首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Prostaglandins, synthesized in the spinal cord in response to noxious stimuli, are known to facilitate nociceptive transmission, raising questions about their role in neuropathic pain. The current study tested the hypothesis that spinal nerve ligation-induced allodynia is composed of an early prostaglandin-dependent phase, the disruption of which prevents allodynia.

Methods: Male Sprague-Dawley rats, fitted with intrathecal drug delivery or microdialysis catheters, underwent left L5-L6 spinal nerve ligation or sham surgery. Paw withdrawal threshold, brush-evoked behavior, and the concentration of prostaglandin E2 (PGE2) in spinal cerebrospinal fluid ([PGE2]dialysate) were determined for up to 24 days. PGE2-evoked glutamate release from spinal slices was also determined.

Results: Paw withdrawal threshold decreased from at least 15 g (control) to less than 4 g, beginning 1 day after ligation. Brushing the affected hind paw evoked nociceptive-like behavior and increased [PGE2]dialysate (up to 257 +/- 62% of baseline). There was no detectable change in basal [PGE2]dialysate from preligation values. The EC50 of PGE2-evoked glutamate release (2.4 x 10-11 M, control) was significantly decreased in affected spinal segments of allodynic rats (8.9 x 10-15 M). Treatment with intrathecal S(+)-ibuprofen or SC-560, beginning 2 h after ligation, prevented the decrease in paw withdrawal threshold, the brush-evoked increase in [PGE2]dialysate, and the change in EC50 of PGE2-evoked glutamate release. R(-)-ibuprofen or SC-236 had no effect.  相似文献   


2.
Background: Spinal prostaglandins seem to be important in the early pathogenesis of experimental neuropathic pain. Here, the authors investigated changes in the expression of cyclooxygenase and nitric oxide synthase (NOS) isoforms in the lumbar, thoracic, and cervical spinal cord and the pharmacologic sensitivity to spinal prostaglandin E2 (PGE2) after L5-L6 spinal nerve ligation (SNL).

Methods: Male Sprague-Dawley rats, fitted with intrathecal catheters, underwent SNL or sham surgery 3 days before experimentation. Paw withdrawal threshold was monitored for up to 20 days. Immunoblotting, spinal glutamate release, and behavioral testing were examined 3 days after SNL.

Results: Allodynia (paw withdrawal threshold <= 4 g) was evident 1 day after SNL and remained stable for 20 days. Paw withdrawal threshold was unchanged (P > 0.05) from baseline (> 15 g) after sham surgery except for a small but significant decrease on day 20. Cyclooxygenase 2, neuronal NOS, and inducible NOS were significantly increased in the ipsilateral lumbar dorsal horn after SNL. Expression in the contralateral dorsal horn and ventral horns (lumbar segments) or bilaterally (thoracic and cervical segments) was unchanged from sham controls. This was accompanied by a significant decrease in both the EC50 of PGE2-evoked glutamate release and the ED50 of PGE2 on brush-evoked allodynia. Enhanced sensitivity to PGE2 was localized to lumbar segments of SNL animals and attenuated by SC-51322 or S(+)-ibuprofen, but not R(-)-ibuprofen (100 [mu]m).  相似文献   


