首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purpose: To illustrate the beneficial effect of zolpidem on the neuropsychiatric and motor symptoms in a patient with Parkinson disease (PD) after bilateral subthalamic nucleus deep brain stimulation. Case Report: The 61-year-old housewife was diagnosed to have PD for 12 years with initial presentation of clumsiness and rest tremor of right limbs. She was referred to our hospital in March 2009 due to shortening of drug beneficial period since 3 years ago and on-phase dyskinesia in recent 2 years. Bilateral STN DBS was conducted on 18 June, 2009. Fluctuating spells of mental confusion were developed on the next day after surgery. Electric stimuli via DBS electrodes were delivered with parameters of 2 volts, 60 μs, 130 Hz on bilateral STN 32 days after DBS. The incoherent behaviors and motor fluctuation remained to occur. The beneficial effect of zolpidem on her neuropsychiatric and motor symptoms was detected incidentally in early July 2009. She could chat normally with her caregiver and walk with assistance after taking zolpidem. The beneficial period may last for 2 hours. Zolpidem was then given in dosage of 10 mg three times per day. The neuropsychiatric inventory was scored 56 during zolpidem 'off' and 30 during zolpidem 'on'. To understand the intriguing feature, we conducted FDG-PET during 'off' and 'on' zolpidem conditions. The results revealed that the metabolism was decreased in the right frontal, parietal cortex and caudate nucleus during zolpidem 'off'. These cool spots can be partially restored by zolpidem. Conclusion: Zolpidem ameliorated the neuropsychiatric and parkinsonian motor symptom in the PD patient. Since GABAA benzodiazepine receptors are widely distributed throughout the central nervous system, zolpidem probably acts via modulating structures lying within the cortico-subcortical loop or by direct effect on these cortical regions.  相似文献   

2.
The behavioral implications of deep brain stimulation (DBS) observed in Parkinson's disease patients provided evidence for a possible nonexclusively motor role of the subthalamic nucleus (STN) in basal ganglia circuitry. Basal ganglia pathophysiology can be studied directly by the analysis of neural rhythms measured in local field potentials recorded through DBS electrodes. Recent studies demonstrated that specific oscillations in the STN are involved in cognitive and behavioral information processing: action representation is mediated through β oscillations (13-35 Hz); cognitive information related to decision-making processes is mediated through the low-frequency oscillation (5-12 Hz); and limbic and emotional information is mediated through the α oscillation (8-12 Hz). These results revealed an important involvement of STN in decisional processes, cognitive functions, emotion control and conflict that could explain the post-DBS occurrence of behavioral disturbances.  相似文献   

3.
BACKGROUND: High-frequency stimulation of the subthalamic nucleus (STN) is a neurosurgical alternative to medical treatment in levodopa-responsive forms of Parkinson disease. The mechanism of action of STN stimulation remains controversial, although an inhibition of overactive STN neurons has been postulated. OBJECTIVE: To determine the effects of high-frequency STN stimulation on the neuronal activity of STN neurons in Parkinson disease patients. PATIENTS: Single-unit recordings of the neuronal activity of the STN were obtained before, during, and after the application of intra-STN electrical stimulation in 15 Parkinson disease patients. Changes in firing frequency and pattern were analyzed using various combinations of stimulus frequency (range, 14-140 Hz). RESULTS: Stimulation at a frequency greater than 40 Hz applied within the STN significantly decreased the firing frequency and increased the burst-like activity in the firing pattern of STN neurons. An aftereffect was observed in cells that had been totally inhibited during high-frequency stimulation. CONCLUSION: The beneficial effects of high-frequency stimulation result from a change in the firing pattern of cellular discharge and a blockade of the spontaneous overactivity of STN neurons.  相似文献   

