首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAGE-A antigens belong to cancer/testis (CT) antigens that are expressed in tumors but not in normal tissues with the exception of testis and placenta. Among MAGE-A antigens, MAGE-A10 is extensively expressed in various histological types of tumors, representing an attractive target for tumor immunotherapy. Cytotoxic T lymphocytes (CTLs) play a key role in anti-tumor immune responses, so the identification of CTL epitopes derived from MAGE-A10 would contribute a lot to the design of epitope-based vaccines for tumor patients. In this study, we predicted HLA-A*0201-restricted CTL epitope peptides of MAGE-A10, followed by peptide/HLA-A*0201 binding affinity and complex stability assays, and induced peptide-specific CTL immune responses. Of the selected three peptides (designated P1, P2 and P3), P1 (MAGE-A10310-318, SLLKFLAKV) could elicit peptide-specific CTLs both in vitro from HLA-A*0201-positive PBMCs and in HLA-A*0201/Kb transgenic mice. And, the induced CTLs could lyse MAGE-A10-expressing tumor cells in a HLA-A*0201-restricted fashion but not MAGE-A10-negative tumor cells. Our results demonstrate that the peptide MAGE-A10310-318 is a HLA-A*0201-restricted CTL epitope of MAGE-A10 and could serve as a target for therapeutic antitumoral vaccination.  相似文献   

2.
PURPOSE: For identification of CTL epitopes useful for cancer vaccines, it is crucial to determine whether cognate epitopes are presented on the cell surface of target cancer cells through natural processing of endogenous proteins. For this purpose, we tried to use the cellular machinery of both mice and human to define naturally processed CTL epitopes derived from two "cancer germ line" genes, MAGE-A4 and SAGE. EXPERIMENTAL DESIGN: We vaccinated newly produced HLA-A2402 transgenic mice with DNA plasmids encoding target antigens. Following screening of synthesized peptides by splenic CD8(+) T cells of vaccinated mice, we selected candidate epitopes bound to HLA-A2402. We then examined whether human CD8(+) T cells sensitized with autologous CD4(+) PHA blasts transduced by mRNA for the cognate antigens could react with these selected peptides in an HLA-A2402-restricted manner. RESULTS: After DNA vaccination, murine CD8(+) T cells recognizing MAGE-A4(143-151) or SAGE(715-723) in an HLA-A2402-restricted manner became detectable. Human CTLs specific for these two peptides were generated after sensitization of HLA-A2402-positive CD8(+) T cells with autologous CD4(+) PHA blasts transduced with respective mRNA. CTL clones were cytotoxic toward tumor cell lines expressing HLA-A2402 and cognate genes. Taken together, these CTL epitopes defined in HLA-A24 transgenic mice are also processed and expressed with HLA-A2402 in human cells. The presence of SAGE(715-723)-specific precursors was observed in HLA-A2402-positive healthy individuals. CONCLUSIONS: Two novel HLA-A2402-restricted CTL epitopes, MAGE-A4(143-151) and SAGE(715-723), were identified. Our approach assisted by cellular machinery of both mice and human could be widely applicable to identify naturally processed CTL epitopes.  相似文献   

