首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The aim of the present study was to investigate the effect of nimodipine on autoregulation of cerebral blood flow (CBF), CO2 reactivity and cerebral oxygen metabolism (CMRO2) in patients with subarachnoid haemorrhage (SAH). Eight patients with severe SAH were studied with repeated CBF and CMRO2 measurements on the first day of the bleeding and after at least 12 h of treatment of nimodipine. An initial resting study, an autoregulation study and a hyperventilation study was performed. CBF was measured using the 133-Xenon intravenous method. CMRO2 was calculated as AVDO2 x CBF. Nimodipine did not significantly change CBF and CMRO2 in the initial resting study. After induced arterial hypotension intact autoregulation was found before as well as after treatment with nimodipine. Beneficial effects of nimodipine were found on CO2 reactivity and CMRO2 during hypotension that may be explained as a positive effect on cerebral ischaemia.  相似文献   

4.
5-Hydroxytryptamine (5-HT, serotonin), synthesized in midbrain raphe nuclei and released in various hypothalamic sites, decreases food intake but the specific 5-HT receptor subtypes involved are controversial. Here, we have studied changes in the regional density of binding to 5-HT receptors and transporters and the levels of tryptophan hydroxylase, in rats with obesity induced by feeding a palatable high-energy diet for 7 weeks. We mapped binding at 5-HT receptor subtypes and transporters using quantitative autoradiography and determined tryptophan hydroxylase protein levels by Western blotting. In diet-induced obese (DiO) rats, specific binding to 5-HT(1A) receptors ([3H]8-OH-DPAT) was significantly increased in the dorsal and median raphe by 90% (P<0.01) and 132% (P<0.05), respectively, compared with chow-fed controls. 5-HT(1B) receptor binding sites ([125I]cyanopindolol) were significantly increased in the hypothalamic arcuate nucleus (ARC) of DiO rats (58%; P<0.05), as were 5-HT(2A) receptor binding sites ([3H]ketanserin) in both the ARC (44%; P<0.05) and lateral hypothalamic area (LHA) (121%; P<0.05). However, binding to 5-HT(2C) receptors ([3H]mesulgergine) in DiO rats was not significantly different from that in controls in any hypothalamic region. Binding to 5-HT transporters ([3H]paroxetine) was significantly increased (P<0.05) in both dorsal and median raphe, paraventricular nuclei (PVN), ventromedial nuclei (VMH), anterior hypothalamic area (AHA) and LHA of DiO rats, by 47%-165%. Tryptophan hydroxylase protein levels in the raphe nuclei were not significantly different between controls and DiO rats. In conclusion, we have demonstrated regionally specific changes in binding to certain 5-HT receptor subtypes in obesity induced by voluntary overeating of a palatable diet. Overall, these changes are consistent with reduced 5-HT release and decreased activity of the 5-HT neurons. Reduction in the hypophagic action of 5-HT, possibly acting at 5-HT(1A), 5-HT(1B) and 5-HT(2A) receptors, may contribute to increased appetite in rats presented with highly palatable diet.  相似文献   

5.
In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.  相似文献   

6.
BACKGROUND: The only antidepressant drugs that are effective in the treatment of obsessive-compulsive disorder (OCD) are those that effectively block the reuptake of serotonin (5-hydroxytryptamine; 5-HT). In humans, positron emission tomography studies have implicated the orbitofrontal cortex (OFC) in the mediation of OCD symptoms. In animals, administration of selective serotonin reuptake inhibitors (SSRIs) for 8 weeks (but not 3 weeks) led to increased release of 5-HT in the OFC, because of desensitization of the terminal 5-HT autoreceptors. However, the increase in synaptic levels of 5-HT in the OFC after long-term administration of SSRIs might be cancelled out by desensitization of postsynaptic 5-HT receptors. This study was undertaken to investigate if these OFC receptors adapt under such conditions. METHODS: In vivo electrophysiologic techniques were used in this animal study. Male Sprague-Dawley rats received the SSRI paroxetine or vehicle control, delivered by implanted osmotic minipumps, for 3 or 8 weeks. With the rats under anesthesia, neuronal responsiveness to the microiontophoretic application of various drugs was assessed by determining the number of spikes suppressed per nanoampere of ejection current. RESULTS: After administration of paroxetine for either 3 weeks or 8 weeks, there was no modification in the inhibitory effect of 5-HT, the preferential 5-HT(2A) receptor agonist (+)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride (DOI) or the preferential 5-HT(2C) receptor agonist 3-chlorophenyl piperazine dihydrochloride (mCPP). In contrast, the inhibitory effect of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propilamino)-tetralin (8-OH-DPAT) was attenuated in the OFC after both 3 and 8 weeks of paroxetine administration. CONCLUSION: These results indicate a desensitization of postsynaptic 5-HT(1A) receptors in the OFC but a lack of compensatory adaptation of the 5-HT receptor(s) mediating the main effect of 5-HT in this brain region. These observations imply that the activation of normosensitive postsynaptic 5-HT2-like receptors may mediate the effect of enhanced 5-HT release in the OFC.  相似文献   