3.
BACKGROUND: Spinal prostaglandins seem to be important in the early pathogenesis of experimental neuropathic pain. Here, the authors investigated changes in the expression of cyclooxygenase and nitric oxide synthase (NOS) isoforms in the lumbar, thoracic, and cervical spinal cord and the pharmacologic sensitivity to spinal prostaglandin E2 (PGE2) after L5-L6 spinal nerve ligation (SNL). METHODS: Male Sprague-Dawley rats, fitted with intrathecal catheters, underwent SNL or sham surgery 3 days before experimentation. Paw withdrawal threshold was monitored for up to 20 days. Immunoblotting, spinal glutamate release, and behavioral testing were examined 3 days after SNL. RESULTS: Allodynia (paw withdrawal threshold < or = 4 g) was evident 1 day after SNL and remained stable for 20 days. Paw withdrawal threshold was unchanged (P > 0.05) from baseline (> 15 g) after sham surgery except for a small but significant decrease on day 20. Cyclooxygenase 2, neuronal NOS, and inducible NOS were significantly increased in the ipsilateral lumbar dorsal horn after SNL. Expression in the contralateral dorsal horn and ventral horns (lumbar segments) or bilaterally (thoracic and cervical segments) was unchanged from sham controls. This was accompanied by a significant decrease in both the EC50 of PGE2-evoked glutamate release and the ED50 of PGE2 on brush-evoked allodynia. Enhanced sensitivity to PGE2 was localized to lumbar segments of SNL animals and attenuated by SC-51322 or S(+)-ibuprofen, but not R(-)-ibuprofen (100 mum). CONCLUSION: The increased expression of cyclooxygense-2, neuronal NOS, and inducible NOS and the enhanced sensitivity to PGE2 in spinal segments affected by SNL support the hypothesis that spinal prostanoids play an early pathogenic role in experimental neuropathic pain.  相似文献   

4.
Zhao C  Tall JM  Meyer RA  Raja SN 《Anesthesiology》2004,100(4):905-911
BACKGROUND: The efficacy of opioids for neuropathic pain remains controversial. The effects of morphine on pain behavior were investigated in two animal models of neuropathic pain: the spared nerve injury (SNI) model and the spinal nerve ligation (SNL) model. METHODS: Nerve injuries were created in rats either by tight ligation and section of the left tibial and common peroneal nerves (SNI) or by unilateral ligation of L5 and L6 spinal nerves (SNL). Paw withdrawal threshold to mechanical stimuli was measured using the up-down method in the hairy and glabrous skin territories of the sural nerve for SNI rats or in the mid-plantar paw of SNL rats. RESULTS: Before SNI, the median paw withdrawal thresholds in hairy and glabrous skin were similar (26 g [25%, 75% quartiles: 26, 26 g]). The paw withdrawal threshold decreased after SNI in both hairy and glabrous skin (P < 0.001). Thirty days after the SNI, the threshold in hairy skin (0.3 g) was significantly lower than in glabrous skin (1.9 g; P < 0.001). In blinded experiments, both subcutaneous and intrathecal morphine (0.1-10 microg) dose-dependently attenuated mechanical allodynia induced by SNI measured in the hairy skin, an effect that was naloxone reversible. The ED50 for the intrathecal morphine was 0.52 microg (95% confidence interval, 0.31-0.90 microg). Morphine (1 microg intrathecal) attenuated SNI-induced mechanical allodynia in glabrous skin with potency similar to that in hairy skin. In SNL rats, morphine (30 microg intrathecal) almost completely reversed the SNL-induced mechanical allodynia. CONCLUSIONS: (1) SNI-induced mechanical allodynia is characterized by a lower paw withdrawal threshold in hairy versus glabrous skin; (2) systemic and intrathecal morphine reverse SNI-induced mechanical allodynia in a dose-dependent fashion; and (3) intrathecal morphine also reverses SNL-induced mechanical allodynia. These results suggest that intrathecal opioids are likely to be effective in the treatment of neuropathic pain.  相似文献   

5.
Background: The efficacy of opioids for neuropathic pain remains controversial. The effects of morphine on pain behavior were investigated in two animal models of neuropathic pain: the spared nerve injury (SNI) model and the spinal nerve ligation (SNL) model.

Methods: Nerve injuries were created in rats either by tight ligation and section of the left tibial and common peroneal nerves (SNI) or by unilateral ligation of L5 and L6 spinal nerves (SNL). Paw withdrawal threshold to mechanical stimuli was measured using the up-down method in the hairy and glabrous skin territories of the sural nerve for SNI rats or in the mid-plantar paw of SNL rats.