3.
The human melanocyte lineage-specific antigen gp100 contains several epitopes recognized by cytotoxic T lymphocytes (CTL). However, most of the epitopes reported to date are HLA-A2.1-restricted. Despite the high frequency of HLA-A2.1 in melanoma patients, effective population coverage requires the identification of epitopes restricted by other frequent HLA alleles. Herein, HLA-A3 binding, gp100-derived synthetic peptides were tested for their capacity to elicit anti-melanoma CTL in vitro using CD8+ T cells from healthy donors as responders and peptide-pulsed autologous dendritic cells as antigen-presenting cells. Of 7 peptides tested, 2 (gp100[987] and gp100[1086] ) induced CTLs that killed melanoma cell lines expressing HLA-A3 and gp100. Additional MHC-binding studies to various HLA molecules belonging to the HLA-A3 superfamily (HLA-A*1101, -A*3101, -A*3301 and -A*6801) were performed to determine whether these CTL epitopes could further increase potential population coverage. Further experiments indicated that the peptide gp100\[987\], which bound to HLA-A11 with high affinity, was capable of inducing specific CTLs that killed melanoma cells expressing gp100 and HLA-A11 molecules. Our results indicate that the gp100\[987\] peptide corresponds to a CTL epitope which may be restricted by either the HLA-A3 or HLA-A11 allele, emphasizing its utility for the design and development of epitope-based therapies for melanoma. Int. J. Cancer, 78:518–524, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
PURPOSE: Cyclin D1, a key cell cycle regulator, is overexpressed in multiple types of cancer. Such tumor-associated genes may be useful targets for cancer immunotherapy. Nevertheless, it had previously been suggested that efficient T cells recognizing cyclin D1-derived epitopes are absent from the repertoire because of thymic deletion. We attempted to induce autologous CTL from healthy donors and patients with cyclin D1-overexpressing tumors using a highly efficient T-cell expansion system based on CD40-activated B cells as antigen-presenting cells. EXPERIMENTAL DESIGN: Cyclin D1-derived, HLA-A*0201-restricted epitopes were predicted by multiple computer algorithms, screened in HLA-A2-binding assays, and used for T-cell stimulation. The generated CTL lines and clones were analyzed by IFN-gamma enzyme-linked immunosorbent spot assay or cytolysis assay. RESULTS: After screening, at least two naturally processed and presented HLA-A*0201-binding cyclin D1 epitopes were identified. CTL specific for these epitopes could be successfully generated from HLA-A2(+) donors. T cells efficiently recognized target cells pulsed with the cognate peptide and cyclin D1-expressing tumor cell lines in an HLA-A*0201-restricted manner. More importantly, HLA-A*0201-matched, primary cyclin D1(+) tumor cells were efficiently recognized by cyclin D1-specific CTL. These CTL could be generated from patients with mantle cell lymphoma and cyclin D1(+) colon cancer. CONCLUSIONS: These results underscore that cyclin D1 needs to be considered as a target for broad-based antitumor immunotherapy.  相似文献   

5.
Five MAGE-3-derived peptides carrying an HLA-A24-binding motif were synthesized. Binding capacity of these peptides was analyzed by an HLA-class-I stabilization assay. Two of the 5 peptides bound to HLA-A*2402 molecule with high affinity, and 3 peptides with low affinity. Peripheral-blood mononuclear cells (PBMC) depleted of CD4+T cells were stimulated with the peptides to determine whether these peptides would induce cytotoxic T lymphocytes (CTL) from PBMCs obtained from 7 healthy HLA-A*2402+ donors. Peptide M3-p97 (TFPDLESEF; corresponding to amino-acid residues 97-105 of MAGE-3), with high binding capacity to the HLA-A*2402 molecule, elicited the peptide-specific and HLA-A24-restricted CD8+CTL lines in 2 of the 7 donors, while none of the 4 other peptides induced CTL specific for the corresponding peptide in any of the donors. CTL lines induced by stimulation with peptide M3-p97 exhibited cytolytic activities against HLA-A*2402 transfectant cell lines (C1R-A*2402) in the presence of peptide M3-p97, but not in unloaded or irrelevant peptide-pulsed C1R-A*2402 cells. The CTL lines and a cloned CD8+CTL isolated from one of the bulk populations by limiting dilution could lyse MAGE-3+/HLA-A*2402+ squamous-cell-carcinoma(SCC) lines but neither MAGE-3-/HLA-A*2402+ nor MAGE-3+/HLA-A*2402- SCC lines, indicating that M3-p97 can be naturally processed and presented on the tumor-cell surface in association with HLA-A*2402 molecules. Combined with the 4 currently reported CTL epitopes derived from MAGE-3 and presented by HLA-A1, HLA-A2, HLA-A24 or HLA-B44, identification of this CTL epitope presented by the HLA-A*2402 molecule will extend the application of MAGE-3-derived peptides for immunotherapy for cancer patients.  相似文献   

