首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The striatum is thought to play an important role in the spreading of epilepsy from cortical areas to deeper brain structures, but this issue has not been addressed with intracellular techniques. Paired recordings were used to assess the impact of cortical epileptiform activity on striatal neurons in brain slices. Bath-application of 4-amynopyridine (100 microM) and bicuculline (20 microM) induced synchronized bursts in all pairs of cortical neurons (< or = 5 mm apart) in coronal, sagittal, and oblique slices (which preserve connections from the medial agranular cortex to the striatum). Under these conditions, striatal medium spiny neurons (MSs) displayed a strong increased spontaneous glutamatergic activity. This activity was not correlated to the cortical bursts and was asynchronous in pairs of MSs. Sporadic, large-amplitude synchronous depolarizations also occurred in MSs. These events were simultaneously detected in glial cells, suggesting that they were accompanied by considerable increases in extracellular potassium. In oblique slices, cortically driven bursts were also observed in MSs. These events were synchronized to cortical epileptiform bursts, depended on non-N-methyl-D-aspartate (NMDA) glutamate receptors, and persisted in the cortex, but not in the striatum, after disconnection of the two structures. During these bursts, MS membrane potential shifted to a depolarized value (59 +/- 4 mV) on which an irregular waveform, occasionally eliciting spikes, was superimposed. Thus synchronous activation of a limited set of corticostriatal afferents can powerfully control MSs. Cholinergic interneurons located < 120 microm from simultaneously recorded MSs, did not display cortically driven bursts, suggesting that these cells are much less easily engaged by cortical epileptiform activity.  相似文献   

2.
Signal detection in the CNS relies on a complex interaction between the numerous synaptic inputs to the detecting cells. Two effects, stochastic resonance (SR) and coherence resonance (CR) have been shown to affect signal detection in arrays of basic neuronal models. Here, an array of simulated hippocampal CA1 neurons was used to test the hypothesis that physiological noise and electrical coupling can interact to modulate signal detection in the CA1 region of the hippocampus. The array was tested using varying levels of coupling and noise with different input signals. Detection of a subthreshold signal in the network improved as the number of detecting cells increased and as coupling was increased as predicted by previous studies in SR; however, the response depended greatly on the noise characteristics present and varied from SR predictions at times. Careful evaluation of noise characteristics may be necessary to form conclusions about the role of SR in complex systems such as physiological neurons. The coupled array fired synchronous, periodic bursts when presented with noise alone. The synchrony of this firing changed as a function of noise and coupling as predicted by CR. The firing was very similar to certain models of epileptiform activity, leading to a discussion of CR as a possible simple model of epilepsy. A single neuron was unable to recruit its neighbors to a periodic signal unless the signal was very close to the synchronous bursting frequency. These findings, when viewed in comparison with physiological parameters in the hippocampus, suggest that both SR and CR can have significant effects on signal processing in vivo.  相似文献   

3.
Through inhibition of reuptake, cocaine increases monoaminergic tone in the central nervous system. The activities of the neurons within the locus coeruleus play a pivotal role in central noradrenergic transmission and regulate overall levels of arousal and attention. We have found that cocaine in low concentrations (0.3-1.0 microM) induced slow oscillations (0.8 Hz) in membrane potential (2-6 mV). These oscillations were synchronized in neurons throughout the nucleus and were blocked by alpha 2-adrenergic receptor antagonists. The synchrony of these events was thought to arise from within the nucleus, through a combination of spontaneous activity (intrinsic properties) and noradrenergic mediated inhibitory postsynaptic potentials augmented by cocaine. The synchronous firing of noradrenergic neurons may facilitate transmitter release in the widespread projection areas and thus be important for the action of cocaine to increase levels of arousal.  相似文献   

