首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The afferent innervation of the straplike muscles of the infrahyoid region were investigated in two ways. The morphology of spindles and counts of tendon organs were investigated by the gold chloride technique in ten muscles. Spindle counts were made in forty pairs of thyrohyoid and infrahyoid muscles. De-efferenting of the nerves to these muscles was done in three cats and the calibre spectra of the afferent innervation investigated. These were compared with the total counts of fibres in intact nerves.2. In the thyrohyoid, spindles are frequently absent. No tendon organs were seen. In the large infrahyoid (combined sternohyoid and sternothyroid), spindle counts varied from 0 to 20 and the mean spindle count per gram of muscle was 3.5. A maximum of five tendon organs were seen in the muscle. Both spindle and tendon organ counts are low when compared with a limb muscle of similar weight and size.3. In the infrahyoid muscle complex spindles were about equal in number to simple spindles.4. Counts of spindles in the infrahyoid muscle in families of three or more siblings suggest that some families of kittens tend to have higher spindle counts than other families.5. The afferent innervation of the two muscles varied between 21 and 42% of the total fibre population and the fibre diameter spectrum is in keeping with the low counts of encapsulated endings.  相似文献   

2.
1. Single-fiber recording was used to examine the properties of 107 spindle endings in cat biventer cervicis (BC) and complexus (CM) muscles. Responses of receptors were examined following muscle contraction and ramp and hold stretch. Twenty-two endings in splenius (SP) were also examined, but their responses could not be quantitated because the anatomy of SP prevented the application of appropriate stretches. 2. Conduction velocitites of spindle afferents ranged from 13 to 90 m/s. Endings with primary response patterns usually had faster conduction velocities than secondary endings, but there was overlap in the conduction velocity ranges of the two subgroups. 3. Most neck spindle afferents could be classified as either primary or secondary by a constellation of physiological criteria including dynamic response pattern, dynamic index, and variability of resting discharge frequency. However, 22 of 107 endings from BC and CM had responses with characteristics intermediate between primary and secondary responses. The possible sources of these characteristics are discussed. 4. Despite the similarity in properties between spindles of different neck muscles, the length sensitivities of CM spindles were high compared to those of BC spindles. CM spindles showed length-related modulation of firing frequency over a more restricted range of initial muscle lengths than did BC spindles. 5. Eight Golgi tendon organs (GTO) were identified by their characteristics responses. Conduction velocities obtained for five GTO afferent nerves ranged from 50 to 67 m/s. Recordings were also made from receptros in deep muscles surrounding the vertebrae. These receptors had properties characteristic of muscle spindles.  相似文献   

3.
  1. In anaesthetized cats the effects of temperature on the nervous outflow from skeletal muscle via thick myelinated afferent fibres were studied. Single unit recordings were made from afferents of muscle spindles and tendon organs during slow and fast temperature changes of the medial gastrocnemius muscle which was deefferented by ventral root section and prestretched to a tension of 100 p.
  2. Group I afferent units from muscle spindles were activated by warming and depressed by cooling, the effect of warming being much more pronounced than that of cooling. Afferents from secondary spindle endings with a high background discharge behaved similar to Ia fibres, whereas those with a low initial discharge rate showed an activation by cooling and a depression (mostly to cessation of firing) by warming. The discharges of group I afferents from tendon organs varied; an activation by warming was the most frequently observed reaction.
  3. Some of the afferents from muscle spindles and tendon organs showed signs of a dynamic sensitivity to thermal stimulation, but in general the dynamic component in the responses to temperature changes was only small.
  4. The results suggest that the afferent outflow via thick myelinated fibres from a resting, moderately prestretched muscle strongly depends on temperature. At raised intramuscular temperatures (about 42°C) the nervous outflow is characterized by an increased activity in all of the I a and many of the I b afferents, while the majority of group II spindle afferents will be depressed. In contrast, in a cold muscle (about 29°C) the nervous outflow via afferents from primary spindle endings will be reduced, while the net activity from secondary spindle endings will be increased and no marked changes are expected to occur in the discharges of I b fibres.
  相似文献   

4.
Position and velocity responses of spindle endings in the external intercostal muscle of the cat have been determined in the absence and in the presence of fusimotor fibre stimulation at a constant rate. The length input signal had triangular wave form. A close functional resemblance was found between intercostal and leg muscle spindles: primary and secondary endings could be separated among intercostal afferents with the same methods that have been used in leg muscles; dynamic and static fibres were discerned and the fusimotor effects on position and velocity sensitivity were the same as in the hind limb; the ratio between dynamic and static fibres was about 1: 3, i.e. the same as in the hind leg. Some dissimilarities existed: the number of ‘intermediate’ endings was larger in the intercostal than in the leg muscles; position and velocity sensitivities were generally larger in intercostal endings. These discrepancies are discussed. As a general conclusion it is stated that a spindle model elaborated from studies on leg spindles can easily be modified to account also for intercostal spindle behaviour.  相似文献   