6.
Cytochrome P450 1B1 (CYP1B1) was recently shown to be a candidate tumor antigen broadly expressed in solid and hematologic malignancies. Nevertheless, use of such self-antigens as targets for immune intervention can be limited because of loss of high-avidity T cells during negative selection in the thymus. Recent data suggest that targeting of cryptic epitopes may represent a way to circumvent such self-tolerance and induce efficient antitumor CTL responses. Here, we present the identification and characterization of a novel, cryptic HLA-A*0201-binding peptide from CYP1B1. The nanomer CYP246 was identified by epitope deduction using algorithms to predict HLA-A*0201-binding peptides. CYP246 is characterized by strong initial HLA-A*0201 binding but a short MHC/peptide binding half-life. Expansion of high-avidity CTL was readily possible using autologous CD40-activated B cells from normal donors and cancer patients as antigen-presenting cells, suggesting that an intact T-cell repertoire can be expanded for this epitope. Lysis of CYP1B1-expressing, HLA-A*0201+ tumor cell lines and primary tumor cells confirmed that sufficient levels of CYP246 are presented by tumor cells for effector CTL killing. These findings indicate that CYP246 is a candidate cryptic epitope for immune interventions in which tumor CYP1B1 is targeted.  相似文献   

7.
Non small cell lung cancers (NSCLC) express cancer/testis antigens (CTA) genes and MAGE-A expression correlates with poor prognosis in squamous cell carcinomas. We addressed cytotoxic T lymphocytes (CTL) responses to HLA class I restricted CTA epitopes in TIL from NSCLC in an unselected group of 33 patients consecutively undergoing surgery. Expression of MAGE-A1, -A2, -A3, -A4, -A10, -A12 and NY-ESO-1 CTA genes was tested by quantitative RT-PCR. Monoclonal antibodies (MAb) recognizing MAGE-A and NY-ESO-1 CTA were used to detect CTA by immunohistochemistry. CD8(+) TIL obtained from tumors upon culture with anti CD3 and anti CD28 mAb and IL-2 were stimulated with autologous mature DC (mDC) and HLA-A*0101 restricted MAGE-A1(161-169) or MAGE-A3(168-176) peptides or HLA-A*0201 restricted MAGE-A4(230-239), MAGE-A10(254-262), NY-ESO-1(157-165) or multi-MAGE-A (YLEYRQVPV) peptides or a recombinant vaccinia virus (rVV) encoding MAGE-A and NY-ESO-1 HLA-A*0201 restricted epitopes and CD80 co-stimulatory molecule. Specificity was assessed by (51)Cr release and multimer staining. At least one CTA gene was expressed in tumors from 15/33 patients. In 10 specimens, at least 4 CTA genes were concomitantly expressed. These data were largely confirmed by immunohistochemistry. TIL were expanded from 26/33 specimens and CTA-specific CTL activity was detectable in 7/26 TIL. In 6, however, specific cytotoxicity was weak, (<40% lysis at a 50:1 E:T ratio) and multimer staining was undetectable. In one case, high (>60% lysis at 50:1 E:T ratio) MAGE-A10(254-262) specific, HLA-A*0201 restricted response was observed. Supportive evidence was provided by corresponding multimer staining. Although CTA genes are frequently expressed in NSCLC, detection of CTL reactivity against CTA epitopes in TIL from nonimmunized NSCLC patients represents a rare event.  相似文献   