4.
The existence of electrical synapses between GABAergic inhibitory interneurons in neocortex is well established, but their functional properties have not been described in detail. We made whole cell recordings from pairs of electrically coupled fast-spiking (FS) or low threshold-spiking (LTS) neurons, and filled some cells with biocytin for morphological reconstruction. Data were used to create compartmental cable models and to guide mathematical analysis. We analyzed the time course and amplitude of electrical postsynaptic potentials (ePSPs), the subthreshold events generated by presynaptic action potentials, in both FS and LTS neurons. The results imply that the generation of ePSPs is predominantly a linear process in both cell types for presynaptic firing of both single and repetitive spikes. Nonlinearities shape ePSPs near spike threshold, but our data suggest that the underlying synaptic current is still a linear process. Cell-to-cell electrical signaling on longer timescales also appears to be linear. Cable models of electrically coupled FS and LTS neurons imply that the analyzed electrical synapses are, on average, within 50 mum of the soma. Finally, we show that electrical coupling between 2 inhibitory cells promotes synchrony at all spiking frequencies. This contrasts with the effect of reciprocal inhibitory postsynaptic potentials (IPSPs) evoked by the same cells, which promote antisynchronous firing at frequencies less than about 100 Hz. Electrical coupling counteracts the antisynchronous behavior induced by IPSPs and facilitates spiking synchrony. Our results suggest that electrical synapses among inhibitory interneurons are most readily described as low-pass linear filters that promote firing synchrony.  相似文献   

5.
Precisely synchronized neuronal activity has been commonly observed in the mammalian visual pathway. Spike timing correlations in the lateral geniculate nucleus (LGN) often take the form of phase synchronized oscillations in the high gamma frequency range. To study the relations between oscillatory activity, synchrony, and their time-dependent properties, we recorded activity from multiple single units in the cat LGN under stimulation by stationary spots of light. Autocorrelation analysis showed that approximately one third of the cells exhibited oscillatory firing with a mean frequency ~80 Hz. Cross-correlation analysis showed that 30% of unit pairs showed significant synchronization, and 61% of these pairs consisted of synchronous oscillations. Cross-correlation analysis assumes that synchronous firing is stationary and maintained throughout the period of stimulation. We tested this assumption by applying unitary events analysis (UEA). We found that UEA was more sensitive to weak and transient synchrony than cross-correlation analysis and detected a higher incidence (49% of cell pairs) of significant synchrony (unitary events). In many unit pairs, the unitary events were optimally characterized at a bin width of 1 ms, indicating that neural synchrony has a high degree of temporal precision. We also found that approximately one half of the unit pairs showed nonstationary changes in synchrony that could not be predicted by the modulation of firing rates. Population statistics showed that the onset of synchrony between LGN cells occurred significantly later than that observed between retinal afferents and LGN cells. The synchrony detected among unit pairs recorded on separate tetrodes tended to be more transient and have a later onset than that observed between adjacent units. These findings show that stimulus-evoked synchronous activity within the LGN is often rhythmic, highly nonstationary, and modulated by endogenous processes that are not tightly correlated with firing rate.  相似文献   

6.
Antidromically driven action potentials were recorded from norepinephrine-containing locus coeruleus neurons in response to electrical stimulation of cerebrocortical and thalamic areas in anesthetized squirrel monkeys. These cells reliably conducted impulses from cortical sites of distances up to 100 mm from locus coeruleus. Monkey locus coeruleus neurons were found to exhibit several properties previously described for these cells in rat, including slow spontaneous discharge rates, characteristic impulse waveforms, antidromic activation from many target areas, a period of suppressed activity following either antidromic or orthodromic driving and responsiveness to noxious stimuli presented as subcutaneous electrical stimulation of a rear foot. However, a large population of monkey locus coeruleus neurons was found to exhibit more rapid conduction velocities than previously found for rat (e.g. approximately 34% were greater than 1 m/s), resulting in similar conduction latencies to distant target areas in the two species. This indicates that the conduction times required for locus coeruleus impulses to reach distant target areas may be conserved across different species and sizes of brains, suggesting that these latencies play an important role in the general function of the locus coeruleus system in brain and behavioral processes.  相似文献   

7.
In the suprachiasmatic nucleus (SCN), the master circadian pacemaker, neurons show circadian variations in firing frequency. There is also considerable synchrony of spiking across SCN neurons on a scale of milliseconds, but the mechanisms are poorly understood. Using paired whole-cell recordings, we have found that many neurons in the rat SCN communicate via electrical synapses. Spontaneous spiking was often synchronized in pairs of electrically coupled neurons, and the degree of this synchrony could be predicted from the magnitude of coupling. In wild-type mice, as in rats, the SCN contained electrical synapses, but electrical synapses were absent in connexin36-knockout mice. The knockout mice also showed dampened circadian activity rhythms and a delayed onset of activity during transition to constant darkness. We suggest that electrical synapses in the SCN help to synchronize its spiking activity, and that such synchrony is necessary for normal circadian behavior.  相似文献   