Results: Before SNI, the median paw withdrawal thresholds in hairy and glabrous skin were similar (26 g [25%, 75% quartiles: 26, 26 g]). The paw withdrawal threshold decreased after SNI in both hairy and glabrous skin (P < 0.001). Thirty days after the SNI, the threshold in hairy skin (0.3 g) was significantly lower than in glabrous skin (1.9 g; P < 0.001). In blinded experiments, both subcutaneous and intrathecal morphine (0.1-10 [mu]g) dose-dependently attenuated mechanical allodynia induced by SNI measured in the hairy skin, an effect that was naloxone reversible. The ED50 for the intrathecal morphine was 0.52 [mu]g (95% confidence interval, 0.31-0.90 [mu]g). Morphine (1 [mu]g intrathecal) attenuated SNI-induced mechanical allodynia in glabrous skin with potency similar to that in hairy skin. In SNL rats, morphine (30 [mu]g intrathecal) almost completely reversed the SNL-induced mechanical allodynia.  相似文献   


6.
Background: Spinal prostaglandins are important in the early pathogenesis of spinal nerve ligation (SNL)-induced allodynia. This study examined the effect of SNL on the expression of cyclooxygenase (COX)-1, COX-2, and prostaglandin E2 receptors in the rat lumbar spinal cord, and the temporal and pharmacologic relation of these changes to the exaggerated A- and C-fiber-mediated reflex responses and allodynia, 24 h after injury.

Methods: Male Sprague-Dawley rats, fitted with intrathecal catheters, underwent SNL or sham surgery. Paw withdrawal threshold, electromyographic analysis of the biceps femoris flexor reflex, and immunoblotting of the spinal cord were used.

Results: Both allodynia (paw withdrawal threshold of <= 4 g) and exaggerated A- and C-fiber-mediated reflex responses (i.e., decrease in activation threshold, increase in evoked activity, including windup; P < 0.05) were evident 24 h after SNL but not sham surgery. Allodynic animals exhibited significant increases in prostaglandin E2 receptor (subtypes 1-3) and COX-1 (but not COX-2) expression in the ipsilateral lumbar dorsal horn. The corresponding ventral horns and contralateral dorsal horn were unchanged from sham controls. Exaggerated A- and C-fiber-mediated reflex responses were significantly attenuated by intrathecal SC-560 or SC-51322, but not SC-236, given 24 h after SNL.  相似文献   


7.
BACKGROUND: Spinal prostaglandins are important in the early pathogenesis of spinal nerve ligation (SNL)-induced allodynia. This study examined the effect of SNL on the expression of cyclooxygenase (COX)-1, COX-2, and prostaglandin E2 receptors in the rat lumbar spinal cord, and the temporal and pharmacologic relation of these changes to the exaggerated A- and C-fiber-mediated reflex responses and allodynia, 24 h after injury. METHODS: Male Sprague-Dawley rats, fitted with intrathecal catheters, underwent SNL or sham surgery. Paw withdrawal threshold, electromyographic analysis of the biceps femoris flexor reflex, and immunoblotting of the spinal cord were used. RESULTS: Both allodynia (paw withdrawal threshold of < or = 4 g) and exaggerated A- and C-fiber-mediated reflex responses (i.e., decrease in activation threshold, increase in evoked activity, including windup; P < 0.05) were evident 24 h after SNL but not sham surgery. Allodynic animals exhibited significant increases in prostaglandin E2 receptor (subtypes 1-3) and COX-1 (but not COX-2) expression in the ipsilateral lumbar dorsal horn. The corresponding ventral horns and contralateral dorsal horn were unchanged from sham controls. Exaggerated A- and C-fiber-mediated reflex responses were significantly attenuated by intrathecal SC-560 or SC-51322, but not SC-236, given 24 h after SNL. CONCLUSION: These results provide further evidence that spinal prostaglandins, derived primarily from COX-1, are critical in the exaggeration of A- and C-fiber input and allodynia, 24 h after SNL.  相似文献   