4.
The synchronized beta‐band oscillations in the basal ganglia‐cortical networks in Parkinson's disease (PD) may be responsible for PD motor symptoms or an epiphenomenon of dopamine loss. We investigated the causal role of beta‐band activity in PD motor symptoms by testing the effects of beta‐frequency subthalamic nucleus deep‐brain stimulation (STN DBS) on the blink reflex excitability, amplitude, and plasticity in normal rats. Delivering 16 Hz STN DBS produced the same increase in blink reflex excitability and impairment in blink reflex plasticity in normal rats as occurs in rats with 6‐hydroxydopamine lesions and patients with PD. These deficits were not an artifact of STN DBS because, when these normal rats received 130 Hz STN DBS, their blink characteristics were the same as without STN DBS. To demonstrate that the blink reflex disturbances with 16 Hz STN DBS were frequency specific, we tested the same rats with 7 Hz STN DBS, a theta‐band frequency typical of dystonia. In contrast to beta stimulation, 7 Hz STN DBS exaggerated the blink reflex plasticity as occurs in focal dystonia. Thus, without destroying dopamine neurons or blocking dopamine receptors, frequency‐specific STN DBS can be used to create PD‐like or dystonic‐like symptoms in a normal rat.  相似文献   

5.
《Brain stimulation》2021,14(4):754-760
BackgroundParkinson's disease (PD) is a common neurodegenerative disorder that results in movement-related dysfunction and has variable cognitive impairment. Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) has been shown to be effective in improving motor symptoms; however, cognitive impairment is often unchanged, and in some cases, worsened particularly on tasks of verbal fluency. Traditional DBS strategies use high frequency gamma stimulation for motor symptoms (∼130 Hz), but there is evidence that low frequency theta oscillations (5–12 Hz) are important in cognition.MethodsWe tested the effects of stimulation frequency and location on verbal fluency among patients who underwent STN DBS implantation with externalized leads. During baseline cognitive testing, STN field potentials were recorded and the individual patients’ peak theta frequency power was identified during each cognitive task. Patients repeated cognitive testing at five different stimulation settings: no stimulation, dorsal contact gamma (130 Hz), ventral contact gamma, dorsal theta (peak baseline theta) and ventral theta (peak baseline theta) frequency stimulation.ResultsAcute left dorsal peak theta frequency STN stimulation improves overall verbal fluency compared to no stimulation and to either dorsal or ventral gamma stimulation. Stratifying by type of verbal fluency probes, verbal fluency in episodic categories was improved with dorsal theta stimulation compared to all other conditions, while there were no differences between stimulation conditions in non-episodic probe conditions.ConclusionHere, we provide evidence that dorsal STN theta stimulation may improve verbal fluency, suggesting a potential possibility of integrating theta stimulation into current DBS paradigms to improve cognitive outcomes.  相似文献   

6.
BACKGROUND: Based on the basal ganglia model, it has been hypothesized that the efficacy of high-frequency stimulation of the subthalamic nucleus (STN) against parkinsonian symptoms relies on the activation of cortical premotor regions. In previous positron emission tomography activation studies, STN high-frequency stimulation was associated with selective activation of midline premotor areas during hand movements but mainly reduced the regional cerebral blood flow in movement-related areas, peculiarly at rest. OBJECTIVE: To investigate with positron emission tomography the role of regional cerebral blood flow reduction in the clinical improvement provided by STN high-frequency stimulation. METHODS: Seven patients with advanced Parkinson disease, who were markedly improved by bilateral STN high-frequency stimulation, underwent positron emission tomography with H2(15)O while the right STN electrode was turned off. The patients were studied at rest and during right-hand movements in 3 electrode conditions: no stimulation, inefficient low-frequency stimulation, and efficient high-frequency stimulation. RESULTS: The main effect of high-frequency stimulation was to reduce regional cerebral blood flow in the left primary sensorimotor cortex, the lateral premotor cortex, the right cerebellum, and the midline premotor areas. The selective activation of the anterior cingulate cortex and the left primary sensorimotor cortex during hand movement under STN high-frequency stimulation was attributed to decreased regional cerebral blood flow at rest, rather than increased activation induced by STN high-frequency stimulation. Akinesia was correlated with the abnormal overactivity in the contralateral primary sensorimotor cortex and the ipsilateral cerebellum. CONCLUSION: High-frequency stimulation of the STN acts through the reduction of abnormal resting overactivity in the motor system, allowing selective cortical activation during movement.  相似文献   