8.
Toward the development of a novel cancer immunotherapy, we have previously identified several tumor-associated antigens (TAAs) and the epitopes recognized by human histocompatibility leukocyte (HLA)-A2/A24-restricted cytotoxic T lymphocyte (CTL). In this study, we tried to identify a TAA of lung cancer (LC) and its HLA-A2 restricted CTL epitopes to provide a target antigen useful for cancer immunotherapy of LC. We identified a novel cancer testis antigen, cell division cycle associated gene 1 (CDCA1), overexpressed in nonsmall cell LC using a cDNA microarray analysis. The expression levels of CDCA1 were also increased in the majority of small cell LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers. We used HLA-A2.1 transgenic mice to identify the HLA-A2 (A*0201)-restricted CDCA1 epitopes recognized by mouse CTL, and we investigated whether these peptides could induce CDCA1-reactive CTLs from the peripheral blood mononuclear cells (PBMCs) of HLA-A2-positive donors and a NSCLC patient. Consequently, we found that the CDCA1(65-73) (YMMPVNSEV) peptide and CDCA1(351-359) (KLATAQFKI) peptide could induce peptide-reactive CTLs in HLA-A2.1 transgenic mice. In HLA-A2(+) donors, in vitro stimulation of PBMC with these peptides could induce peptide-reactive CTLs which killed tumor cell lines endogenously expressing both HLA-A2 and CDCA1. As a result, CDCA1 is a novel cancer-testis antigen overexpressed in LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers, and CDCA1 may therefore be an ideal TAA useful for the diagnosis and immunotherapy of these cancers.  相似文献   

9.
Lengsin is an eye lens protein with a glutamine synthetase domain. We previously identified this protein as a lung carcinoma antigen through cDNA microarray analysis. Lengsin protein is overexpressed irrespective of the histological type of lung carcinoma, but not in normal tissues other than the lens. Therefore, to significantly extend the use of Lengsin-based T-cell immunotherapies for the treatment of patients with lung carcinoma, we searched for HLA-A*0201-restricted epitopes from this protein by screening predicted Lengsin-derived candidate peptides for the induction of tumor-reactive CTLs. Four Lengsin-derived peptides were selected by computerized algorithm based on a permissive HLA-A*0201 binding motif, and were used to immunize HLA-A*0201 transgenic (HHD) mice. Two of the immunizing peptides, Lengsin(206-215)(FIYDFCIFGV) and Lengsin(270-279)(FLPEFGISSA), induced peptide-specific cytotoxic T lymphocytes (CTLs) in HHD mice, and thus were used to stimulate human peripheral blood lymphocytes in?vitro. Lengsin(206-215) and Lengsin (270-279) also induced human peptide-specific CTLs, and we were able to generate Lengsin(206-215)- and Lengsin(270-279)-specific CTL clones. The Lengsin(270-279)-specific CTL clone specifically recognized peptide-pulsed T2 cells, COS-7 cells expressing HLA-A*0201 and Lengsin, and HLA-A*0201+/Lengsin+ lung carcinoma cells in an HLA-A*0201-restricted manner. On the other hand, the Lengsin(206-215)-specific CTL clone failed to recognize HLA-A*0201+/Lengsin+ target cells in the absence of cognate peptide. These results suggest that Lengsin(270-279) is naturally processed and presented by HLA-A*0201 molecules on the surface of lung carcinoma cells and may be a new target for antigen-specific T-cell immunotherapy against lung cancer.  相似文献   