7.
The suprachiasmatic nucleus (SCN), a circadian oscillator, receives glutamatergic afferents from the retina and serotonergic (5-HT) afferents from the median raphe. 5-HT(1B) and 5-HT(7) receptor agonists inhibit the effects of light on SCN circadian activity. Electron microscopic (EM) immunocytochemical procedures were used to determine the subcellular localization of 5-HT(1B) and 5-HT(7) receptors in the SCN. 5-HT(1B) receptor immunostaining was associated with the plasma membrane of thin unmyelinated axons, preterminal axons, and terminals of optic and nonoptic origin. 5-HT(1B) receptor immunostaining in terminals was almost never observed at the synaptic active zone. To a much lesser extent, 5-HT(1B) immunoreaction product was noted in dendrites and somata of SCN neurons. 5-HT(7) receptor immunoreactivity in gamma-aminobutyric acid (GABA), vasoactive intestinal polypeptide (VIP), and vasopressin (VP) neuronal elements in the SCN was examined by using double-label procedures. 5-HT(7) receptor immunoreaction product was often observed in GABA-, VIP-, and VP-immunoreactive dendrites as postsynaptic receptors and in axonal terminals as presynaptic receptors. 5-HT(7) receptor immunoreactivity in terminals and dendrites was often associated with the plasma membrane but very seldom at the active zone. In GABA-, VIP-, and VP-immunoreactive perikarya, 5-HT(7) receptor immunoreaction product was distributed throughout the cytoplasm often in association with the endoplasmic reticulum and the Golgi complex. The distribution of 5-HT(1B) receptors in presynaptic afferent terminals and postsynaptic SCN processes, as well as the distribution of 5-HT(7) receptors in both pre- and postsynaptic GABA, VIP, and VP SCN processes, suggests that serotonin plays a significant role in the regulation of circadian rhythms by modulating SCN synaptic activity.  相似文献   

8.
The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.  相似文献   

9.
BACKGROUND: Serotonin (5-HT) plays a complex regulatory role in processes like anxiety, depression, aggression, and impulse control. Due to the large amount of serotonergic receptors, knockout mice offer an important opportunity to investigate the role of specific receptors. The 5-HT(1B) receptor is thought to mediate aggression and impulse control. This was studied here in mice lacking 5-HT(1B) receptors (5-HT(1B) KO). METHODS: Wild type and 5-HT(1B) KO mice were exposed to several types of entrained and nonentrained stimuli. With telemetry, body temperature, heart rate, and locomotor activity were measured continuously during the different experiments. RESULTS: To nonentrained stimuli like disturbance stress and confrontation with an intruder, 5-HT(1B) KO mice showed exaggerated physiologic and behavioral responses. These mice displayed behavioral disinhibition, measured as increased social interest and aggression to an intruder mouse. However, in response to well-entrained stimuli like daily light transitions, responses were smaller in 5-HT(1B) KO than in wild type mice, suggesting that hyperreactivity is stimulus specific. CONCLUSIONS: Serotonin 1B receptors are essential in impulse control by inhibiting responses to nonentrained stimuli. Therefore, the 5-HT(1B) KO mouse might be an important additional model for studying aspects of disinhibition in aggression and impulse control.  相似文献   