7.
ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves the motor symptoms of Parkinson’s disease (PD). The STN may represent an important relay station not only in the motor but also the associative cortico-striato-thalamocortical pathway. Therefore, STN stimulation may alter cognitive functions, such as working memory (WM). We examined cortical effects of STN-DBS on WM in early PD patients using functional near-infrared spectroscopy. The effects of dopaminergic medication on WM were also examined. Lateral frontal activity during WM maintenance was greater when patients were taking dopaminergic medication. STN-DBS led to a trend-level worsening of WM performance, accompanied by increased lateral frontal activity during WM maintenance. These findings suggest that STN-DBS in PD might lead to functional modifications of the basal ganglia-thalamocortical pathway during WM maintenance.  相似文献   

8.
《Neuromodulation》2021,24(2):220-228
ObjectiveSubthalamic deep brain stimulation (STN-DBS) could be an effective alternative treatment for patients with Parkinson’s disease (PD). However, the mechanisms of deep brain stimulation (DBS) at different frequencies are still unclear. In this study, diffusion tensor imaging (DTI) was used to detect parameter changes in different regions of rat brains after DBS, and rat exercise capacity and brain tissue immunohistochemistry were evaluated.Materials and MethodsThe 6-hydroxydopamine-induced hemi-parkinsonian rat models were made and divided into four groups: a control group, sham group, low-frequency group, and high-frequency group. Low-frequency (30 Hz) and high-frequency (130 Hz) DBS were given to the STN in rats. First, an open-field experiment was used to evaluate changes in exercise performance. Then, the DTI was used to measure parameter changes in the substantia nigra (SN). Finally, immunohistochemistry was used to analyze the expression of tyrosine hydroxylase (TH), NeuN, and α-synuclein (α-syn) in the SN in the rats.ResultsThere were significant differences in movement distance changes between the high-frequency stimulation (HFS) group and low-frequency stimulation (LFS) group, the HFS group and Ctrl group, and the Sham group and Ctrl group (all p < 0.05) after one week of stimulation. In the HFS group, the fractional anisotropy value of the SN was significantly higher than that of the other groups (p < 0.05), and the apparent diffusion coefficient and radial diffusion coefficient values were significantly lower than those of the other groups (p < 0.01). Immunohistochemical analysis showed that the integral optical density values of SN TH staining (p < 0.01) and NeuN staining (p < 0.05) in the HFS group were both significantly higher than those in the other groups.ConclusionSTN-HFS (130 Hz) and sham operation for one week can significantly improve the exercise performance of PD rats. The exercise performance of PD rats in LFS group (30 Hz) is worse compared with HFS group (130 Hz). HFS plays a role in neuroprotection and improvement of exercise performance of PD rats. Moreover, DTI can be used as an effective technique to assess the therapeutic effects and severity of PD.  相似文献   

9.
This study aimed to assess whether changes in the patterns of local field potential (LFP) oscillations of the subthalamic nucleus (STN) underlie to the clinical improvement within 60 s after turning off subthalamic DBS. We studied by spectral analysis the STN LFPs recorded in 13 nuclei from 7 patients with Parkinson's disease before and immediately after unilateral high-frequency (130 Hz) stimulation of the same nucleus, when the clinical benefit of DBS was unchanged. The results were compared with LFP data previously reported [A. Priori, G. Foffani, A. Pesenti, F. Tamma, A.M. Bianchi, M. Pellegrini et al., Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease. Exp. Neurol. 189 (2004) 369-379]--namely 13 STN from 9 parkinsonian patients recorded before and after levodopa administration--which were used as a control. Before DBS, in the 'off' clinical state after overnight withdrawal of dopaminergic therapy, the STN spectrum did not significantly differ from the control nuclei, showing prominent activity at beta frequencies (13-20 and 20-35 Hz). After DBS (10-15 min) of the STN, the recorded nuclei significantly differed from the control, failing to show significant changes either in the beta bands or at higher frequencies (60-90 and 250-350 Hz). The patterns of subthalamic LFP oscillations after DBS therefore differ from those after dopaminergic medication. These results suggest (1) that subthalamic LFP modulations are not the epiphenomenon of peripheral motor improvement and (2) that the transitory clinical efficacy maintained after discontinuation of subthalamic DBS is not associated with local modulation of LFP activity at beta or higher frequencies within the STN.  相似文献   