8.
目的 通过观察鞘内注射特异性小胶质细胞抑制剂米诺环素对神经病理性痛大鼠脊髓背角GABAB受体表达的影响,探讨脊髓小胶质细胞活化介导神经病理性痛发生的作用机制.方法 雄性SD大鼠48只,体重220~260 g,结扎L5神经根制备神经病理性痛模型,随机分为4组(n=12):Ⅰ组仅暴露L5神经根但不结扎,鞘内注射生理盐水10 μl;Ⅱ组暴露并结扎L5神经根,鞘内注射生理盐水10 μl;Ⅲ组仅暴露L5神经根但不结扎,鞘内注射米诺环素50 μg(10μl);Ⅳ组暴露并结扎L5神经根,鞘内注射米诺环素50 μg(10 μl).于术前1 d~术后18 d,每日鞘内注射生理盐水或米诺环素,2次/d.于术前1 d(基础状态)、术后1、2、4、6、8、10、12、14、16、18 d各组取6只大鼠测定机械痛阈,并确定机械痛周最低点,然后在机械痛阈最低点时各组另取6只大鼠测定脊髓背角GABABR2的表达.结果 与Ⅰ组相比,Ⅱ组机械痛阈降低,术侧脊髓背角GABABR2表达下调(P<0.05或0.01);与Ⅱ组和Ⅲ组比较,Ⅳ组机械痛阈升高,术侧脊髓背角GABABR2表达上调(P<0.05或0.01).结论 脊髓小胶质细胞活化介导神经病理性痛发生的作用机制可能与抑制GABAB受体的激活有关.  相似文献   

9.
Background: Intrathecal clonidine reduces tactile allodynia in animal models of neuropathic pain, and this effect is blocked by atropine. However, the role of tonic spinal cholinergic activity and its interaction with [alpha]2-adrenergic systems in normal and neuropathic conditions and to different sensory methods has not been systematically examined. The authors examined cholinergic receptor involvement in thermal and mechanical sensitivity in normal and neuropathic animals and its interaction with intrathecal clonidine.

Methods: Normal rats and rats that received L5/L6 spinal nerve ligation were tested with acute radiant heat, paw pressure, and punctate mechanical stimulation before and after the intrathecal administration of saline, the muscarinic receptor antagonist, atropine, or a toxin to destroy cholinergic neurons, and then after intrathecal clonidine.

Results: Atropine, the cholinergic neuronal toxin, and saline did not alter baseline withdrawal thresholds. In nerve-injured rats, neither saline nor atropine altered antinociception from clonidine to a thermal stimulus, but atropine reduced the effect of clonidine to von Frey filament withdrawal threshold (34 +/- 5.6 vs. 14 +/- 5.8 g [mean +/- SEM], saline vs. atropine;P < 0.05) and to withdrawal threshold to paw pressure after clonidine (174 +/- 18 g vs. 137 +/- 16 g, saline vs. atropine;P < 0.05).  相似文献   


10.
BACKGROUND: Intrathecal clonidine reduces tactile allodynia in animal models of neuropathic pain, and this effect is blocked by atropine. However, the role of tonic spinal cholinergic activity and its interaction with alpha2-adrenergic systems in normal and neuropathic conditions and to different sensory methods has not been systematically examined. The authors examined cholinergic receptor involvement in thermal and mechanical sensitivity in normal and neuropathic animals and its interaction with intrathecal clonidine. METHODS: Normal rats and rats that received L5/L6 spinal nerve ligation were tested with acute radiant heat, paw pressure, and punctate mechanical stimulation before and after the intrathecal administration of saline, the muscarinic receptor antagonist, atropine, or a toxin to destroy cholinergic neurons, and then after intrathecal clonidine. RESULTS: Atropine, the cholinergic neuronal toxin, and saline did not alter baseline withdrawal thresholds. In nerve-injured rats, neither saline nor atropine altered antinociception from clonidine to a thermal stimulus, but atropine reduced the effect of clonidine to von Frey filament withdrawal threshold (34 +/- 5.6 vs. 14 +/- 5.8 g [mean +/- SEM], saline vs. atropine; P < 0.05) and to withdrawal threshold to paw pressure after clonidine (174 +/- 18 g vs. 137 +/- 16 g, saline vs. atropine; P < 0.05). CONCLUSIONS: These data suggest that after nerve injury, mechanical but not thermal antinociception from intrathecal clonidine relies on a muscarinic interaction, because only mechanical antinociception was antagonized by atropine. These results do not favor a regulation of nociceptive transmission by a tonic release of acetylcholine in nerve-injured rats.  相似文献   