10.
5-Hydroxytryptamine (5-HT) is thought to be involved in migraine headache and the pathophysiology of cerebrovascular diseases. Previous data show that organ culture induces a phenotypic change in cerebral vessels. Therefore we investigated if these changes also applied for the vasoconstrictive 5-HT receptors. Rat cerebral arteries express 5-HT2 receptors. Using organ culture we observed a phenotypic change with a selective up-regulation of 5-HT(1B/1D) receptors. This was revealed by an increased sensitivity to the selective 5-HT(1B/1D) agonist 5-CT after organ culture (pEC50(fresh) 5.6+/-0.2 and pEC50(cultured) 6.8+/-0.4). The response was inhibited by the 5-HT(1B/1D) selective antagonist GR55562 (pEC50(fresh) 5.1+/-0.2 and pEC50(cultured) 6.0+/-0.3). The organ model might mimic the phenotypic changes during cerebrovascular diseases.  相似文献   

11.
To investigate the vasoconstrictor effect of 5-hydroxytryptamine (5-HT1B/1D) receptor agonists for migraine treatment, changes in cerebral blood flow (CBF) and blood volume induced by rizatriptan were assessed by positron emission tomography (PET). Eleven healthy volunteers underwent PET studies before and after rizatriptan administration. Dynamic PET data were acquired after bolus injection of H2(15)O to analyze CBF and arterial-to-capillary blood volume (V0) images using the three-weighted integral method. After a baseline scan, three further acquisitions were performed at 40 to 50, 60 and 70 to 80 mins after drug administration. Global and regional differences in CBF and V0 between conditions were compared using absolute values in the whole brain and cortical regions, as well as statistical parametric mapping (SPM) analysis. The global and regional values for CBF and V0 decreased significantly after rizatriptan administration compared with the baseline condition. However, both values recovered to baseline within 80 mins after treatment. The maximal reduction in global CBF and V0 was approximately 13% of baseline value. The greatest decrease in CBF was observed approximately 60 mins after drug administration, whereas the maximal reduction in V0 was observed approximately 5 mins earlier. Statistical parametric mapping did not highlight any regional differences between conditions. Thus, in brain circulation, rizatriptan caused significant CBF and V0 decreases, which are consistent with the vasoconstrictor effect of triptans on the large cerebral arteries. The gradual recovery in the late phase from the maximal CBF and V0 decrease suggests that rizatriptan does not affect the cerebral autoregulatory response in small arteries induced by CBF reduction.  相似文献   

12.
Q P Ma 《Neuroreport》2001,12(8):1589-1591
Anti-migraine triptan drugs are 5-HT(1B/1D) receptor agonists which are thought to block the neurotransmitter/neuropeptide release from sensory nerve terminals and directly constrict blood vessel smooth muscles. In the present study, we have investigated the anatomical basis for a possible modulation of glutamate release from trigeminal ganglion neurons by 5-HT(1B/1D) receptor agonists and by 5-HT1F receptor agonists, using double immunohistochemical staining technique in the rat. The majority of 5-HT1B, 5-HT1D or 5-HT1F receptor positive neurons were also glutamate positive, but both 5-HT1B, 5-HT1D or 5-HT1F receptor single-labeled and glutamate single-labeled neurons were observed. These results suggest that 5-HT(1B/1D/1F) receptor agonists may modulate glutamate release, and that one mechanism of their anti-migraine action could be the blockade of glutamate release.  相似文献   

13.
Middle age is associated with changes in circadian rhythms (e.g., alterations in the timing of the circadian wheel running rhythm) which resemble changes induced by selective destruction of the serotonergic input to the suprachiasmatic nucleus (SCN), the principal mammalian circadian pacemaker. We hypothesized that serotonergic neurotransmission in the SCN is decreased in middle-aged hamsters, as compared to young adults. This hypothesis was tested indirectly by investigating the effect of aging on two markers of serotonin neurotransmission, 5-HT(1B) receptors and serotonin reuptake sites, which are regulated by serotonin. Previous studies have shown that experimentally induced decreases in serotonergic neurotransmission increase 5-HT(1B) receptors but decrease serotonin reuptake sites. Quantitative autoradiography was conducted using [125I]iodocyanopindolol ([125I]ICYP) and [3H]paroxetine, selective radioligands for the 5-HT(1B) receptors and the serotonin reuptake sites, respectively. Consistent with the hypothesis, specific ([125I]ICYP binding was significantly elevated in the SCN of middle-aged hamsters, as compared to young hamsters. The results also showed that serotonin reuptake sites in the SCN were significantly increased in both middle-aged and old hamsters, as compared to young controls. This result could not have been caused by decreased serotonin release. Alternatively, increased serotonin reuptake, which would reduce serotonin levels in the synaptic cleft, may cause or contribute to the increase in 5-HT(1B) receptor binding in the SCN in middle aged animals. These results show that the SCN exhibits changes in serotonergic function during middle age, which has been characterized by changes in the expression of circadian rhythms. Because these changes occur during middle age, they probably reflect the aging process, rather than senescence or disease.  相似文献   

