首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen X  Levine JD 《Neuroscience》2003,121(4):1007-1015
While enhanced nociceptor activity has been demonstrated in models of painful peripheral neuropathy, analyses of activity pattern, which could play a role in the symptoms experienced as well as help elucidate underlying mechanism, are still limited. We evaluated the pattern of C-fiber activity, in response to mechanical and chemical stimuli, in a rat model of diabetes induced by a pancreatic beta-cell toxin, streptozotocin (STZ). In diabetic rats the number of action potentials produced by threshold and suprathreshold (10 g) sustained (60 s) mechanical stimuli was elevated in approximately half of C-fibers. These high-firing C-fibers demonstrated a disproportionate increase in interspike intervals (ISIs) between 100 and 199 ms, compared with low-firing diabetic and control C-fibers. The co-efficient of variability (CV2), a frequency independent measure of ISI variability, was also greater in high-firing fibers, compared with control fibers. Unexpectedly, instantaneous frequency of the initial burst of activity during the first second was lower in high-firing fibers, even though the average frequency over the last 59 s was significantly higher. The number of action potentials evoked by a noxious chemical stimulus, 300 and 600 mM KCl, injected adjacent to the mechanical receptive field was also significantly increased in C-fibers from diabetic rats and mechanically high-firing fibers had more action potentials in response to KCl than control fibers and a disproportionate increase in ISIs between 100 and 199 ms for responses to chemical stimuli appeared only in mechanically high-firing C-fibers, compared with the mechanically low-firing diabetic or control C-fibers. There was, however, no corresponding change in CV2 or instantaneous frequency plots for the response to chemical stimulation in mechanically high-firing fibers, as there was in the response to mechanical stimulation. Our data demonstrate specific changes in firing pattern of high-firing C-fibers in the rat model of painful neuropathy produced by STZ-diabetes that might contribute to the symptoms experienced by patients.  相似文献   

2.
Despite muscle pain being a well-described symptom in patients with diverse forms of peripheral neuropathy, the role of neuropathic mechanisms in muscle pain have received remarkably little attention. We have recently demonstrated in a well-established model of chemotherapy-induced painful neuropathy (CIPN) that the anti-tumor drug paclitaxel (Taxol) produces mechanical hyperalgesia in skeletal muscle, of similar time course to and with shared mechanism with cutaneous symptoms. In the present study, we evaluated muscle afferent neuron function in this rat model of CIPN. The mechanical threshold of muscle afferents in rats exposed to paclitaxel was not significantly different from the mechanical threshold of muscle afferents in control animals (P = 0.07). However, paclitaxel did produce a marked increase in the number of action potentials elicited by prolonged suprathreshold fixed intensity mechanical stimulation and a marked increase in the conduction velocity. In addition, the interspike interval (ISI) analysis (to evaluate the temporal characteristics of the response of afferents to sustained mechanical stimulation) showed a significant difference in rats treated with paclitaxel; there was a significantly greater ISI percentage of paclitaxel-treated muscle afferents with 0.01- and 0.02-s ISI. In contrast, an analysis of variability of neuronal firing over time (CV2 analysis) showed no effect of paclitaxel administration. These effects of paclitaxel on muscle afferent function contrast with the previously reported effects of paclitaxel on the function of cutaneous nociceptors.  相似文献   