10.
PURPOSE: The Wilms' tumor antigen (WT1) is overexpressed in approximately 90% of breast tumors and, thus, is a potential target antigen for the immunotherapy of breast cancer. We have tested the working hypotheses that WT1 can be immunogenic in patients with breast cancer and can stimulate CTL of sufficient avidity to kill tumor cells. EXPERIMENTAL DESIGN: Paired tumor-draining lymph node and peripheral blood samples were analyzed from five HLA-A2-positive patients with stage I/II breast cancer. Fluorescent HLA-A*0201/WT1 tetramers were used to quantify WT1-specific CTL and the functional capacity of the CTL was assessed using cytotoxicity assays and intracellular cytokine staining. RESULTS: WT1 tetramer-binding T cells expanded from all lymph node samples but none of the corresponding peripheral blood samples. Functional assays were carried out on T cells from the patient who had yielded the highest frequency of HLA-A*0201/WT1 tetramer-positive cells. The cytotoxicity assays showed WT1 peptide--specific killing activity of the CTL, whereas intracellular cytokine staining confirmed that the tetramer--positive T cells produced IFN-gamma after stimulation with WT1 peptide. These WT1-specific T cells killed HLA-A2-positive breast cancer cell lines treated with IFN-gamma but no killing was observed with untreated tumor cells. CONCLUSIONS: These results show that WT1-specific CTL can be expanded from the tumor-draining lymph nodes of breast cancer patients and that they can display peptide-specific effector function. However, the CTL only killed IFN-gamma-treated tumor targets expressing high levels of HLA-A2 and not tumor cells with low HLA expression. This suggests that induction of autologous WT1-specific CTL may offer only limited tumor protection and that strategies that allow a high level of peptide/MHC complex presentation and/or improve CTL avidity may be required.  相似文献   

11.
PURPOSE: For the development of peptide-based, cancer-specific immunotherapy, the identification of CTL epitopes from additional tumor antigens is very important. NY-ESO-1, a cancer-testis antigen, is considered to be a promising target of tumor-specific immunotherapy. Because HLA-A24-expressing individuals cover >60% in the population of Japan, we aim at identifying NY-ESO-1-encoded peptide presented by HLA-A24. EXPERIMENTAL DESIGN: In our study, a HLA-A24-restricted CTL epitope was identified by using the following four-step procedure: (a) computer-based epitope prediction from the amino acid sequence of NY-ESO-1 antigen; (b) peptide-binding assay to determine the affinity of the predicted peptide with HLA-A24 molecule; (c) stimulation of primary T-cell response against the predicted peptides in vitro; and (d) testing of the induced CTLs toward various carcinoma cells expressing NY-ESO-1 antigen and HLA-A24. RESULTS: Of the tested peptides, effectors induced by a peptide of NY-ESO-1 at residue position 158-166 lysed three kinds of carcinoma cells expressing both NY-ESO-1 and HLA-A24. Our results indicate that peptide NY-ESO-1 (158-166) (LLMWITQCF) is a new HLA-A24-restricted CTL epitope capable of inducing NY-ESO-1-specific CTLs in vitro mediating HLA class I-restricted manner. CONCLUSIONS: We identified a novel HLA-A24-restricted NY-ESO-1-derived epitope peptide (LLMWITQCF) that could induce specific CTLs from the peripheral blood mononuclear cells of HLA-A24(+) healthy donors. This peptide would be useful in further evaluating the clinical utility of peptide-based, cancer-specific immunotherapy against various histological tumors.  相似文献   

12.
XM Zhang  Y Huang  ZS Li  H Lin  YF Sui 《Oncology letters》2010,1(6):1097-1100
Cancer immunotherapy has become one of the most important therapeutic approaches to cancer in the past two decades. Tumor antigen-derived peptides have been widely used to elicit tumor-specific cytotoxic T lymphocytes (CTLs). Antigen-specific CTLs induced by MAGE-derived peptides have proven to be highly efficacious in the prevention and treatment of various types of tumor. MAGE-n is a new member of the MAGE gene family and has been shown to be closely associated with hepatocellular carcinoma. It is highly homologous to the MAGE-A gene subfamily, particularly to MAGE-3 (93%). MAGE-n-derived peptide QLVFGIEVV is a novel HLA-A2.1-restricted CTL epitope that induces MAGE-n-specific CTLs in vitro. Identification of these CTL epitopes may lead to clinical applications of these peptides as cancer vaccines for patients with MAGE-n(+)/HLA-A2(+) tumors. In the present study, HLA-A/A24-restricted CTL epitopes of antigen MAGE-n were predicted using the NetCTL1.2 Server on the web, COMB >0.85. The results showed that the NetCTL1.2 Server prediction method improved prediction efficacy and accuracy. Additionally, 8 HLA-A2- and 9 HLA-A24-restricted CTL epitope candidates (nonamers) derived from the tumor antigen MAGE-n were predicted. These nonamers, following identification via experimentation, may contribute to the development of potential antigen peptide tumor vaccines.  相似文献   