10.
To understand the events underlying the clinical efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN), electrophysiological recordings and microdialysis evaluations were carried out in the substantia nigra pars reticulata (SNr), one of the two basal ganglia (BG) nuclei targeted by STN output, in patients with Parkinson's disease (PD). Clinically effective STN-DBS caused a significant increase of the SNr firing rate. The poststimulus histogram (PSTH) showed an excitation peak at 1.92-3.85 ms after the STN stimulus. The spontaneous discharge of SNr neurons was driven at the frequency of the stimulation (130 Hz), as shown in the autocorrelograms (AutoCrl). The fast Fourier transform (FFT) analysis showed a peak at 130 Hz, and a less pronounced second one at 260 Hz. Accordingly, in the distribution of the interspike intervals (ISIs), the mode was earlier, and skewness more asymmetric. Biochemically, the increased excitatory driving from the STN was reflected by a clear-cut increase in cyclic guanosine 3',5'-monophosphate (cGMP) levels in the SNr. These results indicate that the beneficial effect of DBS in PD patients is paralleled with a stimulus-synchronized activation of the STN target, SNr. Our findings suggest that, during STN-DBS, a critical change towards a high-frequency oscillatory discharge occurs.  相似文献   

11.
《Neuromodulation》2023,26(2):310-319
BackgroundThe modulatory effects of medication and deep brain stimulation (DBS) on subthalamic nucleus (STN) neural activity in Parkinson's disease have been widely studied. However, effects on the contralateral side to the stimulated STN, in particular, changes in local field potential (LFP) oscillatory activity and phase-amplitude coupling (PAC), have not yet been reported.ObjectiveThe aim of this study was to examine changes in STN LFP activity across a range of frequency bands and STN PAC for different combinations of DBS and medication on/off on the side contralateral to the applied stimulation.Materials and MethodsWe examined STN LFPs that were recorded using externalized leads from eight parkinsonian patients during unilateral DBS from the side contralateral to the stimulation. LFP spectral power in alpha (5 to ~13 Hz), low beta (13 to ~20 Hz), high beta (20–30 Hz), and high gamma plus high-frequency oscillation (high gamma+HFO) (100–400 Hz) bands were estimated for different combinations of medication and unilateral stimulation (off/on). PAC between beta and high gamma+HFO in the STN LFPs was also investigated. The effect of the condition was examined using linear mixed models.ResultsPAC in the STN LFP was reduced by DBS when compared to the baseline condition (no medication and stimulation). Medication had no significant effect on PAC. Alpha power decreased with DBS, both alone and when combined with medication. Beta power decreased with DBS, medication, and DBS and medication combined. High gamma+HFO power increased during the application of contralateral DBS and was unaltered by medication.ConclusionsThe results provide new insights into the effects of DBS and levodopa on STN LFP PAC and oscillatory activity on the side contralateral to stimulation. These may have important implications in understanding mechanisms underlying motor improvements with DBS, including changes on both contralateral and ipsilateral sides, while suggesting a possible role for contralateral sensing during unilateral DBS.  相似文献   