8.
The role of gap junctions between midbrain dopamine (DA) neurons in mechanisms of firing pattern generation and synchronization has not been well characterized experimentally. We modified a multi-compartment model of DA neuron by adding a spike-generating mechanism and electrically coupling the dendrites of two such neurons through gap junctions. The burst-generating mechanism in the model neuron results from the interaction of a N-methyl-D-aspartate (NMDA)-induced current and the sodium pump. The firing patterns exhibited by the two model neurons included low frequency (2-7 Hz) spiking, high-frequency (13-20 Hz) spiking, irregular spiking, regular bursting, irregular bursting, and leader/follower bursting, depending on the parameter values used for the permeability for NMDA-induced current and the conductance for electrical coupling. All of these firing patterns have been observed in physiological neurons, but a systematic dependence of the firing pattern on the covariation of these two parameters has not been established experimentally. Our simulations indicate that electrical coupling facilitates NMDA-induced burst firing via two mechanisms. The first can be observed in a pair of identical cells. At low frequencies (low NMDA), as coupling strength was increased, only a transition from asynchronous to synchronous single-spike firing was observed. At high frequencies (high NMDA), increasing the strength of the electrical coupling in an identical pair resulted in a transition from high-frequency single-spike firing to burst firing, and further increases led to synchronous high-frequency spiking. Weak electrical coupling destabilizes the synchronous solution of the fast spiking subsystems, and in the presence of a slowly varying sodium concentration, the desynchronized spiking solution leads to bursts that are approximately in phase with spikes that are not in phase. Thus this transitional mechanism depends critically on action potential dynamics. The second mechanism for the induction of burst firing requires a heterogeneous pair that is, respectively, too depolarized and too hyperpolarized to burst. The net effect of the coupling is to bias at least one cell into an endogenously burst firing regime. In this case, action potential dynamics are not critical to the transitional mechanism. If electrical coupling is indeed more prominent in vivo due to basal level of modulation of gap junctions in vivo, these results may indicate why NMDA-induced burst firing is easier to observe in vivo as compared in vitro.  相似文献   

9.
The relationship between discharge rates of locus coeruleus noradrenergic neurons and rates of norepinephrine release was examined in the anesthetized rat. Neuronal discharge rates of locus coeruleus neurons were altered and quantified using a combined recording-infusion probe. Peri-locus coeruleus infusions of either the cholinergic agonist, bethanechol, or the alpha2-agonist, clonidine, were used to enhance or suppress neuronal discharge activity, respectively. Alterations in concentrations of extracellular norepinephrine within the prefrontal cortex were determined using in vivo microdialysis and high-pressure liquid chromatography with electrochemical detection. A linear relationship between locus coeruleus activity and norepinephrine dialysate concentration was observed between complete suppression of locus coeruleus discharge activity and approximately 300-400% of basal discharge levels (1.58+/-0.29 Hz). Above these levels, increases in locus coeruleus discharge rates were not accompanied by similar increases in dialysate norepinephrine concentrations. In general, neither activation nor suppression of locus coeruleus neuronal discharge rates appeared to alter the relationship between discharge activity and norepinephrine efflux during subsequent epochs. The one exception to this was observed during recovery from relatively high-magnitude locus coeruleus activation. In two out of three cases in which locus coeruleus discharge rates were increased greater than 450%, a recovery of norepinephrine concentrations to basal levels occurred more quickly than the recovery of locus coeruleus neuronal discharge rates to basal levels. Although limited, these latter observations suggest that dysregulation of norepinephrine release may occur following sustained activation of locus coeruleus at the highest rates examined, which may mimic those associated with intense arousal or stress.  相似文献   