11.
Background: Intrathecal administration of acetylcholinesterase inhibitors produces antinociception in both animals and humans, but their effect on diabetic neuropathic pain has not been studied. In the current study, we determined the antiallodynic effect of intrathecal injection of an acetylcholinesterase inhibitor, neostigmine, in a rat model of diabetic neuropathic pain. In addition, since acetylcholine can increase release of nitric oxide in the spinal cord, we studied the role of spinal endogenous nitric oxide in the action of intrathecal neostigmine in diabetic neuropathic pain.

Methods: Rats were rendered diabetic with an intraperitoneal 50-mg/kg injection of streptozotocin. Intrathecal catheters were inserted, with tips in the lumbar intrathecal space. Mechanical allodynia was determined by application of von Frey filaments to the hind paw. We first determined the dose-dependent effect of intrathecal neostigmine on allodynia. The role of spinal nitric oxide in the action of intrathecal neostigmine was then examined through intrathecal treatments with a neuronal nitric oxide synthase inhibitor (TRIM), a nitric oxide scavenger (PTIO), l-arginine, or d-arginine.

Results: The diabetic rats developed a sustained tactile allodynia within 4 weeks after streptozotocin injection. Intrathecal injection of 0.1-0.5 [mu]g neostigmine dose-dependently increased the withdrawal threshold in response to application of von Frey filaments. Intrathecal pretreatment with 30 [mu]g TRIM or 30 [mu]g PTIO abolished the antiallodynic effect of intrathecal neostigmine. Furthermore, the inhibitory effect of TRIM on the action of intrathecal neostigmine was reversed by intrathecal injection of 100 [mu]g l-arginine but not d-arginine.  相似文献   


12.
Background: Glutamate and non-N-methyl-D-aspartate (NMDA) receptors have been implicated in the development of neuroplasticity in the spinal cord in neuropathic pain. The spinal cord has been identified as one of the sites of the analgesic action of gabapentin. In the current study, the authors determined the antiallodynic effect of intrathecal 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in a rat model of neuropathic pain. Also tested was a hypothesis that intrathecal injection of CNQX and gabapentin produces a synergistic effect on allodynia in neuropathic rats.

Methods: Allodynia was produced in rats by ligation of the left L5 and L6 spinal nerves. Allodynia was determined by application of von Frey filaments to the left hind paw. Through an implanted intrathecal catheter, 10-100 [mu]g gabapentin or 0.5-8 [mu]g CNQX disodium (a water-soluble formulation of CNQX) was injected in conscious rats. Isobolographic analysis was performed comparing the interaction of intrathecal gabapentin and CNQX using the ED50 dose ratio of 15:1.

Results: Intrathecal treatment with gabapentin or CNQX produced a dose-dependent increase in the withdrawal threshold to mechanical stimulation. The ED50 for gabapentin and CNQX was 45.9 +/- 4.65 and 3.4 +/- 0.22 [mu]g, respectively. Intrathecal injection of a combination of CNQX and gabapentin produced a strong synergistic antiallodynic effect in neuropathic rats.  相似文献   


13.
目的 评价NF-κB信号通路在鞘内注射血小板活化因子(PAF)诱发大鼠痛敏中的作用.方法 鞘内置管成功的雄性SD大鼠64只,体重200~250 g,随机分为6组:人工脑脊液(ACSF)对照组(AC组,n=16)鞘内注射ACSF 10μl;PAF诱发大鼠痛敏组(PAF组,n=16)鞘内注射PAF 10μg(溶于10μl ACSF);二甲基亚砜(DMSO)对照组(DC组,n=8)和低、中和高剂量SC-514组(S1-3组,n=8)分别于鞘内注射PAF前2 h腹腔注射0.1%DMSO溶液2 ml、SC-514(溶于2 ml 0.1%DMSO溶液)10、50、100 mg/kg.分别于鞘内给药前、给药后5、15、30、45和60 min时测定机械痛阈和热痛阈,随后每间隔30 min测定1次,连续4 h,ELISA法检测脊髓TNF-α和IL-lβ的表达.结果 鞘内注射PAF可诱发机械痛敏和热痛敏,上调大鼠脊髓TNF-α和IL-1β的表达;Iκβ激酶-β抑制剂SC-514可剂量依赖性地减轻PAF诱发的痛敏,抑制脊髓TNF-α和IL-1β的表达上调.结论 NF-κB信号通路参与了鞘内注射PAF诱发大鼠痛敏的过程.  相似文献   

