首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scrapie-infected mice are considered a model for study in prion diseases, which are characterized by the progressive accumulation in the brain of an abnormal isoform (PrPsc) of the normal cellular prion protein (PrPc). Increasing data suggest that the neurodegenerative process in prion diseases may result, at least partially, from a defect in antioxidant function, but so far in vivo oxidative stress remains poorly documented. We report here that 4-hydroxynonenal, a lipid peroxidation by-product, forms protein adducts in brains of scrapie-infected mice and of Creutzfeldt-Jakob disease affected patients. In scrapie mice, studies on the progression of PrPsc accumulation, glial activation, ubiquitin deposition, and 4-HNE adduct formation allowed us to conclude the late occurrence of oxidative damage in the course of the disease. Massive 4-HNE accumulation was identified in astrocytes, but not in neurons or microglial cells. These findings suggest an important oxidative stress (and subsequent lipid peroxidation) in astrocytes, with possible consequences on their neuronal trophic function.  相似文献   

2.
Scrapie-infected mice are considered a model for study in prion diseases, which are characterized by the progressive accumulation in the brain of an abnormal isoform (PrPsc) of the normal cellular prion protein (PrPc). Increasing data suggest that the neurodegenerative process in prion diseases may result, at least partially, from a defect in antioxidant function, but so far in vivo oxidative stress remains poorly documented. We report here that 4-hydroxynonenal, a lipid peroxidation by-product, forms protein adducts in brains of scrapie-infected mice and of Creutzfeldt–Jakob disease affected patients. In scrapie mice, studies on the progression of PrPsc accumulation, glial activation, ubiquitin deposition, and 4-HNE adduct formation allowed us to conclude the late occurrence of oxidative damage in the course of the disease. Massive 4-HNE accumulation was identified in astrocytes, but not in neurons or microglial cells. These findings suggest an important oxidative stress (and subsequent lipid peroxidation) in astrocytes, with possible consequences on their neuronal trophic function.  相似文献   

3.
Amyloid plaques of scrapie–infected mouse brains are composed of fibrillar forms of a host coded, cell surface sialoglycoprotein called PrP (prion protein). Serial ultrastructural immunogold staining was performed on plaques identified by light microscopic immunocytochemistry of brains of VM mice infected with the 8 7V strain of scrapie. Classical plaques, of a kuru–type morphology, were composed of a central core of bundles of amyloid fibrils. Amyloid fibrils of classical plaques were immunoreactive for PrP. In addition, PrP was also found at the plaque periphery, in the absence of fibrils, at the plasmalemma of cell processes and in the associated extracellular spaces. Frequent microglial cells and occasional astrocytes contained PrP within lysosomes. Other plaques with few or no recognizable amyloid fibrils were frequent and were termed primitive plaques. PrP could be demonstrated in a non–fibrillar form at the plasmalemma and in the extracellular spaces between neurites of such plaques. Many primitive plaques showed little or no sub–cellular pathology associated with the PrP accumulation. PrP was closely associated with the plasma–lemma of occasional dendrites passing towards the centre of primitive plaques. These results suggest that plaques are formed around one or more PrP releasing dendrites. PrP accumulates in the extracellular spaces adjacent to such processes prior to its spontaneous aggregation into fibrils. Lysosomal accumulation of PrP in microglia and astrocytes located at the periphery of plaques suggest that these cells are involved in the phagocytosis of excess or abnormal PrP.  相似文献   

4.
A number of aspects of the pathogenesis of scrapie, the archetype disease of the transmissible spongiform encephalopathies (prion disorders), remain to be elucidated. There is increasing evidence that there are cerebral based inflammatory processes that may contribute to the pathogenesis and to the progression of a number of neurodegenerative disorders, including prion diseases. In peripheral tissues, a key element that controls the generation of proinflammatory mediators is the highly inducible protein cyclooxygenase-2 (COX-2). In this study, in order to examine the possible association of COX-2 with the pathogenesis of scrapie, we analyzed the expression level and the cellular localization of COX-2 in the brains of control and scrapie-infected mice. The COX-2 mRNA and protein levels were increased significantly compared to the control group of mice. By immunohistological analysis, intense immunoreactivity of COX-2 was localized primarily in reactive astrocytes, with virtually no staining in sections from control mice. The staining for COX-2 was co-localized with the pathological form of the prion protein (PrP(Sc)) and with nuclear factor-kappa B (NF-kappaB). These results suggest that the upregulation of COX-2 expression in astrocytes may be related to the accumulation of PrP(Sc), and that COX-2 may then lead to the progression of scrapie, possibly by propagation of a cerebral inflammatory response.  相似文献   

