evidence suggest that the orexigenic action of ghrelin is mediated through neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones. Because ADX reduces the orexigenic actions of NPY and AgRP, we hypothesised that ADX would also reduce the orexigenic action of ghrelin. Food intake was assessed in ADX and sham rats following an intra-third-ventricular injection of either saline or ghrelin (1, 5 or 10 microg in 2 microl). ADX rats were equally sensitive to the orexigenic action of ghrelin compared to sham rats. Given that ghrelin has been shown to stimulate glucocorticoid secretion, the current data imply the existence of a regulatory feedback loop whereby glucocorticoids inhibit further ghrelin secretion. The results also suggest that, unlike the orexigenic effects of NPY and AgRP, the ability of ghrelin to stimulate food intake is maintained in ADX rats.  相似文献   

11.
Rat adipose tissue is the principal site of leptin synthesis, however, leptin gene expression has been demonstrated in many rat tissues. Some data indicate that leptin produced by human brain and adipose tissue could cooperate in the regulation of food intake. In this case the regulation of leptin gene expression in hypothalamus and in adipose tissue should be coordinately regulated. Food restriction is often undertaken by many humans trying to lose body weight. Thus, the current study was aimed to analyze whether leptin gene expression in rat hypothalamus and in adipose tissue is regulated synchronously by prolonged food restriction and prolonged food restriction/refeeding.We demonstrate here that although leptin gene is expressed at very low level in rat hypothalamus, its expression in hypothalamus was down-regulated by prolonged food restriction similarly as in the white adipose tissue. Refeeding after prolonged food restriction caused both an increase of leptin gene expression in white adipose tissue and the increase in serum leptin concentration. In contrast, no significant effect of prolonged food restriction/refeeding on hypothalamic leptin gene expression was observed. The reduction of leptin gene expression in both hypothalamus and white adipose tissue by prolonged food restriction was associated with a significant increase of NPY gene (a target of leptin signaling) expression in hypothalamus. Refeeding after prolonged food restriction caused the decrease of NPY gene expression in hypothalamus, however NPY mRNA level remained higher than in controls.The results presented in this paper indicate that prolonged food restriction/refeeding differentially affects leptin gene expression in adipose tissue and in hypothalamus. Moreover, obtained data suggest that in rats leptin synthesized in hypothalamus exerts marginal effect on NPY gene expression and on serum leptin concentration.  相似文献   

12.
After fasting, satiety is observed within 2 h after reintroducing food, accompanied by activation of anorexigenic, pro‐opiomelanocortin (POMC)‐synthesising neurones in the arcuate nucleus (ARC), indicative of the critical role that α‐melanocyte‐stimulating hormone has in the regulation of meal size during refeeding. To determine whether refeeding‐induced activation of POMC neurones in the arcuate is dependent upon the vagus nerve and/or ascending brainstem pathways, bilateral subdiaphragmatic vagotomy or transection of the afferent brainstem input to one side of the ARC was performed. One day after vagotomy or 2 weeks after brain surgery, animals were fasted and then refed for 2 h. Sections containing the ARC from vagotomised animals or animals with effective transection were immunostained for c‐Fos and POMC to detect refeeding‐induced activation of POMC neurones. Quantitative analyses of double‐labelled preparations demonstrated that sham‐operated and vagotomised animals markedly increased the number of c‐Fos‐immunoreactive (‐IR) POMC neurones with refeeding. Furthermore, transection of the ascending brainstem pathway had no effect on diminishing c‐Fos‐immunoreactivity in POMC neurones on either side of the ARC, although it did diminish activation in a separate, subpopulation of neurones in the dorsomedial posterior ARC (dmpARC) on the transected side. We conclude that inputs mediated via the vagus nerve and/or arising from the brainstem do not have a primary role in refeeding‐induced activation of POMC neurones in the ARC, and propose that these neurones may be activated solely by direct effects of circulating hormones/metabolites during refeeding. Activation of the dmpARC by refeeding indicates a previously unrecognised role for these neurones in appetite regulation in the rat.  相似文献   

