首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genetic testing has the potential to guide the prevention and treatment of disease in a variety of settings, and recent technical advances have greatly increased our ability to acquire large amounts of genetic data. The interpretation of this data remains challenging, as the clinical significance of genetic variation detected in the laboratory is not always clear. Although regulatory agencies and professional societies provide some guidance regarding the classification, reporting, and long‐term follow‐up of variants, few protocols for the implementation of these guidelines have been described. Because the primary aim of clinical testing is to provide results to inform medical management, a variant classification program that offers timely, accurate, confident and cost‐effective interpretation of variants should be an integral component of the laboratory process. Here we describe the components of our laboratory's current variant classification program (VCP), based on 20 years of experience and over one million samples tested, using the BRCA1/2 genes as a model. Our VCP has lowered the percentage of tests in which one or more BRCA1/2 variants of uncertain significance (VUSs) are detected to 2.1% in the absence of a pathogenic mutation, demonstrating how the coordinated application of resources toward classification and reclassification significantly impacts the clinical utility of testing.  相似文献   

2.
Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline. In the CAGI5 ENIGMA Challenge, six prediction teams submitted predictions on 326 newly‐interpreted variants from the ENIGMA Consortium. By evaluating these predictions against the new interpretations, we have gained a number of insights on the state of the art of variant prediction and specific steps to further advance this state of the art.  相似文献   

3.
4.
As genetic testing for predisposition to human diseases has become an increasingly common practice in medicine, the need for clear interpretation of the test results is apparent. However, for many disease genes, including the breast cancer susceptibility genes BRCA1 and BRCA2, a significant fraction of tests results in the detection of a genetic variant for which disease association is not known. The finding of an "unclassified" variant (UV)/variant of uncertain significance (VUS) complicates genetic test reporting and counseling. As these variants are individually rare, a large collaboration of researchers and clinicians will facilitate studies to assess their association with cancer predisposition. It was with this in mind that the ENIGMA consortium (www.enigmaconsortium.org) was initiated in 2009. The membership is both international and interdisciplinary, and currently includes more than 100 research scientists and clinicians from 19 countries. Within ENIGMA, there are presently six working groups focused on the following topics: analysis, clinical, database, functional, tumor histopathology, and mRNA splicing. ENIGMA provides a mechanism to pool resources, exchange methods and data, and coordinately develop and apply algorithms for classification of variants in BRCA1 and BRCA2. It is envisaged that the research and clinical application of models developed by ENIGMA will be relevant to the interpretation of sequence variants in other disease genes.  相似文献   

5.
The identification and interpretation of germline BRCA1/2 variants become increasingly important in breast and ovarian cancer (OC) treatment. However, there is no comprehensive analysis of the germline BRCA1/2 variants in a Chinese population. Here we performed a systematic review and meta‐analysis on such variants from 94 publications. A total of 2,128 BRCA1/2 variant records were extracted, including 601 from BRCA1 and 632 from BRCA2. In addition, 414, 734, 449, and 307 variants were also recorded in the BIC, ClinVar, ENIGMA, and UMD databases, respectively, and 579 variants were newly reported. Subsequent analysis showed that the overall germline BRCA1/2 pathogenic variant frequency was 5.7% and 21.8% in Chinese breast and OC, respectively. Populations with high‐risk factors exhibited a higher pathogenic variant percentage. Furthermore, the variant profile in Chinese is distinct from that in other ethnic groups with no distinct founder pathogenic variants. We also tested our in‐house American College of Medical Genetics‐guided pathogenicity interpretation procedure for Chinese BRCA1/2 variants. Our results achieved a consistency of 91.2–97.6% (5‐grade classification) or 98.4–100% (2‐grade classification) with public databases. In conclusion, this study represents the first comprehensive meta‐analysis of Chinese BRCA1/2 variants and validates our in‐house pathogenicity interpretation procedure, thereby providing guidance for further PARP inhibitor development and companion diagnostics in the Chinese population.  相似文献   