3.
Khan GM  Chen SR  Pan HL 《Neuroscience》2002,114(2):291-299
Both myelinated and unmyelinated afferents are implicated in transmitting diabetic neuropathic pain. Although unmyelinated afferents are generally considered to play a significant role in diabetic neuropathic pain, pathological changes in diabetic neuropathy occur mostly in myelinated A-fibers. In the present study, we first examined the role of capsaicin-sensitive C-fibers in the development of allodynia induced by diabetic neuropathy. We then studied the functional changes of afferent nerves pertinent to diabetic neuropathic pain. Diabetes was induced in rats by i.p. streptozotocin. To deplete capsaicin-sensitive C-fibers, rats were treated with i.p. resiniferatoxin (300 microg/kg). Mechanical and thermal sensitivities were measured using von Frey filaments and a radiant heat stimulus. Single-unit activity of afferents was recorded from the tibial nerve. Tactile allodynia, but not thermal hyperalgesia, developed in diabetic rats. Resiniferatoxin treatment did not alter significantly the degree and time course of allodynia. Post-treatment with resiniferatoxin also failed to attenuate allodynia in diabetic rats. The electrophysiological recordings revealed ectopic discharges and a higher spontaneous activity mainly in Adelta- and Abeta-fiber afferents in diabetic rats regardless of resiniferatoxin treatment. Furthermore, these afferent fibers had a lower threshold for activation and augmented responses to mechanical stimuli. Thus, our study suggests that capsaicin-sensitive C-fiber afferents are not required in the development of allodynia in this rat model of diabetes. Our electrophysiological data provide substantial new evidence that the abnormal sensory input from Adelta- and Abeta-fiber afferents may play an important role in diabetic neuropathic pain.  相似文献   

4.
1. This study examined sensory neurons in the saphenous nerve of rats treated with streptozotocin to induce diabetes (STZ-D). Several physiological properties of sensory neurons were not significantly different in STZ-D compared with control (CON) rats, including percentage and rate of spontaneous activity seen in the whole nerve and mechanical and thermal thresholds of individual C-fibers. 2. The response of STZ-D and CON C-fibers to a sustained (1 min) mechanical stimulus of threshold force was similar. However, during the 5 min immediately after removal of this stimulus, there was a much greater afterdischarge in STZ-D rats (STZ-D: n = 35; 14.6 +/- 5.1 action potentials/5 min, mean +/- SE; CON: n = 34; 3.9 +/- 0.7 action potentials/5 min). The number of action potentials during a sustained (1 min) suprathreshold mechanical (445 g) stimulus was also significantly greater in the C-fibers from STZ-D rats (STZ-D: n = 44; 149.7 +/- 18.4 action potentials; CON: n = 45; 84.7 +/- 12.2 action potentials). The afterdischarge during the 5 min immediately after removal of the sustained suprathreshold stimulus was also greater in C-fibers from STZ-D rats (STZ-D: 38.7 +/- 13.1 action potentials/5 min; CON: 9.3 +/- 2.3 action potentials/5 min). 3. There was a significant difference between C-fibers from STZ-D and CON rats with respect to the distribution among certain sensory classes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Shim B  Kim DW  Kim BH  Nam TS  Leem JW  Chung JM 《Neuroscience》2005,132(1):193-201
This study examined whether or not the properties of cutaneous nociceptive fibers are altered in the neuropathic state by comparing lumbars 5 and 6 spinal nerve ligation (SNL) rats with sham-operated controls. The rats with the unilateral SNL developed mechanical allodynia in the ipsilateral hind limb, whereas the sham group did not. Two to 5 weeks after the neuropathic or sham surgery, rats were subjected to single fiber-recording experiments to examine the properties of afferent fibers in the sural and plantar nerves. A total of 224 afferents in the C- and Adelta-ranges were characterized in the neuropathic and sham groups. Spontaneous activity was observed in 16 of 155 fibers in the neuropathic group and one of 69 fibers in the sham group. The response threshold of both the C- and Adelta-fibers to mechanical stimuli was lower in the neuropathic group than the sham group. The afferent fibers responsive to heat stimuli were all C-fibers, and none were Adelta-fibers. The response threshold of the C-fibers to the heat stimuli was lower in the neuropathic group than the sham group. The magnitude of the responses of both C- and Adelta-fibers to the suprathreshold intensity of the mechanical stimulus was greater in the neuropathic group than the sham group. However, the magnitude of the responses of C-fibers to the suprathreshold intensity of the heat stimulus in the neuropathic group was not different from that in the sham group. These results suggest that after a partial peripheral nerve injury, the nociceptors on the skin supplied by an uninjured nerve become sensitized to both mechanical and heat stimuli. This nociceptor sensitization can contribute to neuropathic pain.  相似文献   