5.
Prion encephalopathies include fatal diseases of the central nervous system of men and animals characterized by nerve cell loss, glial proliferation and deposition of amyloid fibrils into the brain. During these diseases a cellular glycoprotein (the prion protein, PrP(C)) is converted, through a not yet completely clear mechanism, in an altered isoform (the prion scrapie, PrP(Sc)) that accumulates within the brain tissue by virtue of its resistance to the intracellular catabolism. PrP(Sc) is believed to be responsible for the neuronal loss that is observed in the prion disease. The PrP 106-126, a synthetic peptide that has been obtained from the amyloidogenic portion of the prion protein, represents a suitable model for studying the pathogenic role of the PrP(Sc), retaining, in vitro, some characteristics of the entire protein, such as the capability to aggregate in fibrils, and the neurotoxicity. In this work we present the results we have recently obtained regarding the action of the PrP 106-126 in different cellular models. We report that the PrP 106-126 induces proliferation of cortical astrocytes, as well as degeneration of primary cultures of cortical neurons or of neuroectodermal stable cell lines (GH(3) cells). In particular, these two opposite effects are mediated by the same attitude of the peptide to interact with the L-type calcium channels: in the astrocytes, the activity of these channels seems to be activated by PrP 106-126, while, in the cortical neurons and in the GH(3) cells, the same treatment causes a blockade of these channels causing a toxic effect.  相似文献   

6.
Results from several laboratories indicate that apoptosis via the P53 pathway is involved in prion disease pathogenesis. Prion diseases, among them scrapie and BSE, are a group of fatal neurodegenerative disorders associated with the conversion of PrP(C) to PrP(Sc), its conformational abnormal isoform. In this work, we tested whether an established anti-apoptotic reagent, PFT, which has been shown in different systems to inhibit P53 activity, can delay the outbreak of prion disease in infected animals. Our findings indicate that although PFT efficiently reduced caspase 3 expression in brains from scrapie sick hamsters, as well as inhibited PrP(Sc) accumulation in cell culture, it had no effect on disease incubation time or PrP(Sc) accumulation in vivo. We conclude that the P53 dependent apoptosis may not be an obligatory mechanism for prion disease-induced cell death.  相似文献   

7.
Many uncertainties remain regarding the physiological function of the prion protein PrP and the consequences of its conversion into the pathological scrapie isoform in prion diseases. Here, we show for the first time that different signal transduction pathways are involved in neurite outgrowth and neuronal survival elicited by PrP in cell culture of primary neurons. These pathways include the nonreceptor Src-related family member p59(Fyn), PI3 kinase/Akt, cAMP-dependent protein kinase A, and MAP kinase. Regulation of Bcl-2 and Bax expression also correlates with the survival effect elicited by PrP. The combined results, along with our observation that PrP carries the recognition molecule-related HNK-1 carbohydrate, argue strongly for a role of the molecule in neural recognition by interacting with yet unknown heterophilic neuronal receptors, as shown by comparison of neurite outgrowth from neurons of PrP-deficient and wild-type mice.  相似文献   

8.
9.
Heparan sulfate proteoglycan (HSPG) has been found to be associated with amyloid deposits in a number of diseases including the cerebral amyloid plaques of Alzheimer's disease and the transmissible spongiform encephalopathies (TSEs). The role of HSPG in amyloid formation and the neurodegenerative pathology of these diseases have not been established. We have addressed these questions using a scrapie mouse model which exhibits both amyloid and nonamyloid deposition of abnormal PrP protein, the protein marker of TSE infection. The distribution of HSPG was examined throughout the course of the disease in the brains of experimentally infected mice and compared with the distribution of abnormal PrP. Abnormally high levels of HSPG were associated with most types of PrP pathology including all plaque types and diffuse neuroanatomically targeted forms. Scrapie-associated HSPG was present from 70 days after infection, the earliest time-point examined, in the same target areas as abnormal PrP. The association with amyloid plaques may indicate that HSPG is involved in amyloid plaque formation and/or persistence but involvement with early diffuse forms of PrP suggests a more fundamental role in scrapie pathogenesis.  相似文献   