13.
14.
Dehydration (DE)-anorexia is stimulated by chronic consumption of hypertonic saline. Spontaneous nocturnal food intake is markedly reduced with this treatment but is rapidly reversed upon the return of drinking water. Here we examined the neurons in the lateral hypothalamic area (LHA) of chronically dehydrated rats for their peptidergic phenotype, colocalization, and activation profiles following the rapid reversal of anorexia. To do this, we used double-labeling combinations of Fos immunocytochemistry and radioisotopic- and digoxigenin-labeled in situ hybridization. We found that lateral hypothalamic corticotropin-releasing hormone (CRH) neurons show extensive coexpression with neurotensin mRNA, but they are distinct from hypocretin/orexin and melanin-concentrating hormone (MCH) neurons. Chronic dehydration increases Fos-ir in large numbers of neurons in dorsal regions of the LHA. Some of these LHA neurons also show increased CRH, but not hypocretin/orexin or MCH gene expression, as dehydration-anorexia develops. Furthermore, the behavioral sequence of eating and increased activity exhibited by DE animals in the minutes following water drinking is accompanied by a further increase in the number of Fos-ir nuclei in the LHA. Increased Fos activation occurs in a significant number of LHA hypocretin/orexin neurons, but not CRH or MCH neurons, in the LHA. Together these data implicate CRH but not hypocretin/orexin or MCH neurons in the LHA in the motor events associated with dehydration. However, when water is returned, contributions to the network controlling responses evidently come from hypocretin/orexin, but not CRH or MCH, neurons in the LHA.  相似文献   

15.
Palatability is one of the factors that regulates food and fluid intake and contributes to overconsumption in turn contributing to obesity. To elucidate the brain mechanisms of the palatability-induced ingestion, we explored the roles of six hypothalamic orexigenic neuropeptides, orexin, melanin-concentrating hormone (MCH), neuropeptide Y (NPY), agouti-related protein (AgRP), ghrelin and dynorphin, in the intake of a palatable solution, saccharin. Of the six peptides, intracerebroventricular (i.c.v.) administrations of orexin, MCH and NPY increased the intake of saccharin. Drinking of saccharin in turn elevated the mRNA levels of orexin and NPY, but not MCH. Pre-treatments of naloxone, an opioid antagonist, blocked the orexigenic effects of orexin and NPY. Specific gastric motor responses induced by central orexin-A and NPY are well known, however, MCH did not induce such responses. The i.c.v. administration of orexin-A facilitated gastric emptying. These results suggest that the overconsumption promoted by sweet and palatable tastes is attributed to the activation of orexigenic neuropeptides, such as orexin and NPY, and a downstream opioid system together with enhanced digestive functions.  相似文献   

16.
17.
The aim of these experiments was to investigate the relationship between hypothalamic expression of orexin (also called hypocretin), neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA and seasonal cycles of body weight and food intake in the Siberian hamster. Adult males were transferred from long days of 16 h light and 8 h dark to short days of 8 h light and 16 h dark, a procedure known to induce major reductions in food intake and body weight in this species. After 8 weeks of exposure to short days, while body weight was declining, hypothalamic NPY mRNA levels as assessed by in situ hybridization were slightly lower (P < 0.05) than in age-matched controls exposed to long days. After 12 weeks with short days, when body weight would be expected to have reached its seasonal nadir, POMC mRNA levels were lower (P < 0.05) than in hamsters under long days. At no stage did orexin mRNA levels in hamsters under short days differ significantly from levels in those under long days. To investigate further the role of these peptide systems in seasonal changes in body weight and food intake, two provocative tests were carried out. Firstly, a 48-h fast induced a significant increase (P < 0.025) in hypothalamic NPY mRNA levels in both long- and short-day conditions, but did not change hypothalamic POMC or orexin mRNA levels. Secondly, systemic (intraperitoneal) treatment with recombinant murine leptin (5 mg/kg body weight) significantly decreased (P < 0.01) food intake over a 6-h post-treatment period in both long- and short-day conditions. However, this acute leptin treatment did not induce significant changes in hypothalamic orexin, NPY or POMC mRNA abundance. The increase in NPY expression in both long- and short-day conditions following food restriction and the suppression of food intake by leptin in both conditions suggests that acute homeostatic mechanisms operate in both long-day (obese) and short-day (nonobese) conditions. The lack of major changes in orexin, NPY and POMC in such different metabolic states suggest that other central systems must play a greater role in generating these states. Such findings are consistent with the 'sliding set-point' hypothesis, that is, seasonal cycles in food intake and fat metabolism are brought about by as yet unknown central mechanisms that chronically alter the level ('set point') around which homeostasis occurs, rather than resulting from changes in the potency of the acute feedback mechanisms themselves.  相似文献   