6.
It is known that the level of activity in nociceptive primary afferent nerve fibers increases in neuropathic conditions that produce pain, but changes in the temporal patterning of action potentials have not been analyzed in any detail. Because the patterning of action potentials in sensory nerve fibers might play a role in the development of pathological pain states, we studied patterning of mechanical stimulus-evoked action potential trains in nociceptive primary afferents in a rat model of vincristine-induced painful peripheral neuropathy. Systemic administration of vincristine (100 microg/kg) caused approximately half the C-fiber nociceptors to become markedly hyperresponsive to mechanical stimulation. Instantaneous frequency plots showed that vincristine induced an irregular pattern of action-potential firing in hyperresponsive C-fibers, characterized by interspersed occurrences of high- and low-frequency firing. This pattern was associated with an increase in the percentage of interspike intervals 100-199 ms in duration compared with that in C-fibers from control rats and vincristine-treated C-fibers that did not become hyperresponsive. Variability in the temporal pattern of action potential firing was quantified by determining the coefficient of variability (CV2) for adjacent interspike intervals. This analysis revealed that vincristine altered the pattern of action-potential timing, so that combinations of higher firing frequency and higher variability occurred that were not observed in control fibers.The abnormal temporal structure of nociceptor responses induced by vincristine in some C-fiber nociceptors could contribute to the pathogenesis of chemotherapy-induced neuropathic pain, perhaps by inducing activity-dependent post-synaptic effects in sensory pathways.  相似文献   

7.
The clinical use of the antineoplastic agent paclitaxel (Taxol) is significantly limited in its effectiveness by a dose-related painful peripheral neuropathy. To evaluate underlying mechanisms, we developed a model of Taxol-induced painful peripheral neuropathy in the rat and determined the involvement of two second messengers that contribute to enhanced nociception in other models of inflammatory and neuropathic pain, protein kinase Cepsilon and protein kinase A. Taxol administered acutely, or chronically over 12 days, produced a decrease in mechanical nociceptive threshold. Acutely, Taxol induced hyperalgesia that was significant within 1 h, maximal after 6 h and resolved completely by 24 h after a single treatment. Chronically, Taxol treatment resulted in a dose (0.1-1 mg/kg/day)-dependent decrease in nociceptive threshold, measured 24 h after administration, maximal within 5 days from the commencement of Taxol administration and resolving by 2 weeks after the last dose of Taxol. Chronic Taxol treatment also increased the number of action potentials evoked by sustained (60-s) threshold and suprathreshold (10-g) stimulation of a sub-population of C-fibers in rats with Taxol-induced hyperalgesia. Mechanical allodynia and thermal hyperalgesia were also present in Taxol-treated rats. Hyperalgesia, produced by both acute and chronic Taxol, was attenuated by intradermal injection of selective second messenger antagonists for protein kinase Cepsilon and protein kinase A.These findings provide insight into the mechanism of Taxol-induced painful peripheral neuropathy that may help control side effects of chemotherapy and improve its clinical efficacy.  相似文献   

8.
Here we have systematically characterized the stimulus response properties of mechanosensitive sensory fibers in the mouse saphenous nerve. We tested mechanoreceptors and nociceptors with defined displacement stimuli of varying amplitude and velocity. For each sensory afferent investigated we measured the mechanical latency, which is the delay between the onset of a ramp displacement and the first evoked spike, corrected for conduction delay. Mechanical latency plotted as a function of stimulus strength was very characteristic for each receptor type and was very short for rapidly adapting mechanoreceptors (<11 ms) but very long in myelinated and unmyelinated nociceptors (49-114 ms). Increasing the stimulus speed decreased mechanical latency in all receptor types with the notable exception of C-fiber nociceptors, in which mean mechanical latency was not reduced less, similar100 ms, even with very fast ramp stimuli (2,945 microm/s). We examined stimulus response functions and mechanical latency at two different temperatures (24 and 32 degrees C) and found that stimulus response properties of almost all mechanoreceptors were not altered in this range. A notable exception to this rule was found for C-fibers in which mechanical latency was substantially increased and stimulus response functions decreased at lower temperatures. We calculated Q(10) values for mechanical latency in C-fibers to be 5.1; in contrast, the Q(10) value for conduction velocity for the same fibers was 1.4. Finally, we examined the effects of short-term inflammation (2-6 h) induced by carrageenan on nociceptor and mechanoreceptor sensitivity. We did not detect robust changes in mechanical latency or stimulus response functions after inflammation that might have reflected mechanical sensitization under the conditions tested.  相似文献   