12.
《Brain stimulation》2021,14(2):230-240
BackgroundThere is significant evidence for cognitive decline following deep brain stimulation (DBS). Current stimulation paradigms utilize gamma frequency stimulation for optimal motor benefits; however, little has been done to optimize stimulation parameters for cognition. Recent evidence implicates subthalamic nucleus (STN) theta oscillations in executive function, and theta oscillations are well-known to relate to episodic memory, suggesting that theta frequency stimulation could potentially improve cognition in Parkinson’s disease (PD).ObjectiveTo evaluate the acute effects of theta frequency bilateral STN stimulation on executive function in PD versus gamma frequency and off, as well as investigate the differential effects on episodic versus nonepisodic verbal fluency.MethodsTwelve patients (all males, mean age 60.8) with bilateral STN DBS for PD underwent a double-blinded, randomized cognitive testing during stimulation at (1) 130–135 Hz (gamma), (2) 10 Hz (theta) and (3) off. Executive functions and processing speed were evaluated using verbal fluency tasks (letter, episodic category, nonepisodic category, and category switching), color-word interference task, and random number generation task. Performance at each stimulation frequency was compared within subjects.ResultsTheta frequency significantly improved episodic category fluency compared to gamma, but not compared to off. There were no significant differences between stimulation frequencies in other tests.ConclusionIn this pilot trial, our results corroborate the role of theta oscillations in episodic retrieval, although it is unclear whether this reflects direct modulation of the medial temporal lobe and whether similar effects can be found with more canonical memory paradigms. Further work is necessary to corroborate our findings and investigate the possibility of interleaving theta and gamma frequency stimulation for concomitant motor and cognitive effects.  相似文献   

13.
IntroductionSubthalamic nucleus deep brain stimulation (STN DBS) improves cardinal motor symptoms of Parkinson's disease (PD) but can worsen verbal fluency (VF). An optimal site of stimulation for overall motor improvement has been previously identified using an atlas-independent, fully individualized, field-modeling approach. This study examines if cardinal motor components (bradykinesia, tremor, and rigidity) share this identified optimal improvement site and if there is co-localization with a site that worsens VF.MethodsAn atlas-independent, field-modeling approach was used to identify sites of maximal STN DBS effect on overall and cardinal motor symptoms and VF in 60 patients. Anatomic coordinates were referenced to the STN midpoint. Symptom severity was assessed with the MDS-UPDRS part III and established VF scales.ResultsSites for improved bradykinesia and rigidity co-localized with each other and the overall part III site (0.09 mm lateral, 0.93 mm posterior, 1.75 mm dorsal). The optimal site for tremor was posterior to this site (0.10 mm lateral, 1.40 mm posterior, 1.93 mm dorsal). Semantic and phonemic VF sites were indistinguishable and co-localized medial to the motor sites (0.32 mm medial, 1.18 mm posterior, 1.74 mm dorsal).ConclusionThis study identifies statistically distinct, maximally effective stimulation sites for tremor improvement, VF worsening, and overall and other cardinal motor improvements in STN DBS. Current electrode sizes and voltage settings stimulate all of these sites simultaneously. However, future targeted lead placement and focused directional stimulation may avoid VF worsening while maintaining motor improvements in STN DBS.  相似文献   

14.
Evidente VGH, Premkumar AP, Adler CH, Caviness JN, Driver‐Dunckley E, Lyons MK. Medication dose reductions after pallidal versus subthalamic stimulation in patients with Parkinson’s disease.
Acta Neurol Scand: 2011: 124: 211–214.
© 2010 John Wiley & Sons A/S. Objective – To compare the medication dose reduction between deep brain stimulation (DBS) of the globus pallidus interna (GPi) vs subthalamic nucleus (STN) in matched patients with Parkinson’s disease (PD). Materials and methods – Records of 12 patients with PD who underwent GPi‐DBS at our institution from 2002 to 2008 were matched by pre‐operative PD medication doses and pre‐operative motor Unified Parkinson’s Disease Rating Scale (UPDRS) scores to 12 cases of STN‐DBS. PD medication doses were converted to levodopa equivalent doses (LEDs). Results – GPi and STN groups had similar mean pre‐operative LEDs and motor UPDRS scores. At 6 months post‐DBS, there was no significant difference in percent reduction in LEDs between the GPi (47.95%) and STN (37.47%) groups (P = 0.52). The mean post‐operative ‘medication off/stimulation on’ motor UPDRS scores did not differ significantly between GPi (15.33) and STN (16.25) groups (P = 0.74). The mean percent reduction in motor UPDRS scores was also similar between GPi (58.44%) and STN (58.98%) patients (P = 0.94). Conclusions – We conclude that in disease‐matched patients with PD undergoing DBS, both GPi and STN may result in similar reduction in PD medication doses.  相似文献   