13.
Tyrosinase-related protein-2 (TRP-2) is a known target antigen of spontaneous cytotoxic T cell responses in melanoma patients. Its frequent expression in metastatic tumors suggests that it might be an ideal candidate antigen for T cell-based immunotherapy. To provide knowledge about TRP-2-derived T cell epitopes useful for immunotherapy we applied a "reverse immunology strategy" based on repeated in vitro peptide stimulation of peripheral blood lymphocytes (PBL) from normal donors with predicted HLA-A*01 ligands. This led to the identification of TRP-2(181-190) as the first HLA-A*01-presented TRP-2-derived epitope. T-cell lines specific for peptide TRP-2(181-190) could be established from PBL of 50% of the normal HLA-A*01(+) donors tested. Such T cells responded specifically to autologous dendritic cells transduced virally with TRP-2, as well as to HLA-A*01(+), TRP-2(+) melanoma cells, although tumor cells had to be pretreated with IFN-gamma to become susceptible to T cell recognition. Interestingly, short-term in vitro peptide stimulation of PBL from HLA-A*01(+) melanoma patients showed the presence of TRP-2(181-190)-reactive CD8(+) T cells in some donors, suggesting their in vivo sensitization. Because TRP-2(181-190) overlaps with the known HLA-A*0201-presented epitope TRP-2(180-188), an 11mer peptide encompassing both epitopes might be of specific value for vaccination of a broad population of melanoma patients.  相似文献   

14.
Despite the discovery of multiple TAAs, only a limited number is available for clinical application, particularly against epithelial malignancies. In this study we searched for novel TAAs using expression profiles of gastric cancer examined with cDNA microarray, and identified the SCRN1 gene as a candidate. SCRN1 was confirmed to be expressed in five out of seven gastric cancers with semiquantitative RT-PCR. With Northern blot analysis, it was detected abundantly in the testis and ovary, but it was barely detectable in 14 other normal human adult organs. Colony formation assay revealed that its augmented expression is associated with promoted cell growth. As these expression profiles and functional features of SCRN1 appeared to be compatible with the characteristics of the hypothesized ideal TAAs, we examined whether SCRN1 protein contains antigenic epitope peptides restricted to HLA-A*0201. We synthesized the candidate peptides derived from SCRN1, and tried to induce CTLs with each peptide. The CTL clones were successfully induced with a peptide SCRN1-196 (KMDAEHPEL), and they lyzed not only the peptide-pulsed targets but also the tumor cells expressing both SCRN1 and HLA-A*0201 endogenously. These results strongly suggest that SCRN1-196 is an epitope peptide restricted to HLA-A*0201. Furthermore, we synthesized an anchor-modified peptide SCRN1-9 V (KMDAEHPEV), in which leucine at position 9 was substituted for valine to increase the binding affinity to the HLA-A*0201 molecules. The CTL clones induced by SCRN1-9 V also recognized tumor cells expressing its natural SCRN1 protein endogenously. These results strongly suggest that SCRN1 is a novel TAA and these peptides, both native and modified, may be applicable for cancer vaccines to treat gastric cancer.  相似文献   