9.
Diabetic neuropathy is a disorder that affects various regions of the nervous system and there is no specific treatment available for it. This study evaluated the protective effect of molsidomine in diabetic neuropathy in rats. Diabetes was induced in male Wistar rats by administrating streptozotocin (52 mg/kg ip). Diabetic rats were treated with molsidomine 5 mg/kg po and 10 mg/kg po. After 8 weeks of treatment, motor coordination, mechanical allodynia, mechanical hyperalgesia, nerve conduction velocity, and glycosylated hemoglobin were assessed. Thereafter, animals were killed and the sciatic nerve was isolated for measurement of reduced glutathione and lipid peroxidation, and histopathological analysis. Treatment with molsidomine significantly improved motor coordination, paw withdrawal threshold, mechanical threshold, and nerve conduction velocity. Furthermore, molsidomine treatment also reduced malondialdehyde levels and prevented depletion of reduced glutathione in the sciatic nerve homogenate. Histopathology revealed that molsidomine treatment maintained normal architecture of the sciatic nerve. The results of our study strengthen the alternative use of molsidomine in diabetic neuropathy.  相似文献   

10.
Diabetes is frequently accompanied by painful polyneuropathies that are mediated by enhanced neuronal excitability in the spinal cord, partly because of decrease in spinal intrinsic inhibitory influences. Changes in spinal excitatory-inhibitory balance may alter spinal segmental motor output. In the study presented here, the mono- and disynaptic (the fastest polysynaptic) reflexes (MSR and DSR, respectively) were recorded from L5 ventral roots in response to stimulation of the ipsilateral L5 dorsal root in spinalized streptozotocin (STZ)-induced diabetic rats with a reduced withdrawal threshold to mechanical stimuli. The diabetic rats generally exhibited larger spinal reflex amplitudes, the DSR being influenced in particular. We addressed whether recurrent and presynaptic inhibition of the spinal reflexes were altered in STZ-treated animals. The recurrent inhibition of the MSR and DSR elicited by preceding antidromic conditioning stimulation delivered to the recorded L5 ventral root was markedly suppressed in diabetic rats. By contrast, the presynaptic inhibition of the MSR and DSR elicited by preceding conditioning stimulation to the ipsilateral L4 dorsal root was not impaired. Thus, in diabetic painful neuropathy, reduced spinal intrinsic inhibition in the ventral horn contributes to an enhanced spinal segmental motor output.  相似文献   

11.
Recordings were made in the peroneal nerve of healthy volunteer subjects from C-mechano-heat (CMH) nociceptors (n=25) with their receptive fields in the skin on the dorsum of the foot. The investigation focused on afferent single C-fiber activity induced by short (200 ms) high-intensity argon-laser light pulses projected to localized spots of the skin. Cutaneous heat stimulation with the argon laser, 2–3 times the activation threshold, induced inter-burst spike frequencies in the nerve, reaching 50 Hz, while mechanical stimulation 10–20 times threshold only evoked frequencies reaching 10 Hz. The decrease in conduction velocity of action potentials in the C-fiber afferents following mechanical and heat stimulation was closely related to the degree of activation. Following a laser pulse of 200 ms, a spike pattern with highly reproducible inter-spike intervals was evoked with a fast saturation. On the contrary, a high variability in the number of action potentials evoked by both heat and mechanical stimuli was found, depending on the location of stimuli within the receptive field. A relation between the conduction velocity and the peak firing within the spike train following laser stimulation was detected. Heat and mechanical stimulation activated single C-fibers in matching spots within the same skin areas, in line with the assumption that the two modalities in the CMH-fibers share matching morphological cutaneous substrates. No correlation was found in thresholds or excitability to mechanical and heat stimulation, respectively. This suggests that subsets of receptors exist within nerve endings of the cutaneous receptive fields, with the ability to generate action potentials independent of heat and mechanical stimuli. Unexpectedly, no signs of sensitization or other inflammatory responses were observed after repeated laser pulses; on the contrary, a rapidly developing fatigue was observed when single spots were repeatedly stimulated. However, no fatigue was observed if neighboring spots were stimulated, indicating a localized generator of the fatigue. In each subject, a good correlation was observed between the reported pain sensation and the activity evoked in the afferent C-fibers by the laser. However, the magnitude of the reported pain sensation to comparable degrees of C-fiber activation showed a high variability between different subjects. A fairly good subjective estimate of the afferent-fiber activation was observed when skin spots from 3- down to 1-mm diameter were stimulated. In a few individuals, no painful sensation was reported when the stimulated spots were reduced to 1-mm diameter, despite the occurrence of multiple spikes in single C-fiber afferents, amplifying the importance of spatial summation in the perception of pain. Received: 14 December 1997 / Accepted: 24 March 1998  相似文献   