15.
BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus interna (GPi) and subthalamic nucleus (STN) has been reported to relieve motor symptoms and levodopa-induced dyskinesia in patients with advanced Parkinson disease (PD). Although it has been suggested that stimulation of the STN may be superior to stimulation of the GPi, comparative trials are limited. OBJECTIVE: To extend our randomized, blinded pilot comparison of the safety and efficacy of STN and GPi stimulation in patients with advanced PD. DESIGN: This study represents the combined results from our previously published, randomized, blinded, parallel-group pilot study and additional patients enrolled in our single-center extension study. SETTING: Oregon Health and Science University in Portland.Patients Twenty-three patients with idiopathic PD, levodopa-induced dyskinesia, and response fluctuations were randomized to implantation of bilateral GPi or STN stimulators. Patients and evaluating clinicians were blinded to stimulation site. All patients were tested preoperatively while taking and not taking medications and after 3, 6, and 12 months of DBS. MAIN OUTCOME MEASURES: Postoperatively, response of symptoms to DBS, medication, and combined medication and DBS was evaluated. Twenty patients (10 in the GPi group and 10 in the STN group) completed 12-month follow-up. RESULTS: Off-medication Unified Parkinson's Disease Rating Scale motor scores were improved after 12 months of both GPi and STN stimulation (39% vs 48%). Bradykinesia tended to improve more with STN than GPi stimulation. No improvement in on-medication function was observed in either group. Levodopa dose was reduced by 38% in STN stimulation patients compared with 3% in GPi stimulation patients (P = .08). Dyskinesia was reduced by stimulation at both GPi and STN (89% vs 62%). Cognitive and behavioral complications were observed only in combination with STN stimulation. CONCLUSION: Stimulation of either the GPi or STN improves many features of advanced PD. It is premature to exclude GPi as an appropriate target for DBS in patients with advanced disease.  相似文献   

16.
Recently, a pathological oscillatory network at 10 Hz including several motor areas was described in patients with idiopathic Parkinson's disease (PD). In 7 PD patients, we tested the clinical effect of subthalamic nucleus (STN) stimulation at varying frequencies 1 to 3 years after implantation of electrodes. STN stimulation at 10 Hz induced significant worsening of motor symptoms, especially akinesia, compared with no stimulation and therapeutic stimulation (> or =130 Hz). This finding indicates the clinical relevance of pathological 10 Hz synchronization in PD.  相似文献   

17.
This work is the second of a series of papers in which we investigated the neurophysiological basis of deep brain stimulation (DBS) clinical efficacy using post-operative local field potential (LFP) recordings from DBS electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease. We found that low-frequency (1-1.5Hz) oscillations in LFP recordings from the STN of patients with Parkinson's disease dramatically increase after DBS of the STN itself (log power change=0.93+/-0.62; Wilcoxon: p=0.0002, n=13), slowly decaying to baseline levels after turning DBS off. The DBS-induced increase of low-frequency LFP oscillations is highly reproducible and appears only after the delivery of DBS for a time long enough to induce clinical improvement. This increase of low-frequency LFP oscillations could reflect stimulation-induced modulation of network activity or could represent changes of the electrochemical properties at the brain-electrode interface.  相似文献   