10.
T Nakazato 《Neuroscience》1987,23(2):529-538
The intranuclear organization of the cat locus coeruleus neurons was investigated anatomo-physiologically. The locus coeruleus neurons project to the forebrain through the dorsal noradrenergic bundle and to the spinal cord. Horseradish peroxidase, a retrograde tracer, was pressure-injected into either the dorsal noradrenergic bundle or the ventrolateral funiculus of the high cervical cord (C1-C2). The cats (n = 12) were killed after a 2- or 3-day survival period. The frontal sections (100 micron) throughout the locus coeruleus were observed by light microscope after carrying out the diaminobenzidine reaction. The labeled locus coeruleus neurons were located predominantly in the rostral locus coeruleus proper and locus coeruleus alpha when horseradish peroxidase was injected into the dorsal noradrenergic bundle, whereas they were predominantly located in the caudal locus coeruleus alpha and subcoeruleus when horseradish peroxidase was injected into the spinal cord. In the electrophysiological experiments, cats (n = 30) were anesthetized with alpha-chloralose and two stimulating electrodes were placed stereotaxically in the dorsal noradrenergic bundle and the ipsilateral ventrolateral funiculus of the high cervical cord (C1-C2), respectively. Monophasic square-wave pulses (2.5 Hz, 100 microsecond duration, 800 microA) were delivered. A recording glass electrode, filled with 2 M NaCl saturated with Fast Green, was placed in the locus coeruleus. Neurons with different conduction velocities, which were evoked by the antidromic stimulation of the dorsal noradrenergic bundle and spinal cord, were verified in the locus coeruleus and the adjacent areas. The slow conductive neurons with a conduction velocity of less than 1 m/s had a slow firing rate (1.6 +/- 0.9/s). They were located predominantly in the rostral locus coeruleus proper and locus coeruleus alpha by the dorsal noradrenergic bundle stimulation. From the anatomical and electrophysiological experimental results, it was concluded that the conduction velocities of the horseradish peroxidase-labeled neurons observed in locus coeruleus proper and locus coeruleus alpha were mostly slow and less than 1 m/s. Most of the slow conductive neurons were considered to be noradrenergic. Neurons evoked antidromically by both the dorsal noradrenergic bundle and spinal cord stimulation were not observed.  相似文献   

11.
人胎蓝斑神经元的电镜观察   总被引:4,自引:0,他引:4  
为了探讨人蓝斑神经元在胚胎发育过程中的超微结构和突触形成特征 ,为蓝斑 -脊髓移植选择适宜胎龄提供形态学资料。用透射电镜观察了 4~ 8个月人胎蓝斑神经元在胚胎发育过程中的变化。结果证明 :胎龄 4个月人胎蓝斑神经元显示不成熟细胞特征 ,胎龄 6个月为发育成熟过程中的细胞特征 ,胎龄 8个月为成熟细胞特征。提示进行人胎蓝斑 -脊髓移植时以 4个月胎龄蓝斑作移植供体较为适宜  相似文献   

12.
In the presence of convulsant drugs such as picrotoxin, neurons in the hippocampal-slice preparation generate synchronized depolarizing bursts. This synchrony occurs on a time scale of tens of milliseconds and is produced by excitatory synaptic interactions between neurons. The synaptic interactions themselves occur on a time scale of tens of milliseconds. The "epileptiform" local-field potential during such synchronized bursts is comb-shaped ("ringing"), whereas the field potential expected if action potentials in neighboring neurons were uncorrelated is noisy and not comb-shaped. This suggests that individual action potentials are locally synchronized on a time scale of 1 ms. We have previously shown, using computer simulations, that electrical interactions--mediated by currents flowing in the extracellular medium--can plausibly explain action-potential synchronization in experiments where chemical synapses are blocked. The present simulations demonstrate that electrical interactions can also account for action-potential synchronization--and thus the "ringing" shape of the field potential--during epileptiform bursts, where excitatory synapses are functional. The field potential is thus a modulating influence on, as well as a reflection of, underlying neuronal transmembrane events.  相似文献   

13.
14.
Neural activity in the noradrenergic locus coeruleus correlates with periods of wakefulness and arousal. However, it is unclear whether tonic or phasic activity in these neurons is necessary or sufficient to induce transitions between behavioral states and to promote long-term arousal. Using optogenetic tools in mice, we found that there is a frequency-dependent, causal relationship among locus coeruleus firing, cortical activity, sleep-to-wake transitions and general locomotor arousal. We also found that sustained, high-frequency stimulation of the locus coeruleus at frequencies of 5 Hz and above caused reversible behavioral arrests. These results suggest that the locus coeruleus is finely tuned to regulate organismal arousal and that bursts of noradrenergic overexcitation cause behavioral attacks that resemble those seen in people with neuropsychiatric disorders.  相似文献   