5.
Summary Extracellular recording was made from 77 primary afferent fibres, 106 cells in the external cuneate nucleus, and 60 cells in the main cuneate nucleus, all activated by slowly adapting muscle stretch receptors. The nature of the muscle receptors responsible for the activation was determined by various types of receptor stimulation.Primary group I afferents from muscle spindles and tendon organs in distal forelimb muscles showed complete overlap of conduction velocities and thresholds to electrical stimulation. Both types of group I afferents as well as group II muscle spindle afferents were shown to ascend through the dorsal funiculus to the level of the cuneate nuclei.Three groups of cells were identified in the external cuneate nucleus, activated by group I muscle spindle afferents, tendon organ afferents and group II muscle spindle afferents, respectively.Almost all group I activated cells in the main cuneate nucleus, including all 34 cells identified as cuneo-thalamic relay cells, received their afferent input from muscle spindle afferents. Three cells were activated by tendon organ afferents.  相似文献   

6.
1. This study investigated the muscle-spindle discharge from the pretibial flexor muscles of standing human subjects while they performed maneuvers that altered their reliance on proprioceptive feedback to control balance. Single-unit recordings were made from 100 identified muscle afferents, 81 from muscle-spindle endings and 19 from Golgi tendon organs. 2. With 49 spindle endings the subjects stood on a horizontal platform and with 32, on a platform tilted in dorsiflexion (4 degrees) to ensure that the pretibial muscles were active to maintain balance. When standing freely on a horizontal platform without support or vision, there was little or no electromyographic (EMG) activity in the pretibial muscles, and spindle discharge rates were low (55% active; mean rate for all 49 endings, 4.1 Hz). When standing similarly on the tilted platform, 69% of the spindle afferents were active, and the mean discharge rate was 5.4 Hz. The greater number of actively discharging spindle afferents and the preservation of mean discharge rate despite muscle shortening indicates that the pretibial muscles are subjected to increased fusimotor drive when they are tonically active to maintain balance. 3. The effects of small degrees of body sway induced voluntarily or by an external stimulus were studied with 41 afferents (29 spindles; 12 tendon organs). Activation of the pretibial muscles to compensate for backward sway was accompanied by a spindle discharge that usually exceeded the discharge produced by comparable passive movement. This indicates that the pretibial muscles are subjected to increased fusimotor drive when they are phasically active to maintain balance. 4. To vary the reliance placed on the feedback from proprioceptive inputs, the subjects abruptly opened and shut their eyes, took and released support, or tilted their heads. There were no detectable changes in afferent activity unless the maneuver produced a change in EMG activity in the pretibial muscles and/or body sway. Thirty afferents (26 of 46 spindles; 4 of 7 tendon organs) underwent a change in discharge rate associated with a transient change in posture, as recorded by the force platform, or a change in EMG activity in the receptor-bearing muscle. The discharge pattern of 23 afferents did not show any clear change with these maneuvers. 5. It is concluded that maneuvers that increase the reliance on proprioceptive feedback when subjects are standing quietly do not significantly alter the fusimotor drive to the pretibial muscles in the absence of muscle contraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In the anesthetized cat we have analyzed the changes in primary afferent depolarization (PAD) evoked in single muscle spindle and tendon organ afferents at different times after their axons were crushed in the periphery and allowed to regenerate. Medial gastrocnemius (MG) afferents were depolarized by stimulation of group I fibers in the posterior biceps and semitendinosus nerve (PBSt), as soon as 2 weeks after crushing their axons in the periphery, in some cases before they could be activated by physiological stimulation of muscle receptors. Two to twelve weeks after crushing the MG nerve, stimulation of the PBSt produced PAD in all MG fibers reconnected with presumed muscle spindles and tendon organs. The mean amplitude of the PAD elicited in afferent fibers reconnected with muscle spindles was increased relative to values obtained from Ia fibers in intact (control) preparations, but remained essentially the same in fibers reconnected with tendon organs. Quite unexpectedly, we found that, between 2 and 12 weeks after crushing the MG nerve, stimulation of the bulbar reticular formation (RF) produced PAD in most afferent fibers reconnected with muscle spindle afferents. The mean amplitude of the PAD elicited in these fibers was significantly increased relative to the PAD elicited in muscle spindle afferents from intact preparations (from 0.08–0.4 to 0.47-0.34 mV). A substantial recovery was observed between 6 months and 2.5 years after the peripheral nerve injury. Stimulation of the sural (SU) nerve produced practically no PAD in muscle spindles from intact preparations, and this remained so in those afferents reconnected with muscle spindles impaled 2–12 weeks after the nerve crush. The mean amplitude of the PAD produced in afferent fibers reconnected with tendon organs by stimulation of the PBSt nerve and of the bulbar RF remained essentially the same as the PAD elicited in intact afferents. However, SU nerve stimulation produced a larger PAD in afferents reconnected with tendon organs 2–12 weeks after the nerve crush (mean PAD changed from 0.05-0.04 to 0.32-0.17 mV). The results obtained indicate that the PAD patterns of the afferent fibers reconnected with muscle spindle and tendon organ afferents are changed after crushing their axons in the periphery: stimulation of the bulbar RF appears to produce larger PAD in fibers reconnected with muscle spindles, and stimulation of cutaneous afferents produces larger PAD in fibers reconnected with tendon organs. It is suggested that these alterations in the patterns of PAD of muscle afferents result from central changes in the balance of excitatory and inhibitory influences acting on the segmental pathways mediating the PAD. Although the functional role of these changes has not been established, they may reflect compensatory changes aimed to adjust information arising from damaged afferents.  相似文献   