10.
In scrapie-infected cells, the abnormal isoform of the prion protein, PrP(Sc), accumulates in endosomes/lysosomes. In this study, the involvement of two lysosomal proteases, cathepsin B and L, in cellular processing of PrP(Sc) was analyzed in immortalized neuronal gonadotropin-releasing hormone cells (GT1-1) infected with scrapie. Treatment with inhibitors of either cathepsin B or L resulted in accumulation of PrP(Sc). Such an increased accumulation also occurred when the activities of both cathepsins were inhibited using RNA interference. We conclude that cathepsin B and L are involved in the degradation of PrP(Sc) in scrapie-infected GT1-1 cells and that they can compensate for each other's functions. This study shows that specific proteases, abundantly present in neurons, have the capacity to degrade PrP(Sc).  相似文献   

11.
Abstract Transmissible prion diseases are fatal neurodegenerative diseases associated with the conversion of the normal host prion protein (PrP c) into an abnormal isoform (PrP Sc) that accumulates in brain. This pathology affects neurons of the central nervous system whereas no clear toxic effect has been reported for peripheral neurons. We examined the subcellular distribution of PrP c and PrP Sc in the scrapie-infected mouse neuronal cell lines GT1-7 and N2a, derived, respectively, from the central and peripheral nervous system. We observed that in both cell types, PrP c is present in the endocytic compartment, mainly in LAMP-1-positive late endosomes, but excluded from LYAAT-1-lysosomes. In contrast, PrP Sc was distributed differently in the two cell lines. In infected N2a, PrP Sc and PrP c had comparable distribution patterns. In infected GT1-7, PrP Sc is present in an additional vesicular compartment which is flotillin-1-positive. The level of expression of flotillin-1 is higher in GT1-7 than in N2a cells, but no difference is observed between infected and noninfected cells. In Alzheimer's disease patients, it has been reported that flotillin-1 is abundant in brain areas containing the beta-amyloid protein, which accumulates in endosomal vesicles in primary neurons. We propose that the flotillin compartment could store aggregated proteins and play a role in these neurodegenerative pathologies.  相似文献   

12.
Changes in the localization of brain prion proteins during scrapie infection   总被引:24,自引:0,他引:24  
Prion proteins (PrP) were localized in the brains of normal and scrapie-infected hamsters by immunohistochemistry and Western blotting. PrP monoclonal antibodies and monospecific anti-PrP peptide sera, which react with both the cellular (PrPC) and scrapie (PrPSc) isoforms of the prion protein, were used to locate PrP in tissue sections. In normal hamsters, PrPC was located primarily in nerve cell bodies throughout the CNS; whereas, in the terminal stages of scrapie, PrP immunoreactivity was shifted to the neuropil and was absent from most nerve cell bodies. Prion proteins were not uniformly dispersed throughout the gray matter of scrapie-infected hamster brains; rather, they were concentrated in those regions that exhibited spongiform degeneration and reactive astrogliosis. Since earlier studies showed that the level of PrPC remains constant during scrapie infection as measured in whole brain homogenates and no antibodies are presently available that can distinguish PrPC from PrPSc, we analyzed individual brain regions by Western blotting. Analysis of proteinase K-digested homogenates of dissected brain regions showed that most of the regional changes in PrP immunoreactivity that are seen during scrapie infection are due to the accumulation of PrPSc. These observations indicate that the tissue pathology of scrapie can be directly correlated with the accumulation of PrPSc in the neuropil, and they suggest that the synthesis and distribution of the prion protein has a central role in the pathogenesis of this disorder.  相似文献   

13.
Prion protein (PrP) is a host-encoded membrane-anchored glycoprotein which is required for susceptibility to prion disease. PrP may also be important for normal brain functions such as hippocampal spatial memory. Previously transgenic mice expressing amino terminally truncated mouse PrP (Δ32–134) spontaneously developed a fatal disease associated with degeneration of cerebellar granular neurons as well as vacuolar degeneration of deep cerebellar and brain stem white matter. This disease could be prevented by co-expression of wild-type (WT) mouse PrP on neurons or oligodendroglia. In the present experiments we studied Δ32–134 PrP transgenic mice with WT PrP expression restricted to astroglia, an abundant CNS cell-type important for neuronal viability. Expression of WT PrP in astroglia was sufficient to rescue 50% of mice from disease and prolonged survival by 200 days in the other 50%. We also found that transgenic mice expressing full-length soluble anchorless PrP had increased survival by 100 days. Together these two results indicated that rescue from neurodegeneration induced by Δ32–134 PrP might involve interactions between neurons expressing truncated PrP and nearby astrocytes expressing WT PrP or extracellular fluid containing soluble WT PrP.  相似文献   