6.
Germline mutations in the tumor suppressor gene BRCA1 confer an estimated lifetime risk of 56–80% for breast cancer and 15–60% for ovarian cancer. Since the mid 1990s when BRCA1 was identified, genetic testing has revealed over 1,500 unique germline variants. However, for a significant number of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading to issues in risk assessment, counseling, and preventive care. Here, we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical significance. Importantly, these methods may provide a framework for genome‐wide pathogenicity assignment. Hum Mutat 33:1526–1537, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
Variants of unknown significance (VUS) in BRCA1 and BRCA2 are common, and present significant challenges for genetic counseling. We observed that BRCA2: c.6853A>G (p.I2285V) (Breast Cancer Information Core [BIC] name: 7081A>G; http://research.nhgri.nih.gov/bic/ ) co-occurs in trans with the founder mutation c.5946delT (p.S1982RfsX22) (BIC name: 6174delT), supporting the published classification of p.I2285V as a neutral variant. However, we also noted that when compared with wild-type BRCA2, p.I2285V resulted in increased exclusion of exon 12. Functional assay using allelic complementation in Brca2-null mouse embryonic stem cells revealed that p.I2285V, an allele with exon 12 deleted and wild-type BRCA2 were all phenotypically indistinguishable, as measured by sensitivity to DNA-damaging agents, effect on irradiation-induced Rad51 foci formation, homologous recombination, and overall genomic integrity. An allele frequency study showed the p.I2285V variant was identified in 15 out of 722 (2.1%) Ashkenazi Jewish cases and 10 out of 475 (2.1%) ethnically-matched controls (odds ratio, 0.99; 95% confidence interval: 0.44–2.21; P=0.97). Thus the p.I2285V variant is not associated with an increased risk for breast cancer. Taken together, our clinical and functional studies strongly suggest that exon 12 is functionally redundant and therefore missense variants in this exon are likely to be neutral. Such comprehensive functional studies will be important adjuncts to genetic studies of variants. Hum Mutat 30:1–8, 2009. Published 2009 Wiley-Liss, Inc.  相似文献   

9.
Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may help establish a direct correlation with cancer predisposition. Therefore, alternative ways of predicting the pathogenicity of these variants are urgently needed. Since BRCA2 is a protein involved in important cellular mechanisms such as DNA repair, replication, and cell cycle control, functional assays have been developed that exploit these cellular activities to explore the impact of the variants on protein function. In this review, we summarize assays developed and currently utilized for studying missense variants in BRCA2. We specifically depict details of each assay, including variants of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory‐based methods to assess the impact of the variant on cancer risk.  相似文献   

10.
11.
Tara M. Friebel  Irene L. Andrulis  Judith Balmaa  Amie M. Blanco  Fergus J. Couch  Mary B. Daly  Susan M. Domchek  Douglas F. Easton  William D. Foulkes  Patricia A. Ganz  Judy Garber  Gord Glendon  Mark H. Greene  Peter J. Hulick  Claudine Isaacs  Rachel C. Jankowitz  Beth Y. Karlan  Judy Kirk  Ava Kwong  Annette Lee  Fabienne Lesueur  Karen H. Lu  Katherine L. Nathanson  Susan L. Neuhausen  Kenneth Offit  Edenir I. Palmero  Priyanka Sharma  Marc Tischkowitz  Amanda E. Toland  Nadine Tung  Elizabeth J. van Rensburg  Ana Vega  Jeffrey N. Weitzel  GEMO Study Collaborators  Kent F. Hoskins  Tara Maga  Michael T. Parsons  Lesley McGuffog  Antonis C. Antoniou  Georgia Chenevix‐Trench  Dezheng Huo  Olufunmilayo I. Olopade  Timothy R. Rebbeck 《Human mutation》2019,40(10):1781-1796
BRCA1 and BRCA2 (BRCA1/2) pathogenic sequence variants (PSVs) confer elevated risks of multiple cancers. However, most BRCA1/2 PSVs reports focus on European ancestry individuals. Knowledge of the PSV distribution in African descent individuals is poorly understood. We undertook a systematic review of the published literature and publicly available databases reporting BRCA1/2 PSVs also accessed the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) database to identify African or African descent individuals. Using these data, we inferred which of the BRCA PSVs were likely to be of African continental origin. Of the 43,817 BRCA1/2 PSV carriers in the CIMBA database, 469 (1%) were of African descent. Additional African descent individuals were identified in public databases (n = 291) and the literature (n = 601). We identified 164 unique BRCA1 and 173 unique BRCA2 PSVs in individuals of African ancestry. Of these, 83 BRCA1 and 91 BRCA2 PSVs are of likely or possible African origin. We observed numerous differences in the distribution of PSV type and function in African origin versus non‐African origin PSVs. Research in populations of African ancestry with BRCA1/2 PSVs is needed to provide the information needed for clinical management and decision‐making in African descent individuals worldwide.  相似文献   

12.
中国上海家族性乳腺癌BRCA1和BRCA2基因的突变   总被引:6,自引:0,他引:6  
目的研究上海地区家族性乳腺癌中BRCA1/BRCA2基因的突变位点及携带情况。方法研究对象来自35个汉族家族性乳腺癌家系,家系中至少有一个一级亲属乳腺癌患病史。共35例患者,其中13例发病年龄≤加岁。由静脉血提取基因组DNA,对BRCA1/BRCA2基因的全部编码序列进行扩增。扩增产物突变分析先由变性高效液相色谱分析进行筛查,之后进行DNA直接测序证实。结果在BRCA1基因中发现有4个突变位点,其中2个为新发现位点——拼接点突变(IVS17-1G〉T;IVS21+1G〉C);另两个为已报道的致病突变位点——移码突变(1100delAT;5640delA)。BRCA2基因的1个致病突变位点位于11号外显子上,为移码突变(5802delAATT)。另外,共发现有12个新的单核苷重复多态位点,都未引起氨基酸编码改变;其中,8个在BRCA1基因上,4个在BRCA2基因上。在家族性乳腺癌中,BRCA1突变频率(11.4%)高于BRCA2基因(2.9%)。结论新发现的2个BRCA1基因的拼接点突变可能是中国上海人群家族性乳腺癌的特有突变位点;在我国上海地区人群中,BRCA1基因突变起着比BRCA2基因更大的作用;该研究丰富了中国人群中BRCA基因的突变谱,并为未来的临床基因检测提供了筛查模式。  相似文献   