12.
Primary hyperalgesia after tissue injury is suggested to result from sensitization of primary afferent fibers, but sensitization to mechanical stimuli has been difficult to demonstrate. In the companion study, sensitization of mechano-responsive Adelta- and C-fibers did not explain pain behaviors 45 min after an incision in the rat hindpaw. In the present study, we examined mechanical response properties of Adelta- and C-fibers innervating the glabrous skin of the plantar hindpaw in rats 1 day after an incision or sham procedure. In behavioral experiments, median withdrawal thresholds to von Frey filaments were reduced from 522 mN before to 61 mN 2 and 20 h after incision; median withdrawal thresholds after sham procedure were stable (522 mN). Responses to a nonpunctate mechanical stimulus were increased after incision. In neurophysiological experiments in these same rats, 67 single afferent fibers were characterized from the left tibial nerve 1 day after sham procedure (n = 39) or incision (n = 28); electrical stimulation was used as the search stimulus to identify a representative population of Adelta- and C-fibers. In the incision group, 11 fibers (39%) had spontaneous activity with frequencies ranging from 0.03 to 39.3 imp/s; none were present in the sham group. The median response threshold of Adelta-fibers was less in the incision (56 mN, n = 13) compared with sham (251 mN, n = 26) group, mainly because the proportion of mechanically insensitive afferents (MIAs) was less (8 vs. 54% after sham procedure). Median C-fiber response thresholds were similar in incised (28 mN, n = 15) and sham rats (56 mN, n = 13). Responsiveness to monofilaments was significantly enhanced in Adelta-fibers 1 day after incision; stimulus response functions of C-fibers after incision and after sham procedure did not differ significantly. Only Adelta-fibers but not C-fibers sensitized to the nonpunctate mechanical stimulus. The size of receptive fields was increased in Adelta- and C-fibers 1 day after incision. The results indicate that sensitization of Adelta- and C-fibers is apparent 1 day after incision. Because sensitization of afferent fibers to mechanical stimuli correlated with behavioral results, sensitization may contribute to the reduced withdrawal threshold after incision. Spontaneous activity in Adelta- and C-fibers may account for nonevoked pain behavior and may also contribute to mechanical hyperalgesia by amplifying responses centrally.  相似文献   

13.
1. In the companion paper, we described a state of hypersensitivity that developed in dorsal horn wide dynamic range (WDR) neurons in rats after transient spinal cord ischemia. Thus the WDR neurons exhibited lower threshold and increased responses to low-intensity mechanical stimuli. The response pattern of these neurons to suprathreshold electrical stimulation was also changed. Notably, the response to A-fiber input was increased. No change in response to thermal stimulation was found before and after spinal cord ischemia. 2. In normal rats, the gamma-aminobutyric acid (GABA)B agonist baclofen (0.1 mg/kg ip) administered 1-3 h before neuronal recording suppressed the responses of WDR neurons to high-intensity mechanical pressure without influencing the threshold and the responses to lower-intensity stimuli. 3. In allodynic rats, similar pretreatment with baclofen totally reversed the hypersensitivity of the WDR neurons to mechanical stimuli and normalized the response pattern of neurons to electrical stimulation. 4. The GABAA receptor agonist muscimol (1 mg/kg ip) did not influence the response of WDR neurons in either normal or allodynic animals. 5. The present results demonstrated that the GABAB agonist baclofen is effective in reversing the hypersensitivity of dorsal horn WDR neurons to low-intensity mechanical stimulation after transient spinal cord ischemia, indicating that dysfunction of the GABAergic inhibitory system may be responsible for the development of neuronal hypersensitivity. 6. It is suggested that GABAergic interneurons exert a tonic presynaptic inhibitory control, through baclofen-sensitive B-type GABA receptors, on input from low-threshold mechanical afferents, and that disruption of this control may result in painful reaction to innocuous stimuli (allodynia).  相似文献   