14.
We have studied the effects of 5-HT(1A) and 5-HT(7) serotonin receptor activation in hippocampal CA3-CA1 synaptic transmission using patch clamp on mouse brain slices. Application of either 5-HT or 8-OH DPAT, a mixed 5-HT(1A)/5-HT(7) receptor agonist, inhibited AMPA receptor-mediated excitatory post synaptic currents (EPSCs); this effect was mimicked by the 5-HT(1A) receptor agonist 8-OH PIPAT and blocked by the 5-HT(1A) antagonist NAN-190. 8-OH DPAT increased paired-pulse facilitation and reduced the frequency of mEPSCs, indicating a presynaptic reduction of glutamate release probability. In another group of neurons, 8-OH DPAT enhanced EPSC amplitude but did not alter paired-pulse facilitation, suggesting a postsynaptic action; this effect persisted in the presence of NAN-190 and was blocked by the 5-HT(7) receptor antagonist SB-269970. To confirm that EPSC enhancement was mediated by 5-HT(7) receptors, we used the compound LP-44, which is considered a selective 5-HT(7) agonist. However, LP-44 reduced EPSC amplitude in most cells and instead increased EPSC amplitude in a subset of neurons, similarly to 8-OH DPAT. These effects were respectively antagonized by NAN-190 and by SB-269970, indicating that under our experimental condition LP-44 behaved as a mixed agonist. 8-OH DPAT also modulated the current evoked by exogenously applied AMPA, inducing either a reduction or an increase of amplitude in distinct neurons; these effects were respectively blocked by 5-HT(1A) and 5-HT(7) receptor antagonists, indicating that both receptors exert a postsynaptic action. Our results show that 5-HT(1A) receptors inhibit CA3-CA1 synaptic transmission acting both pre- and postsynaptically, whereas 5-HT(7) receptors enhance CA3-CA1 synaptic transmission acting exclusively at a postsynaptic site. We suggest that a selective pharmacological targeting of either subtype may be envisaged in pathological loss of hippocampal-dependent cognitive functions. In this respect, we underline the need for new selective agonists of 5-HT(7) receptors.  相似文献   

15.
Activation of post-synaptic 5-HT(1A) receptors in the dorsal hippocampus is proposed to mediate stress adaptation. Chronic social stress and high corticosteroid levels would impair this coping mechanism, predisposing animals to learned helplessness. To test the hypothesis that increasing serotonin levels in the dorsal hippocampus would attenuate the development of learned helplessness, rats received inescapable foot-shock (pre-test session) and were tested in a shuttle box 24-h later. Pre-stressed animals showed impairment of escape responses. This effect was prevented by chronic (21 days) treatment with imipramine (15 mg/kg). Similar results were obtained when the animals received bilateral intra-hippocampal injections, immediately after pre-test, of zimelidine (100 nmol/0.5 microl), a serotonin reuptake blocker, or 8-OH-DPAT (10 nmol), a 5-HT(1A) receptor agonist. The zimelidine effect was prevented by pre-treatment with WAY-100635 (30 nmol), a 5-HT(1A) receptor antagonist. These data suggest that facilitation of serotonergic neurotransmission in the dorsal hippocampus mediates adaptation to severe inescapable stress, probably through the activation of post-synaptic 5-HT(1A) receptors.  相似文献   