18.
Pre‐ and postnatal calorie restriction is associated with postnatal growth restriction, reduced circulating leptin concentrations, and perturbed energy balance. Hypothalamic regulation of energy balance demonstrates enhanced orexigenic (NPY, AgRP) and diminished anorexigenic (POMC, CART) neuropeptide expression (PN21), setting the stage for subsequent development of obesity in female Sprague‐Dawley rats. Leptin replenishment during the early postnatal period (PN2‐PN8) led to reversal of the hypothalamic orexigenic:anorexigenic neuropeptide ratio at PN21 by reducing only the orexigenic (NPY, AgRP), without affecting the anorexigenic (POMC, CART) neuropeptide expression. This hypothalamic effect was mediated via enhanced leptin receptor (ObRb) signaling that involved increased pSTAT3/STAT3 but reduced PTP1B. This was further confirmed by an increase in body weight at PN21 in response to intracerebroventricular administration of antisense ObRb oligonucleotides (PN2‐PN8). The change in the hypothalamic neuropeptide balance in response to leptin administration was associated with increased oxygen consumption, carbon dioxide production, and physical activity, which resulted in increased milk intake (PN14) with no change in body weight. This is in contrast to the reduction in milk intake with no effect on energy expenditure and physical activity observed in controls. We conclude that pre‐ and postnatal calorie restriction perturbs hypothalamic neuropeptide regulation of energy balance, setting the stage for hyperphagia and reduced energy expenditure, hallmarks of obesity. Leptin in turn reverses this phenotype by increasing hypothalamic ObRb signaling (sensitivity) and affecting only the orexigenic arm of the neuropeptide balance. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
We have identified female sheep that have either high (HR) or low (LR) cortisol responses to adrenocorticotrophin. On a high‐energy diet, HR have greater propensity to weight gain and obesity, although the underlying mechanisms remain to be determined. Hypothalamic appetite‐regulating peptides (ARP) exert reciprocal effects on food intake and energy expenditure. We aimed to quantify the expression and function of ARP in LR and HR ewes (n = 4 per group). Gene expression for neuropeptide Y (NPY), agouti‐related peptide (AgRP) pro‐opiomelanocortin (POMC), melanin‐concentrating hormone (MCH), orexin and the melanocortin receptors (MC3R and MC4R) was measured by in situ hybridisation. Expression of NPY, AgRP and POMC was similar in HR and LR, although expression of orexin, MCH, MC3R and MC4R was higher (P < 0.05) in LR. Intracerebroventricular infusions of a low dose (50 μg/h) of NPY, α‐melanocyte‐stimulating hormone (αMSH), orexin and MCH were performed between 10.00 h and 16.00 h in meal‐fed ewes (n = 6–7 per group). Skeletal muscle and retroperitoneal (RP) fat temperatures were recorded using dataloggers. Post‐prandial thermogenesis in muscle was higher (P < 0.05) in LR. There was little effect of ARP infusion on muscle or fat temperature in either group. Infusion of these doses of NPY, MCH or orexin did not stimulate food intake in meal‐fed ewes, although αMSH reduced (P < 0.01) food intake in LR only. Using 24‐h ARP infusions with ad lib. feeding, NPY increased (P < 0.001) food intake in both groups but αMSH was only effective in LR (P < 0.05). In summary, we show that HR are resistant to the satiety effects of αMSH and this coincides with a reduced expression of both the MC3R and MC4R in the paraventricular nucleus of the hypothalamus. We conclude that an increased propensity to obesity in HR female sheep is associated with reduced melanocortin signalling.  相似文献   

20.
The link between the state of energy balance and reproductive function is well known. Thus, signals denoting negative energy balance and the accompanying hyperphagic drive are likely to be factors in the suppression of gonadotropin releasing hormone (GnRH) activity. We have previously found that appetite-regulating systems, such as neuropeptide Y (NPY) in the arcuate nucleus (ARH) and orexin in the lateral hypothalamic area (LHA), send fiber projections that come in close apposition with GnRH neurons. Furthermore, the appropriate receptors, NPY Y5 and OR-1, respectively, are coexpressed on GnRH neurons, providing neuroanatomical evidence for a direct link between the NPY and orexin systems and GnRH neurons. Therefore, these orexigenic neuropeptide systems are potential candidates that convey information about energy balance to GnRH neurons. The current studies focused on melanin concentrating hormone (MCH), another orexigenic neuropeptide system located in the LHA that is sensitive to energy balance. The results showed that MCH fiber projections came in close apposition with approximately 85-90% of GnRH cell bodies throughout the preoptic area and anterior hypothalamic area in the rat. In addition, the MCH receptor (MCHR1) was coexpressed on about 50-55% of GnRH neurons. These findings present evidence for a possible direct neuroanatomical pathway by which MCH may play a role in the regulation of GnRH neuronal function. Thus, MCH is another potential signal that may serve to integrate energy balance and reproductive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号