14.
1. Radiant-heat stimuli of different intensities were delivered every 28 s to the thenar eminence of the hand of human subjects and to the receptive fields (RFs) of 58 "mechanothermal nociceptive" and 16 "warm" C-fibers, most of which innervated the glabrous skin of the monkey hand. A CO2 infrared laser under control via a radiometer provided a step increase in skin temperature to a level maintained within +/- 0.1 degrees C over a 7.5-mm-diameter spot. 2. Human subjects categorized the magnitude of warmth and pain sensations evoked by stimuli that ranged in temperature from 40 to 50 degrees C. The scale of subjective thermal intensity constructed from these category estimates showed a monotonically increasing relation between stimulus temperature and the magnitude of warmth and pain sensations. 3. The mechanothermal fibers had a mean RF size of 18.9 +/- 3.2 mm2 (SE), a mean conduction velocity of 0.8 +/- 0.1 m/s, mean thresholds of 43.6 +/- 0.6 degrees C for radiant heat and 5.95 +/- 0.59 bars for mechanical stimulation, and no spontaneous activity. In contrast, warm fibers had punctate RFs, a mean conduction velocity of 1.1 +/- 0.1 m/s, heat thresholds of less than 1 degrees C above skin temperature, no response to mechanical stimulation, and a resting level of activity in warm skin that was suppressed by cooling. 4. The cumulative number of impulses evoked during each stimulation in the nociceptive afferents increased monotonically as a function of stimulus temperature over the range described by humans as increasingly painful (45-50 degrees C). Nociceptive fibers showed little or no response to stimulus temperatures less than 45 degrees C that elicited in humans sensations primarily of warmth but not pain. In contrast, the cumulative impulse count during stimulation of each warm fiber increased monotonically with stimulus temperature over the range of 39-43 degrees C. However, for stimuli of 41-49 degrees C the cumulative impulse count in warm fibers was nonmonotonic with stimulus temperature. Warm-fiber response to stimuli of 45 degrees C or greater usually consisted of a short burst of impulses followed by cessation of activity. 5. The subjective magnitude of warmth and pain sensations in humans and the cumulative impulse count evoked by each stimulus in warm and nociceptive afferents varied inversely with the number, delivery rate, and intensity of preceding stimulations. 6. The results of these experiments suggest the following: a) that activity in the mechanothermal nociceptive C-fibers signals the occurrence of pain evoked by radiant heat, and that the frequency of discharge in these fibers may encode the intensity of painful stimulation; b) that activity in warm fibers may encode the intensity of warmth at lower stimulus temperatures, but is unlikely to provide a peripheral mechanism for encoding the intensity of painful stimulation at higher stimulus temperatures.  相似文献   

15.
Diabetes is the most prevalent metabolic disorder in the United States, and between 50% and 70% of diabetic patients suffer from diabetes-induced neuropathy. Yet our current knowledge of the functional changes in sensory nerves and their distal terminals caused by diabetes is limited. Here, we set out to investigate the functional and morphological consequences of diabetes on specific subtypes of cutaneous sensory nerves in mice. Diabetes was induced in C57Bl/6 mice by a single intraperitoneal injection of streptozotocin. After 6-8 wk, mice were characterized for behavioral sensitivity to mechanical and heat stimuli followed by analysis of sensory function using teased nerve fiber recordings and histological assessment of nerve fiber morphology. Diabetes produced severe functional impairment of C-fibers and rapidly adapting Aβ-fibers, leading to behavioral hyposensitivity to both mechanical and heat stimuli. Electron microscopy images showed that diabetic nerves have axoplasm with more concentrated organelles and frequent axon-myelin separations compared with control nerves. These changes were restricted to the distal nerve segments nearing their innervation territory. Furthermore, the relative proportion of Aβ-fibers was reduced in diabetic skin-nerve preparations compared with nondiabetic control mice. These data identify significant deficits in sensory nerve terminal function that are associated with distal fiber loss, morphological damage, and behavioral hyposensitivity in diabetic C57Bl/6 mice. These findings suggest that diabetes damages sensory nerves, leading to functional deficits in sensory signaling that underlie the loss of tactile acuity and pain sensation associated with insensate diabetic neuropathy.  相似文献   