14.
BACKGROUND AND OBJECTIVES: Minocycline is a second-generation tetracycline with multiple biological effects, including inhibition of microglial activation. Recently, microglial activation has been implicated in the development of nerve injury-induced neuropathic pain. In this study, the authors examined the effects of continuous intrathecal minocycline on the development of neuropathic pain and microglial activation induced by L5/6 spinal-nerve ligation in rats. METHODS: Under isoflurane anesthesia, male Sprague-Dawley rats (200-250 g) received right L5/6 spinal-nerve ligation and intrathecal catheters connected to an infusion pump. Intrathecal saline or minocycline (2 and 6 microg/h) was given continuously after surgery for 7 days (n = 8 per group). The rat right hind paw withdrawal threshold to von Frey filament stimuli and withdrawal latency to radiant heat were determined before surgery and on days 1 to 7 after surgery. Spinal microglial activation was evaluated with OX-42 immunoreactivity on day 7 after surgery. RESULTS: Spinal-nerve ligation induced mechanical allodynia and thermal hyperalgesia on the affected hind paw of saline-treated rats. Intrathecal minocycline (2 and 6 microg/h) prevented the development of mechanical allodynia and thermal hyperalgesia induced by nerve ligation. It also inhibited nerve ligation-induced microglial activation, as evidenced by decreased OX-42 staining. No obvious histopathologic change was noted after intrathecal minocycline (6 microg/h) infusion. CONCLUSIONS: In this study, the authors demonstrate the preventive effect of continuous intrathecal minocycline on the development of nociceptive behaviors induced by L5/6 spinal-nerve ligation in rats. Further studies are required to examine if continuous intrathecal minocycline could be used safely in the clinical setting.  相似文献   

15.
Intrathecal neostigmine reverses mechanical allodynia in humans and animals. The efficacy of morphine in a neuropathic pain state is still controversial. This study examines the antiallodynic interaction between morphine and neostigmine in a rat model of neuropathic pain. Rats were prepared with tight ligation of left L5-6 (fifth and sixth lumbar) spinal nerves and chronic intrathecal catheter implantation. Mechanical allodynia was measured by using application of von Frey hairs to the left hindpaw. Morphine (1, 3, 10, and 30 microg) and neostigmine (0.3, 1, 3, and 10 microg) were administered intrathecally to obtain the dose-response curves and the 50% effective dose (ED(50)) for each drug. ED(50) values and fractions of the ED(50) values (1/2, 1/4, and 1/8) were administered intrathecally in an equal dose ratio to establish the ED(50). Isobolographic and fractional analyses for the drug interaction were performed. Intrathecal morphine produced a moderate antagonism of the tactile allodynia. A morphine-neostigmine combination produced a dose-dependent increase in withdrawal threshold of the lesioned hind paw with reduced side effects. Both analyses revealed a synergistic interaction after the coadministration of morphine and neostigmine. These experiments suggest that the antiallodynic action of a morphine-neostigmine combination is synergistic at the spinal level. IMPLICATIONS: This study indicates that, by using both isobolographic and fractional analyses, the antiallodynic effect of intrathecal morphine and neostigmine is synergistic when coadministered intrathecally. In a rat model of neuropathic pain, the intrathecal morphine produced a moderate antagonism on touch-evoked allodynia at the spinal level.  相似文献   