18.
There has been some evidence that electrical stimulation of the primary motor cortex (MCS) may relieve motor symptoms of Parkinson's disease (PD). This surgical technique is being studied as alternative for PD patients who are considered poor candidates for deep brain stimulation (DBS) of subthalamic nucleus (STN). In 4 PD patients with unilateral MCS, we used [(15)O] H(2)O positron emission tomography to measure changes in regional cerebral blood flow (rCBF) while testing motor performance with a joystick motor task during different stimulation frequencies, OFF-condition, 50 and 130 Hz. We found that different stimulation settings did neither improve performance on joystick task nor modify the pattern of movement-related rCBF. Similarly, no changes were observed in UPDRS motor score between Off and On stimulation while off medication. We conclude that while MCS may be a simpler and safer surgical procedure than DBS of STN, it failed to provide evidence of clear effect on motor performance and movement-related activation pattern in patients with advanced PD.  相似文献   

19.
《Neuromodulation》2023,26(2):403-413
ObjectivesDeep brain stimulation (DBS) delivered via multicontact leads implanted in the basal ganglia is an established therapy to treat Parkinson disease (PD). However, the different neural circuits that can be modulated through stimulation on different DBS contacts are poorly understood. Evidence shows that electrically stimulating the subthalamic nucleus (STN) causes a therapeutic effect through antidromic activation of the hyperdirect pathway—a monosynaptic connection from the cortex to the STN. Recent studies suggest that stimulating the substantia nigra pars reticulata (SNr) may improve gait. The advent of directional DBS leads now provides a spatially precise means to probe these neural circuits and better understand how DBS affects distinct neural networks.Materials and MethodsWe measured cortical evoked potentials (EPs) using electroencephalography (EEG) in response to low-frequency DBS using the different directional DBS contacts in eight patients with PD.ResultsA short-latency EP at 3 milliseconds originating from the primary motor cortex appeared largest in amplitude when stimulating DBS contacts closest to the dorsolateral STN (p < 0.001). A long-latency EP at 10 milliseconds originating from the premotor cortex appeared strongest for DBS contacts closest to the SNr (p < 0.0001).ConclusionsOur results show that at the individual patient level, electrical stimulation of different nuclei produces distinct EP signatures. Our approach could be used to identify the functional location of each DBS contact and thus help patient-specific DBS programming.Clinical Trial RegistrationThe ClinicalTrials.gov registration number for the study is NCT04658641.  相似文献   

20.
Studies describing subthalamic (STN) local field potentials (LFPs) recorded during deep brain stimulation (DBS) in patients with Parkinson's disease (PD), within the first month after DBS electrode implant, show that DBS modulates specific STN oscillations: whereas low-frequency (LF) oscillations (2-7Hz) increase, beta oscillations (8-30Hz) variably decrease. No data show whether LFPs remain stable for longer than one month after DBS surgery. Having long-term information is essential especially for use as a long-term feedback control signal for adaptive DBS systems. To evaluate how STN activity behaves years after prolonged chronic stimulation in PD we studied STN LFPs at rest without DBS and during ongoing DBS, in 11 parkinsonian patients 7years (7.54±1.04) after STN electrode implantation for DBS (hyperchronic group) and in 16 patients 3days after STN electrode implantation (acute group). STN LF and beta-band LFPs recorded at rest at 7years contained almost the same information as those recorded at 3days. STN recordings showed similar LFP responses to DBS in the acute and hyperchronic stages: whereas during ongoing DBS the LF power band increased for the whole population, beta activity decreased only in nuclei with significant beta activity at baseline. The LF/beta power ratio in all nuclei changed in both study groups, suggesting that this variable might be an even more informative marker of PD than the single LF and beta bands. Because STN LFP activity patterns and STN LFP responses to DBS stay almost unchanged for years after DBS electrode implantation they should provide a consistent feedback control signal for adaptive DBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号