16.
The streptozotocin (STZ)-diabetic rat, the most commonly employed model of experimental diabetic neuropathy, is characterised by a reduction in nerve conduction velocity, pain threshold and blood flow. Whether or not structural abnormalities underlie these functional abnormalities is unclear. 10 adult male Sprague–Dawley STZ-diabetic rats (diabetes duration 27 d) and 10 age-matched (23 wk) control animals were studied. Motor nerve conduction velocity (m s−1) was significantly reduced in diabetic (41.31±0.8) compared with control (46.15±1.5) animals ( P <0.001). The concentration of sciatic nerve glucose ( P <0.001), fructose ( P <0.001) and sorbitol ( P <0.001) was elevated, and myoinositol ( P <0.001) was reduced in diabetic compared with control animals. Detailed morphometric studies demonstrated no significant difference in fascicular area, myelinated fibre density, fibre and axon areas as well as unmyelinated fibre density and diameter. Endoneurial capillary density, basement membrane area and endothelial cell profile number did not differ between diabetic and control animals. However, luminal area ( P <0.03) was increased and endothelial cell area ( P <0.08) was decreased in the diabetic rats. We conclude there is no detectable structural basis for the reduction in nerve conduction velocity, pain threshold or blood flow, observed in the streptozotocin diabetic rat.  相似文献   

17.
The purpose of this study was to examine which primary afferent fibers are sensitized to mechanical stimuli after an experimental surgical incision to the glabrous skin of the rat hindpaw. Afferent fibers teased from the L(5) dorsal root or the tibial nerve were recorded in anesthetized rats. The mechanical response properties of each fiber were characterized before and 45 min after an incision (or sham procedure) within the mechanical receptive field. Sensitization is characterized by an expansion of the mechanical receptive field, an increase in background activity, an increase in response magnitude, or a decrease in response threshold. After incision, the background activity and response properties of Abeta-fibers (n = 9) to mechanical stimuli were unchanged. Four of 13 mechanosensitive Adelta-fibers exhibited sensitization after the incision; response threshold decreased, response magnitude increased, or receptive field size increased. Background activity of Adelta-fibers was not increased by the incision. Sensitization was observed in 4 of 18 mechanosensitive C-fibers 45 min after the incision. Background activity of C-fibers was not increased by the incision. In a group of mechanically insensitive afferent fibers (MIAs), 3 of 7 Adelta-fibers and 4 of 10 C-fibers sensitized 45 min after incision. Response threshold was decreased in only 2 of 17 MIAs; receptive field size increased in 7 of 17 MIAs. Abeta-fibers did not sensitize after the incision, and only 8 of 31 (26%) mechanosensitive Adelta- and C-fibers gave evidence of sensitization. In a group of MIA Adelta- and C-fibers, a greater percentage of 17 fibers studied (41%) were sensitized after incision. In this model, the principal effect of an incision, when examined 45 min after the insult, is an increase in receptive field size of the afferents, particularly those characterized as MIAs. To the extent that the mechanical hyperalgesia characterized in the same model is initiated in the periphery, it would appear that spatial summation of modestly increased response magnitude is important to the development of hyperalgesia.  相似文献   