15.
PURPOSE: C-Met proto-oncogene is a receptor tyrosine kinase that mediates the oncogenic activities of the hepatocyte growth factor. Using a DNA chip analysis of tumor samples from patients with renal cell carcinoma and sequencing of peptides bound to the HLA-A*0201 molecules on tumor cells a peptide derived from the c-Met protein was identified recently. EXPERIMENTAL DESIGN: We used this novel HLA-A*0201 peptide for the induction of specific CTLs to analyze the presentation of this epitope by malignant cells. RESULTS: The induced CTL efficiently lysed target cells pulsed with the cognate peptide, as well as HLA-A*0201-matched tumor cell lines in an antigen-specific and HLA-restricted manner. Furthermore, the induced c-Met-specific CTLs recognized autologous dendritic cells (DCs) pulsed with the peptide or transfected with whole-tumor mRNA purified from c-Met-expressing cell lines. We next induced c-Met-specific CTLs using peripheral blood mononuclear cells and DC from an HLA-A*0201-positive patient with plasma cell leukemia to determine the recognition of primary autologous malignant cells. These CTLs lysed malignant plasma cells while sparing nonmalignant B- and T-lymphocytes, monocytes, and DCs. CONCLUSION: Our results demonstrate that c-Met oncogene is a novel tumor rejection antigen recognized by CTL and expressed on a broad variety of epithelial and hematopoietic malignant cells.  相似文献   

16.
A cDNA vaccine (pVax1/pet-neu) was designed to encode 12 different Her-2/ErbB-2-derived, HLA-A*0201-restricted dominant and high-affinity heteroclitic cryptic epitopes. Vaccination with pVax1/pet-neu triggered multiple and ErbB-2-specific CTL responses in HLA-A*0201 transgenic HHD mice and in HLA-A*0201 healthy donors in vitro. Human and murine CTL specific for each one of the 12 ErbB-2 peptides recognized in vitro both human and murine tumor cells overexpressing endogenous ErbB-2. Furthermore, vaccination of HHD mice with pVax1/pet-neu significantly delayed the in vivo growth of challenged ErbB-2-expressing tumor (EL4/HHD/neu murine thymoma) more actively when compared with vaccination with the empty vector (pVax1) or vehicle alone. These data indicate that the pVax1/pet-neu cDNA vaccine coding for a poly-ErbB-2 epitope is able to generate simultaneous ErbB-2-specific antitumor responses against dominant and cryptic multiple epitopes.  相似文献   

17.
PURPOSE: Antiangiogenic therapy is now considered to be one of promising approaches to treat various types of cancer. In this study, we examined the possibility of developing antiangiogenic cancer vaccine targeting vascular endothelial growth factor receptor 1 (VEGFR1) overexpressed on endothelial cells of newly formed vessels in the tumor. EXPERIMENTAL DESIGN: Epitope-candidate peptides were predicted from the amino acid sequence of VEGFR1 based on their theoretical binding affinities to the corresponding HLAs. The A2/Kb transgenic mice, which express the alpha1 and alpha2 domains of human HLA-A*0201, were immunized with the epitope candidates to examine their effects. We also examined whether these peptides could induce human CTLs specific to the target cells in vitro. RESULTS: The CTL responses in A2/Kb transgenic mice were induced with vaccination using identified epitope peptides restricted to HLA-A*0201. Peptide-specific CTL clones were also induced in vitro with these identified epitope peptides from peripheral blood mononuclear cells donated by healthy volunteers with HLA-A*0201. We established CTL clones in vitro from human peripheral blood mononuclear cells with HLA-A*2402 as well. These CTL clones were shown to have potent cytotoxicities in a HLA class I-restricted manner not only against peptide-pulsed target cells but also against target cells endogenously expressing VEGFR1. Furthermore, immunization of A2/Kb transgenic mice with identified epitope peptides restricted to HLA-A*0201 was associated with significant suppression of tumor-induced angiogenesis and tumor growth without showing apparent adverse effects. CONCLUSIONS: These results strongly suggest that VEGFR1 is a promising target for antiangiogenic cancer vaccine and warrants further clinical development of this strategy.  相似文献   