14.
Prion strains yield specific neuropathological features including spongiform degeneration and deposition patterns of pathological prion protein. Their invariant regional distribution, following variations in the infection route, has led to the proposal that prions replicate preferentially in defined neuro-anatomical areas. The molecular mechanisms underlying this apparent strain-specific neuronal tropism are currently unknown. However, a possible explanation may be that prion replication is relatively innocuous, resulting in long-term propagation, thus masking initial regional distribution variations linked to different infection routes. This “low neurotoxicity” may be imputable either to the rodent model used or the prion strain(s) inoculated. To investigate this possibility, we studied prion pathogenesis in a prototypal short-incubation disease model consisting of 127S scrapie strain propagated in tg338 transgenic mice expressing the VRQ allele of ovine PrP. This prion strain derives from a natural sheep scrapie isolate that was serially transmitted to tg338 mice without any obvious transmission barrier and biologically cloned by limiting dilution. We compared the pathology induced by the peripheral or intracerebral inoculation of 127S strain. Surprisingly, we found that the disease greatly differed in clinical signs, abnormal prion protein levels, and neuropathology among the routes of infection. Secondary transmission performed with brain material from mice inoculated either intracranially or intraperitoneally produced similar neuropathological features. These results therefore indicate that the route of infection can strongly influence the apparent phenotype of a scrapie strain.  相似文献   

15.
Neuronal loss is often quoted as an element of the pathology of the transmissible spongiform encephalo-pathies, but few data are published. To determine whether neuronal loss is a salient feature of murine scrapie, and whether there is a relationship with the other hallmark lesions of scrapie we compared the numbers of neurons, severity of vacuolation, axonal bouton density and distribution of prion protein (PrP) in the dorsal lateral geniculate nucleus (dLGN) following intraocular infection of C57BL/FaBtDk mice with ME 7 scrapie. This route of infection limits the initial spread of infection to the retinal efferents, thus directing infectivity and subsequent pathological changes to the dLGN which is a major projection of the optic nerve. Morphometric assessment of neuron number in the dLGN was made on semi-serial sections from five infected and five normal brain injected controls at four 50-day intervals during the incubation period, and on terminally affected mice. The number of neurons decreased from around 20 000 at 50 days to under 1000 in the terminal group. Significant loss was identified in individual mice at 150 days post-infection, coincident with the onset of vacuolation: neuron number was found to have an inverse relationship to the severity of vacuolation. Axonal boutons in the dLGN (demonstrated by synaptophysin immunolabelling) were reduced at 200 days, and virtually absent in terminal mice. The intensity of PrP immunostaining progressively increased from 150 days, and in a separate experiment PrP was detected from 175 days by polyacrylamide gel electrophoresis of brain extracts. These results show that early neuronal loss is a significant feature of experimental scrapie infection, and the possible mechanisms of this degeneration are discussed.  相似文献   

16.
In transmissible spongiform encephalopathies (TSEs) the prion protein (PrP) plays a central role in pathogenesis. The PrP gene (Prnp) has been described in a number of mammalian and avian species and its expression product, the cellular prion protein (PrPC), has been mapped in brains of different laboratory animals (rodent and non-human primates). However, mapping of PrPC expression in mammalian species suffering from natural (bovine and ovine) and experimental (swine) TSE or in species in which prion disease has never been reported (equine and canine) deserves further attention. Thus, localising the cellular prion protein (PrPC) distribution in brain may be noteworthy for the understanding of prion disease pathogenesis since lesions seem to be restricted to particular brain areas. In the present work, we analysed the distribution of PrPC expression among several brain structures of the above species. Our results suggest that the expression of PrPC, within the same species, differs depending on the brain structure studied, but no essential differences between the PrPC distribution patterns among the studied species could be established. Positive immunoreaction was found mainly in the neuropil and to a lesser extent in neuronal bodies which occasionally appeared strongly stained in discrete regions. Overall, the expression of PrPC in the brain was significantly higher in grey matter areas than in white matter, where accumulation of PrPSc is first observed in prion diseases. Therefore, other factors besides the level of expression of cellular PrP may account for the pathogenesis of TSEs  相似文献   