18.
The pathogenesis of diabetic neuropathy is multifactorial, but in general hyperglycemia through polyol and protein glycation pathways is considered to be a key etiological factor. Most likely insulin deficiency, in experimentally induced type I diabetes, contributes to the development of diabetes neuropathy. The aim of this study was to evaluate the in vivo behavioral effect of low-dose insulin on diabetic neuropathy in rats through behavioral testing in hyperglycemic conditions. Mechanical sensitivity and allodynia were tested in streptozotocin (STZ)-induced diabetic rats. After diabetes and neuropathy induction, treatment with low-dose insulin normalized behavioral test results in 37 days, while severe hyperglycemia persisted. Although this study provided no evidence about the role of hypoinsulinemia in the etiology of diabetes neuropathy, the results confirmed that an insulin deficit with impaired insulin signaling and neurotrophic support, rather than hyperglycemia, plays an essential role in the pathophysiology of painful diabetic neuropathy.  相似文献   

19.
Neuropathic and inflammatory pain can be modulated by the sympathetic nervous system. In some pain models, sympathetic postganglionic efferents are involved in the modulation of nociceptive transmission in the periphery. The purpose of this study is to examine the sensitization of Adelta- and C-primary afferent nociceptors induced by intradermal injection of capsaicin (CAP) to see whether the presence of sympathetic efferents is essential for the sensitization. Single primary afferent discharges were recorded from the tibial nerve after the fiber types were identified by conduction velocity in anesthetized rats. An enhanced response of some Adelta- and most C-primary afferent fibers to mechanical stimuli was seen in sham-sympathectomized rats after CAP (1%, 15 mul) injection, but the enhanced responses of both Adelta- and C-fibers were reduced after sympathetic postganglionic efferents were removed. Peripheral pretreatment with norepinephrine by intraarterial injection could restore and prolong the CAP-induced enhancement of responses under sympathectomized conditions. In sympathetically intact rats, pretreatment with an alpha(1)-adrenergic receptor antagonist (terazosin) blocked completely the enhanced responses of C-fibers after CAP injection in sympathetically intact rats without significantly affecting the enhanced responses of Adelta-fibers. In contrast, a blockade of alpha(2)-adrenergic receptors by yohimbine only slightly reduced the CAP-evoked enhancement of responses. We conclude that the presence of sympathetic efferents is essential for the CAP-induced sensitization of Adelta- and C-primary afferent fibers to mechanical stimuli and that alpha(1)-adrenergic receptors play a major role in the sympathetic modulation of C-nociceptor sensitivity in the periphery.  相似文献   

20.
Diabetic neuropathic pain is often considered to be caused by peripheral neuropathy. The involvement of the CNS in this pathological condition has not been well documented. Development of hypersensitivity of spinal dorsal horn neurons is involved in neuropathic pain induced by traumatic nerve injury. In the present study, we determined the functional changes of identified spinothalamic tract (STT) neurons and their correlation to diabetic neuropathic pain. Diabetes was induced in rats by intraperitoneal injection of streptozotocin. Hyperalgesia and allodynia were assessed by the withdrawal responses to pressure, radiant heat, and von Frey filaments applied to the hindpaw. Single-unit activity of STT neurons was recorded from the lumbar spinal cord in anesthetized rats. The responses of STT neurons to mechanical and thermal stimuli and the sensitivity to intravenous morphine were determined in diabetic and normal rats. In 12 diabetic rats, mechanical allodynia and hyperalgesia, but not thermal hyperalgesia, developed within 2 wk after streptozotocin injection and lasted for >/=7 wk. Compared to the 32 STT neurons recorded in normal animals, the 37 STT neurons in diabetic rats displayed a higher spontaneous discharge activity and enlarged receptive fields. Also, the STT neurons in diabetic rats exhibited lower thresholds and augmented responses to mechanical stimulation. Intravenous injection of 2.5 mg/kg of morphine suppressed significantly the responses of STT neurons to noxious stimuli in 12 nondiabetic rats. However, such an inhibitory effect of morphine on the evoked response of STT neurons was diminished in 14 diabetic animals. This electrophysiological study provides new information that development of hypersensitivity of spinal dorsal horn projection neurons may be closely related to neuropathic pain symptoms caused by diabetes. Furthermore, the attenuated inhibitory effects of morphine on evoked responses of STT neurons in diabetes likely accounts for its reduced analgesic efficacy in this clinical form of neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号