16.
Chen SR  Khan GM  Pan HL 《Anesthesiology》2001,95(4):1007-1012
BACKGROUND: Intrathecal administration of acetylcholinesterase inhibitors produces antinociception in both animals and humans, but their effect on diabetic neuropathic pain has not been studied. In the current study, we determined the antiallodynic effect of intrathecal injection of an acetylcholinesterase inhibitor, neostigmine, in a rat model of diabetic neuropathic pain. In addition, since acetylcholine can increase release of nitric oxide in the spinal cord, we studied the role of spinal endogenous nitric oxide in the action of intrathecal neostigmine in diabetic neuropathic pain. METHODS: Rats were rendered diabetic with an intraperitoneal 50-mg/kg injection of streptozotocin. Intrathecal catheters were inserted, with tips in the lumbar intrathecal space. Mechanical allodynia was determined by application of von Frey filaments to the hind paw. We first determined the dose-dependent effect of intrathecal neostigmine on allodynia. The role of spinal nitric oxide in the action of intrathecal neostigmine was then examined through intrathecal treatments with a neuronal nitric oxide synthase inhibitor (TRIM), a nitric oxide scavenger (PTIO), L-arginine, or D-arginine. RESULTS: The diabetic rats developed a sustained tactile allodynia within 4 weeks after streptozotocin injection. Intrathecal injection of 0.1-0.5 microg neostigmine dose-dependently increased the withdrawal threshold in response to application of von Frey filaments. Intrathecal pretreatment with 30 microg TRIM or 30 microg PTIO abolished the antiallodynic effect of intrathecal neostigmine. Furthermore, the inhibitory effect of TRIM on the action of intrathecal neostigmine was reversed by intrathecal injection of 100 microg L-arginine but not D-arginine. CONCLUSIONS: Intrathecal neostigmine produces a profound analgesic effect in a rat model of diabetic neuropathic pain. Spinal endogenous nitric oxide contributes to the analgesic action of intrathecal neostigmine in this rat model of diabetic neuropathic pain.  相似文献   

17.
Background: The degree to which intrathecally administered morphine can alleviate hypersensitivity in animals after peripheral nerve injury is controversial, and the mechanisms by which morphine works in these circumstances are uncertain. In normal animals, morphine induces adenosine release, and in vitro data suggest that this link is disrupted after peripheral nerve injury. Therefore, using a controlled, blinded study design, the authors tested intrathecal morphine efficacy in rats with peripheral nerve injury and the role of spinal A1 adenosine receptors in the action of morphine.

Methods: Male rats underwent intrathecal catheter implantation and lumbar spinal nerve ligation, resulting in hypersensitivity to tactile stimulation of the paw. Intrathecal morphine alone or with naloxone or the specific A1 adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentyxanthine (DPCPX), was administered, and withdrawal threshold to von Frey filament application to the hind paw was determined.

Results: Intrathecal morphine (0.25-30 [mu]g) dose-dependently reversed mechanical hypersensitivity after spinal nerve ligation, with an ED50 of 0.79 [mu]g. The effect of morphine was blocked by intrathecal naloxone. Intrathecal DPCPX alone had no effect on withdrawal threshold after spinal nerve ligation but completely reversed the effect of morphine, with an ID50 of 5.6 [mu]g.  相似文献   