15.
Hahn MK  Bannon MJ 《Neuroscience》1999,94(4):1183-1188
These experiments examined the role of substance P-selective neurokinin 1 receptors in the restraint-induced activation of the rat locus coeruleus. Immunohistochemistry revealed high levels of neurokinin 1 receptor expression in the plasma membrane of tyrosine hydroxylase-positive locus coeruleus neurons. The selective neurokinin 1 receptor antagonists, RP 67580 (5 nmol) and L-760,735 (3.4 nmol), were administered intracerebroventricularly prior to restraint stress, and c-fos protein was measured as an index of locus coeruleus activation. Both antagonists attenuated the restraint-induced increase in locus coeruleus c-fos expression, whereas their inactive enantiomers were ineffective. These results suggest that neurokinin 1 receptors may mediate activation of locus coeruleus neurons during stress. Neurokinin 1 receptor antagonists may prove to be novel therapeutic compounds in the treatment of anxiety and depression.  相似文献   

16.
The present study was designed to determine the neurotransmitter(s) involved in activation of noradrenergic locus coeruleus neurons by urinary bladder distention. The spontaneous discharge rate of single locus coeruleus neurons was recorded from halothane-anesthetized rats during the physiological challenge of bladder distention. Intrabladder saline infusion (0.5 ml) increased bladder pressure by 77 +/- 9.7 mmHg (n = 19) and this was associated with an increase in locus coeruleus discharge rate of 53 +/- 4.8% (n = 29). Simultaneous recordings of cortical electroencephalographic activity demonstrated that electroencephalographic activation, characterized by a decreased amplitude and tendency to shift from low frequency activity to higher frequency activity, was also associated with bladder distention. The role of corticotropin-releasing factor and excitatory amino acid inputs to the locus coeruleus in activation by bladder distention was tested in rats pretreated with a corticotropin-releasing factor antagonist, or excitatory amino acid antagonists. Intracerebroventricular administration of the corticotropin-releasing factor antagonist did not alter locus coeruleus activation by bladder distention. In contrast, both locus coeruleus activation and electroencephalographic activation associated with bladder distention were prevented by intracerebroventricular administration of kynurenic acid. The same dose of kynurenic acid also prevented locus coeruleus activation by repeated sciatic nerve stimulation, as previously reported. Local administration of kynurenic acid into the locus coeruleus greatly attenuated, but did not completely prevent the increase in locus coeruleus discharge elicited by bladder distention.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Recent anatomical and physiological experiments indicate that the nucleus locus coeruleus receives a predominant excitatory amino acid input, as well as a substantial inhibitory input, from the nucleus paragigantocellularis in the ventrolateral medulla. To determine whether C1 adrenergic neurons are involved in the inhibitory projection, the effects of the alpha-2 adrenoceptor antagonist, idazoxan, on inhibitory responses of locus coeruleus neurons to paragigantocellularis stimulation were characterized in the rat. Intravenous administration of idazoxan (0.2-1 mg/kg) attenuated paragigantocellularis-evoked inhibition, and often revealed an underlying weak excitation. Intraventricular administration of kynurenate, an excitatory amino acid antagonist, eliminated excitation from paragigantocellularis and disclosed an underlying inhibitory response in many locus coeruleus neurons that were previously excited by paragigantocellularis stimulation. These results revealed that about 90% of locus coeruleus neurons receive inhibition from the paragigantocellularis. Intravenous idazoxan significantly reduced such paragigantocellularis-evoked inhibition, completely blocking this response in three of eight locus coeruleus cells tested. Idazoxan was much more potent when locally infused into the locus coeruleus. Local infusion of idazoxan (0.1-2.5 ng) into locus coeruleus produced a dose-dependent decrease of paragigantocellularis-evoked inhibition and completely blocked the inhibition in 10/33 locus coeruleus neurons, indicating that the site of idazoxan action was in the locus coeruleus. These results extend our previous anatomical studies of adrenergic input to locus coeruleus, and indicate that C1 adrenergic neurons in the paragigantocellularis provide a direct inhibitory input to the great majority of locus coeruleus noradrenergic neurons. In addition, this is the first report of a neuronal response to activation of C1 adrenergic cells indicating that these neurons are strongly inhibitory when acting at alpha-2 receptors in vivo.  相似文献   