17.
Prion diseases result from conversion of PrPC, a neuronal membrane glycoprotein of unknown function, into PrPSc, an abnormal conformer that is thought to be infectious. To facilitate analysis of PrP distribution in the brain, we have generated transgenic mice in which a PrP promoter drives expression of PrP-EGFP, a fusion protein consisting of enhanced green fluorescent protein inserted adjacent to the glycolipid attachment site of PrP. We find that PrP-EGFP in the brain is glycosylated and glycolipid-anchored and is localized to the surface membrane and the Golgi apparatus of neurons. Like endogenous PrP, PrP-EGFP is concentrated in synapse-rich regions and along axon tracts. PrP-EGFP is functional in vivo, since it ameliorates the cerebellar neurodegeneration induced by a truncated form of PrP. These observations clarify uncertainties in the cellular localization of PrPC in brain, and they establish PrP-EGFP transgenic mice as useful models for further studies of prion biology.  相似文献   

18.
Brain damage in the transmissible spongiform encephalopathies or prion diseases is associated with the conversion of normal host prion protein to an abnormal protease-resistant isoform, and expression of prion protein is required for susceptibility to these diseases. This article reviews the data on studies using transgenic mice expressing prion protein in specific individual cell types to study the roles of these cell types in prion disease pathogenesis. Surprisingly damage to neurons in brain and retina appeared to require different prion protein-expressing cells, suggesting that different pathogenic mechanisms operate in these two neuronal tissues.  相似文献   

19.
Transmissible spongiform encephalopathies are characterised by the transformation of the normal cellular prion protein (PrP(C)) into an abnormal isoform (PrP(TSE)). Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor antagonists can inhibit glutathione depletion and neurotoxicity induced by PrP(TSE) and a toxic prion protein peptide, PrP106-126, in vitro. NMDA receptor activation is known to increase intracellular accumulation of Ca(2+), resulting in up-regulation of arachidonic acid (AA) metabolism. This can stimulate the lipoxygenase pathways that may generate a number of potentially neurotoxic metabolites. Because of the putative relationship between AA breakdown and PrP106-126 neurotoxicity, we investigated AA metabolism in primary cerebellar granule neuron cultures treated with PrP106-126. Our studies revealed that PrP106-126 exposure for 30 min significantly up-regulated AA release from cerebellar granule neurons. PrP106-126 neurotoxicity was mediated through the 5-lipoxygenase (5-LOX) pathway, as shown by abrogation of neuronal death with the 5-LOX inhibitors quinacrine, nordihydroguaiaretic acid, and caffeic acid. These inhibitors also prevented PrP106-126-induced caspase 3 activation and annexin V binding, indicating a central role for the 5-LOX pathway in PrP106-126-mediated proapoptosis. Interestingly, inhibitors of the 12-lipoxygenase pathway had no effect on PrP106-126 neurotoxicity or proapoptosis. These studies clearly demonstrate that AA metabolism through the 5-LOX pathway is an important early event in PrP106-126 neurotoxicity and consequently may have a critical role in PrP(TSE)-mediated cell loss in vivo. If this is so, therapeutic intervention with 5-LOX inhibitors may prove beneficial in the treatment of prion disorders.  相似文献   

20.
We have previously identified Scrg1, a gene with increased cerebral mRNA levels in transmissible spongiform encephalopathies (TSE) such as scrapie, bovine spongiform encephalopathy and Creutzfeldt-Jakob disease. In this study, Scrg1-immunoreactive cells, essentially neurons, were shown to be widely distributed throughout the brain of scrapie-infected mice, while only rare and weakly immunoreactive cells could be detected in the brain of non-infected normal mice. Induction of the protein was confirmed by Western blot analysis. At the ultrastructural level, Scrg1 protein was associated with dictyosomes of the Golgi apparatus and autophagic vacuoles in the central neurons of the scrapie-infected mice. These results suggested a role for Scrg1 in the pathological changes observed in TSE. We have generated transgenic mice specifically expressing Scrg1 in neurons. No significant differences in the time course of the disease were detected between transgenic and non-transgenic mice infected with scrapie prions. However, tight association of Scrg1 with autophagic vacuoles was again observed in brain neurons of infected transgenic mice. High levels of the protein were also detected in degenerating Purkinje cells of Ngsk Prnp 0/0 mice overexpressing the Prnd gene coding for doppel, a neurotoxic paralogue of the prion protein. Furthermore, induction of Scrg1 protein was observed in the brain of mice injured by canine distemper virus or gold thioglucose treatment. Taken together, our results indicate that Scrg1 is associated with neurodegenerative processes in TSE, but is not directly linked to dysregulation of prion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号