18.
The MHC class-1 binding affinity of an epitope is an important parameter determining the immunogenicity of the peptide-MHC complex. In order to improve the immunogenicity of an epitope derived from melanocyte lineage-specific antigen gp 100, we performed amino-acid substitutions within the epitope and assayed both HLA-A*0201 binding and CTL recognition. Anchor replacements towards the HLA-A*0201 peptide-binding motif gave rise to peptides with higher HLA-A*0201 binding capacity compared to the wild-type epitope. In addition, several of the gp100 154–162 epitope-analogues were more efficient at target-cell sensitization for lysis by anti-gp100 154–162 CTL compared to the wild-type epitope. These altered gp100 154–162 epitopes were subsequently tested for their capacity to induce CTL responses in vivo using HLA-A*0201/Kb transgenic mice, and in vitro using HLA-A*0201+ donor-derived lymphocytes. Interestingly, the peptide-specific CTL obtained, which were raised against the different gp 100 154–162 epitope-analogues, displayed cross-reactivity with target cells endogenously processing and presenting the native epitope. These data demonstrate that altered epitopes can be exploited to elicit native epitope-reactive CTL. The use of epitope-analogues with improved immunogenicity may contribute to the development of CTL-epitope based vaccines in viral disease and cancer. Int. J. Cancer, 70:302–309, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
HER-2/neu is a self-antigen expressed by tumors and nonmalignant epithelial tissues. The possibility of self-tolerance to HER-2/neu-derived epitopes has raised questions concerning their utility in antitumor immunotherapy. Altered HER-2/neu peptide ligands capable of eliciting enhanced immunity to tumor-associated HER-2/neu epitopes may circumvent this problem. The human CTL peptide HER-2/neu (435-443) [hHER-2(9(435))] represents a xenogeneic altered peptide ligand of its mouse homologue, differing by one amino acid residue at position 4. In contrast to mHER-2(9(435)), vaccination of HLA-A*0201 transgenic (HHD) mice with hHER-2(9(435)) significantly increased the frequency of mHER-2(9(435))-specific CTL and also induced strong protective and therapeutic immunity against the transplantable ALC tumor cell line transfected to coexpress HLA-A*0201 and hHER-2/neu or rHER-2/neu. Similar results were also obtained with wild-type C57BL/6 mice inoculated with HER-2/neu transfectants of ALC. Adoptive transfer of CD8(+) CTL from mice immunized with hHER-2(9(435)) efficiently protected naive syngeneic mice inoculated with ALC tumors. In conclusion, our results show that HER-2(9(435)) serves as a tumor rejection molecule. They also propose a novel approach for generating enhanced immunity against a self-HER-2/neu CTL epitope by vaccinating with xenogeneic altered peptide ligands and provide useful insights for the design of improved peptide-based vaccines for the treatment of patients with HER-2/neu-overexpressing tumors.  相似文献   

20.
BACKGROUND: Identification of the cytotoxic T lymphocytes (CTL) restricted epitopes of tumor antigens opens up possibilities of developing a new cancer vaccine. For the MAGE-n has been demonstrated closely associated with hepatocellular carcinoma (HCC) and HLA-A2.1 is found in over 50% of HCC patients in China, we aim at identifying MAGE-n-encoded peptide presented by HLA-A2.1. MATERIALS: A HLA-A2.1-restricted CTL epitope was identified by using an improved "reverse immunology" strategy: (a) computer-based epitope prediction from the amino acid sequence of MAGE-n antigen; (b) peptide-binding assay to determine the affinity of the predicted peptide with HLA-A2.1 molecule; (c) stimulation of primary T-cell response against the predicted peptides in vitro; and (d) testing of the induced CTLs toward HCC cells expressing MAGE-n antigen and HLA-A2.1. RESULTS: Of the five tested peptides, effectors induced by a peptide of MAGE-n at residue position 159-167(QLVFGIEVV) lysed HCC cells expressing both MAGE-n and HLA-A2.1. Our results indicated that peptide QLVFGIEVV was a new HLA-A2.1-restricted CTL epitope capable of inducing MAGE-n specific CTLs in vitro. CONCLUSIONS: Identification of the MAGE-n /HLA-A2.1 peptide QLVFGIEVV may facilitate peptide-based specific immunotherapy for HCC. The combination of epitope prediction, epitope reconstruction method and immunological methods can improve the efficiency and accuracy of CTL epitope studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号