18.
Axonal distributions of single locus coeruleus neurons within the cerebral cortex were examined with antidromic stimulation technique combined with cortical lesions (frontal lobotomy and lobectomy). In urethan-anesthetized rats, stimulating electrodes were implanted in 10 points extending over nearly the entire cerebral cortex, and antidromic responses of single locus coeruleus neurons to stimulation of these stimulus sites were analysed. Fifty percent of locus coeruleus neurons examined were activated antidromically from at least one cortical point in the cerebral cortex. The pattern and extent of axonal distributions of single locus coeruleus neurons in the cortex appeared to vary from cell to cell. From the results obtained in rats with the cortical lesions, it is concluded that in addition to locus coeruleus neurons with intracortical axons running from rostral to caudal, there are the neurons projecting to the occipital cortex without innervating the frontal cortex and those projecting simultaneously to the frontal and occipital cortex with two axonal branches. There was no topographic order between the recording sites within the locus coeruleus and the projection sites in the cortex.  相似文献   

19.
The cells of the inferior olivary (IO) nucleus generate a large repertoire of electrical signals, among them subthreshold oscillations of the membrane potential (STO). To date, subthreshold oscillations have been studied at the level of single-cell recordings, from which network properties were inferred. In this study we used whole cell patch recordings and optical imaging to address the following issues: 1) synchrony of STO in neighboring neurons; 2) stability of the oscillatory activity in the temporal and spatial domain; and 3) the size of the oscillating network. Recordings were made from 126 pairs of IO neurons in 13- to 30-day-old rats. An additional 262 neurons were recorded individually. The frequency of STO varied from 0.8 to 8.6 Hz. The frequency distribution revealed two subpopulations with peaks at about 3 and 6 Hz. The maximum amplitude among the cells varied from 2 to 25 mV. Oscillations in most neurons showed ongoing modulations in both frequency and amplitude. These modulations were largely abolished following bath application of 40 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a competitive non-N-methyl-D-aspartate (non-NMDA) receptor antagonist, suggesting that they were caused by glutamatergic action. In 35 of 61 recorded pairs at least one neuron exhibited STO permitting us to compare frequency and phase relations. In 22 pairs there was coherent activity with zero phase difference between oscillations in the 2 cells. In these pairs, frequency and amplitude modulation occurred simultaneously in both neurons. Electrotonic coupling was tested in 13 pairs, that had coherent STO, and it was detected in 12. An additional seven pairs showed coherent oscillations but with a phase difference of 20-50 ms. Electrotonic coupling was observed in three of these pairs. Electrotonic coupling was also observed in two of five pairs in which only one neuron oscillated. No coupling was detected in one pair where both neurons oscillated but at different frequencies. Optical imaging using a voltage-sensitive dye (RH 414) was performed on 40 IO slices using an array of 128 photodiodes. Patches of oscillatory activity were observed in 10 slices. Among them six showed spontaneous oscillations, and four exhibited oscillations following extracellular stimulation. In agreement with cell pair recording, optical imaging demonstrated phase-shifted activity in the form of propagating waves of activity within an oscillating patch. We conclude that 1) STO exhibit ongoing modulations of frequency and amplitude that are probably caused by extrinsic inputs to the IO nucleus; 2) electrotonically coupled neurons show a high level of STO synchrony; and 3) the oscillatory activity can propagate within a network of coupled olivary neurons.  相似文献   

20.
Age-dependent changes in the axonal branching patterns of single locus coeruleus neurons, which innervate both the frontal cortex and hippocampus dentate gyrus, have been studied in male F344 rats. We used an electrophysiological approach involving antidromic activation to differentiate single from multi-threshold locus coeruleus neurons in each terminal field with age (7-27 mo of age). Most of these neurons have a single threshold in the young rats, whereas in the older brains, the neurons have multi-threshold responses. This implies an increased amount of axonal branching in the older brains. The time course of the increase differs in the two terminal fields, suggesting that the degree of plasticity or age-dependent increase in branching can differ across terminal fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号