18.
BACKGROUND: Glutamate and non-N-methyl-D-aspartate (NMDA) receptors have been implicated in the development of neuroplasticity in the spinal cord in neuropathic pain. The spinal cord has been identified as one of the sites of the analgesic action of gabapentin. In the current study, the authors determined the antiallodynic effect of intrathecal 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in a rat model of neuropathic pain. Also tested was a hypothesis that intrathecal injection of CNQX and gabapentin produces a synergistic effect on allodynia in neuropathic rats. METHODS: Allodynia was produced in rats by ligation of the left L5 and L6 spinal nerves. Allodynia was determined by application of von Frey filaments to the left hind paw. Through an implanted intrathecal catheter, 10-100 microg gabapentin or 0.5-8 microg CNQX disodium (a water-soluble formulation of CNQX) was injected in conscious rats. Isobolographic analysis was performed comparing the interaction of intrathecal gabapentin and CNQX using the ED50 dose ratio of 15:1. RESULTS: Intrathecal treatment with gabapentin or CNQX produced a dose-dependent increase in the withdrawal threshold to mechanical stimulation. The ED50 for gabapentin and CNQX was 45.9+/-4.65 and 3.4+/-0.22 microg, respectively. Intrathecal injection of a combination of CNQX and gabapentin produced a strong synergistic antiallodynic effect in neuropathic rats. CONCLUSIONS: This study shows that intrathecal administration of CNQX exhibits an antiallodynic effect in this rat model of neuropathic pain. Furthermore, CNQX and gabapentin, when combined intrathecally, produce a potent synergistic antiallodynic effect on neuropathic pain in spinal nerve-ligated rats.  相似文献   

19.
Background: Systemic lidocaine and other local anesthetics reduce hypersensitivity states induced by both acute inflammation and peripheral nerve injury in animals and produce analgesia in some patients with chronic pain. The mechanisms underlying the antiallodynic effect of systemic lidocaine are unclear, although most focus is on peripheral mechanisms. Central mechanisms, particularly at the spinal dorsal horn level, are less known. In this study, the authors aimed to determine whether intrathecal lidocaine has an antiallodynic effect on established mechanical allodynia in two well-characterized neuropathic pain rat models: partial sciatic nerve ligation (PSNL) and spinal nerve ligation (SNL).

Methods: Lidocaine (100-300 [mu]g) was intrathecally injected in PSNL and SNL rats. The withdrawal threshold of both hind paws in response to mechanical stimulation was measured using a series of calibrated von Frey filaments.

Results: This single injection reduced ongoing tactile allodynia in PSNL and SNL rats. The antiallodynic effect of intrathecal lidocaine lasted longer in PSNL (> 3 days) than in SNL rats (< 3 days). Intraperitoneal lidocaine (300 [mu]g) had no effect on tactile allodynia in PSNL rats. In SNL rats, prior intrathecal lidocaine (200 and 300 [mu]g) potentiated the antiallodynic effect of intrathecal ketorolac, a nonselective cyclooxygenase inhibitor. Intrathecal ketorolac alone had no antiallodynic effect on SNL rats. However, prior intrathecal lidocaine (100 [mu]g) failed to potentiate the antiallodynic effect of intrathecal ketorolac.  相似文献   


20.
BACKGROUND: The degree to which intrathecally administered morphine can alleviate hypersensitivity in animals after peripheral nerve injury is controversial, and the mechanisms by which morphine works in these circumstances are uncertain. In normal animals, morphine induces adenosine release, and in vitro data suggest that this link is disrupted after peripheral nerve injury. Therefore, using a controlled, blinded study design, the authors tested intrathecal morphine efficacy in rats with peripheral nerve injury and the role of spinal A1 adenosine receptors in the action of morphine. METHODS: Male rats underwent intrathecal catheter implantation and lumbar spinal nerve ligation, resulting in hypersensitivity to tactile stimulation of the paw. Intrathecal morphine alone or with naloxone or the specific A1 adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentyxanthine (DPCPX), was administered, and withdrawal threshold to von Frey filament application to the hind paw was determined. RESULTS: Intrathecal morphine (0.25-30 microg) dose-dependently reversed mechanical hypersensitivity after spinal nerve ligation, with an ED50 of 0.79 microg. The effect of morphine was blocked by intrathecal naloxone. Intrathecal DPCPX alone had no effect on withdrawal threshold after spinal nerve ligation but completely reversed the effect of morphine, with an ID50 of 5.6 microg. CONCLUSIONS: This study is in accord with two recent reports that support short-term efficacy of intrathecal morphine to reverse hypersensitivity to mechanical stimuli in animal models of neuropathic pain. Despite previous studies demonstrating that morphine releases less adenosine after peripheral nerve injury, the current study suggests that the antihypersensitivity effect of morphine in these conditions is totally reliant on A1 adenosine receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号