13.
Population‐based testing for BRCA1/2 mutations detects a high proportion of carriers not identified by cancer family history‐based testing. We sought to determine whether population‐based testing is an effective approach to genetic testing in the Bahamas, where 23% of women with breast cancer carry one of seven founder mutations in the BRCA1 or BRCA2 gene. We determined the prevalence of founder BRCA mutations in 1847 Bahamian women without a personal history of breast or ovarian cancer, unselected for age or family history. We found that 2.8% (20/705) of unaffected women with a family history of breast/ovarian cancer and 0.09% (1/1089) of unaffected women without a family history carry a BRCA mutation. A total of 38% of unaffected women with a known mutation in the family were found to carry the familial mutation. We previously suggested that all Bahamian women with breast or ovarian cancer be offered genetic testing. These current data suggest that additionally all unaffected Bahamian women with a family history of breast/ovarian cancer should be offered genetic testing for the founder BRCA mutations.  相似文献   

14.
15.
16.
17.
The implementation of next‐generation sequence analysis of disease‐related genes has resulted in an increasing number of genetic variants with an unknown clinical significance. The functional analysis of these so‐called “variants of uncertain significance” (VUS) is hampered by the tedious and time‐consuming procedures required to generate and test specific sequence variants in genomic DNA. Here, we describe an efficient pipeline for the generation of gene variants in a full‐length human gene, BRCA2, using a bacterial artificial chromosome. This method permits the rapid generation of intronic and exonic variants in a complete gene through the use of an exon‐replacement strategy based on simple site‐directed mutagenesis and an effective positive–negative selection system in E. coli. The functionality of variants can then be assessed through the use of functional assays, such as complementation of gene‐deficient mouse‐embryonic stem (mES) cells in the case of human BRCA2. Our methodology builds upon an earlier protocol and, through the introduction of a series of major innovations, now represents a practical proposition for the rapid analysis of BRCA2 variants and a blueprint for the analysis of other genes using similar approaches. This method enables rapid generation and reliable classification of VUS in disease‐related genes, allowing informed clinical decision‐making.  相似文献   

18.
19.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited myocardial disease that predominantly affects the right ventricle and is associated with ventricular arrhythmias that may lead to sudden cardiac death. Mutations within at least seven separate genes have been identified to cause ARVC, however a genetic culprit remains elusive in approximately 50% of cases. Although negative genetic testing may be secondary to pathogenic mutations within undiscovered genes, an alternative explanation may be the presence of large deletions or duplications involving known genes. These large copy number variants may not be detected with standard clinical genetic testing which is presently limited to direct DNA sequencing. We describe two cases of ARVC possessing large deletions involving plakophilin‐2 (PKP2) identified with microarray analysis and/or multiplex ligation‐dependent probe amplification (MLPA) that would have been classified as genotype negative with standard clinical genetic testing. A deletion of the entire coding region of PKP2 excluding exon 1 was identified in patient 1 and his son. In patient 2, MLPA analysis of PKP2 revealed deletion of the entire gene with subsequent microarray analysis demonstrating a de novo 7.9 Mb deletion of chromosome 12p12.1p11.1. These findings support screening for large copy number variants in clinically suspected ARVC cases without clear disease causing mutations following initial sequencing analysis.  相似文献   

20.
《Genetics in medicine》2021,23(2):306-315
PurposeBRCA1 pathogenic variant heterozygotes are at a substantially increased risk for breast and ovarian cancer. The widespread uptake of testing has led to a significant increase in the detection of missense variants in BRCA1, the vast majority of which are variants of uncertain clinical significance (VUS), posing a challenge to genetic counseling. Here, we harness a wealth of functional data for thousands of variants to aid in variant classification.MethodsWe have collected, curated, and harmonized functional data for 2701 missense variants representing 24.5% of possible missense variants in BRCA1. Results were harmonized across studies by converting data into binary categorical variables (functional impact versus no functional impact). Using a panel of reference variants we identified a subset of assays with high sensitivity and specificity (≥80%) and apply the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines to assign evidence criteria for classification.ResultsIntegration of data from validated assays provided ACMG/AMP evidence criteria in favor of pathogenicity for 297 variants or against pathogenicity for 2058 representing 96.2% of current VUS functionally assessed. We also explore discordant results and identify limitations in the approach.ConclusionHigh quality functional data are available for BRCA1 missense variants and provide evidence for classification of 2355 VUS according to their pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号