16.
We have investigated the functional coupling of the rat 5HT(5a) receptor subtype to adenylate cyclase in a rat C6 glioma cell line. In 5HT(5a) receptor-transfected cells, 5HT caused a concentration-dependent inhibition of forskolin-stimulated cAMP accumulation, with an EC(50) value of 41 nM and a maximal effect of 57% inhibition. This effect was dependent on the concentration of forskolin used to elevate cAMP levels. Methiothepin (1 mcM), which has high affinity for the 5HT(5a) receptor, antagonized the 5HT(5a) receptor-mediated inhibition, and unmasked a stimulation of cAMP formation similar to that observed in untransfected cells, whereas ketanserin (0.1 mcM) enhanced the inhibitory effect of 5HT. Pertussis toxin treatment (0.5 mcg/ml) completely blocked the inhibitory effect of 5HT on cAMP formation, also revealing increase in cAMP accumulation. Pretreatment of the transfected membranes with pertussis toxin abolished subsequent ADP-ribosylation of a 41 kDa protein, correlating the cAMP effect with a functional uncoupling of an inhibitory G protein from its receptor. These results demonstrate an efficient functional coupling of the rat 5HT(5a) receptor to the inhibition of adenylate cyclase via a pertussis toxin-sensitive G[alpha(i)], inhibitory G-protein.  相似文献   

17.
目的 探讨一氧化氮(NO)、超氧化物歧化酶(SOD)分别及联合使用对大鼠实验性蛛网膜下腔出血(SAH)后脑血管痉挛(CVS)时脑血流(CBF)的作用。方法 将30只大鼠随机分成5组(每组6只)。A组:假手术+盐水,B组:SAH+盐水;C组:SAH+SOD;D组:SAH+NOC12;E组:SAH+SOD、NOC12。模拟制成48h后,通过Lase-Doppler血液仪观察各种药物持续静脉注射1h内C  相似文献   

18.
Serotonin plays a role in T cell activation, but there is no clear consensus of which of the 14 serotonergic receptors control this activations pathway. We have used a broad range of serotonergic receptor antagonists to define the functional involvement of these receptors governing the proliferation of primary T cells as well as in T cell lines. Our data shows that antagonism of the 5-HT(1B) receptor inhibits the proliferation of both human and murine primary helper T cells and of human helper T cell lines. As a whole, our data suggest that other serotonergic receptors may contribute to the proliferative signals, but the 5-HT(1B) receptor plays the most dominant role.  相似文献   

19.
In the present study we investigated the role of central 5-HT2C receptors in the control of blood pressure and heart rate in non-stressed and stressed, adult, male, Wistar rats. Third ventricle injections of the 5-HT2C agonist mCPP elicited a significant increase in blood pressure in non-stressed animals. The initial period of this hypertensive response (10-30 min after mCPP administration) was accompanied by baroreflex-mediated bradycardia, while after this period the coexistence of hypertension and tachycardia was observed. These cardiovascular effects promoted by the central administration of mCPP were blocked by pretreatment with the 5-HT2C antagonist, SDZ SER 082. The administration of SDZ SER 082 alone induced no significant changes in blood pressure or heart rate. The pharmacological stimulation of central 5-HT2C receptors by mCPP did not change the hypertensive or tachycardic responses induced by restraint stress. Conversely, the blockade of central 5-HT2C receptors by SDZ SER 082 blunted stress-induced hypertension without modifying stress-induced tachycardia. It is concluded that the activation of central 5-HT2C receptors induces hypertension in non-stressed rats and that the normal function of these receptors is essential for the rise in blood pressure that occurs in the course of restraint stress.  相似文献   

20.
The distribution of 5-HT(1B) and 5-HT(1D) receptors in the human post mortem brain was examined using whole hemisphere autoradiography and the radioligand [(3)H]GR 125743. [(3)H]GR 125743 binding was highest in the substantia nigra and the globus pallidus. Lower levels were detected in the striatum, with the highest densities in the ventromedial parts. In the amygdala, the hippocampus, the septal region and the hypothalamus, lower [(3)H]GR 125743 binding was observed, reflecting low densities of 5-HT(1B/1D) receptors. In the cerebral cortex, binding was similar in most regions, although restricted parts of the medial occipital cortex were markedly more densely labeled. Binding densities were very low in the cerebellar cortex and in the thalamus. Two methods were used to distinguish between the two receptor subtypes, the first using ketanserin to block 5-HT(1D) receptors and the second using SB 224289 to inhibit 5-HT(1B) receptor binding. The autoradiograms indicated that in the human brain, the 5-HT(1B) receptor is much more abundant than the 5-HT(1D) receptor, which seemed to occur only in low amounts mainly in the ventral pallidum. Although [(3)H]GR 125743 is a suitable radioligand to examine the distribution of 5-HT(1B) receptors in the human brain in vitro, the selectivities of ketanserin and SB 224289 are not sufficiently high to give definite evidence for the occurrence of the 5-HT(1D) receptor in the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号