8.
The coordinate neural regulation of the upper airways muscles is basic to control airway size and resistance. The superior constrictor pharyngeal muscle (SCPM) forms the main part of the lateral and posterior walls of the pharynx and typically is devoid of muscle spindles, the main type of proprioceptor. Because proprioception arising from SCPM is potentially important in the physiology of the upper airways, we have investigated if there are mechanical sensory nerve endings substitute for the muscle spindles. Samples of human pharynx were analyzed using immunohistochemistry associated to general axonic and Schwann cells markers (NSE, PGP 9.5, RT‐97, and S100P), intrafusal muscle fiber markers, and putative mechanical sense proteins (TRPV4 and ASIC2). Different kinds of sensory corpuscles were observed in the pharynx walls (Pacini‐like corpuscles, Ruffini‐like corpuscles, spiral‐wharves nerve structures, and others) which are supplied by sensory nerves and express putative mechanoproteins. No evidence of muscle spindles was observed. The present results demonstrate the occurrence of numerous and different morphotypes of sensory corpuscles/mechanoreceptors in human pharynx that presumably detect mechanical changes in the upper airways and replace muscle spindles for proprioception. Present findings are of potential interest for the knowledge of pathologies of the upper airways with supposed sensory pathogenesis. Anat Rec, 296:1735–1746, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The sensory reinnervation of muscle spindles following lesions of the peripheral nerve was studied in hind limb muscles of the cat. Earlier results reporting complete redevelopment of both primary and secondary endings were confirmed.However, after section of the ventral roots reinnervation of muscle spindles was impaired in that many primary endings did not develop the spiral-like structures and their appearance remained abnormal for up to 120 days. The response to stretch in two-thirds of such de-efferented regenerated primary endings was also abnormal. Although the phasic and vibration responses were present, the slowly adapting part of the response to maintained stretch was defective or absent in many of the primary endings.From these results it appears that motor innervation of the muscle is important for the normal redevelopment of the complex structure and function of the primary ending of the muscle spindle during reinnervation. The results do not indicate whether de-efferentation causes a permanent impairment or only a delay in redevelopment.  相似文献   

10.
Mammals may exhibit different forms of locomotion even within a species. A particular form of locomotion (e.g. walk, run, bound) appears to be selected by supraspinal commands, but the precise pattern, i.e. phasing of limbs and muscles, is generated within the spinal cord by so-called central pattern generators. Peripheral sense organs, particularly the muscle spindle, play a crucial role in modulating the central pattern generator output. In turn, the feedback from muscle spindles is itself modulated by static and dynamic fusimotor (gamma) neurons. The activity of muscle spindle afferents and fusimotor neurons during locomotion in the cat is reviewed here. There is evidence for some alpha–gamma co-activation during locomotion involving static gamma motoneurons. However, both static and dynamic gamma motoneurons show patterns of modulation that are distinct from alpha motoneuron activity. It has been proposed that static gamma activity may drive muscle spindle secondary endings to signal the intended movement to the central nervous system. Dynamic gamma motoneuron drive appears to prime muscle spindle primary endings to signal transitions in phase of the locomotor cycle. These findings come largely from reduced animal preparations (decerebrate) and require confirmation in freely moving intact animals.  相似文献   

11.
1. Discharge patterns have been recorded from five types of stretch receptor; frog muscle spindles, lizard tendon organs, cat soleus tendon organs and primary and secondary endings of cat soleus muscle spindles.2. The fully adapted discharge of each type of receptor is irregular, especially for frog spindles and primary endings of cat spindles as compared with the other three types (the ;regularly firing' receptors). Frog spindles and some cat spindle primary endings would maintain a discharge at very low mean rates (1/sec or less) while the remaining receptors would stop suddenly, as soon as their rate of discharge fell below a critical value characteristic for each individual ending.3. This pattern of discharge suggests that there is a peak in the excitability of ;regularly firing' receptors at a time following a preceding impulse, which corresponds to the intervals between impulses at each particular receptor's slowest rate of maintained firing, and that the excitability subsequently falls again. Primary endings of cat muscle spindles also showed some evidence of such a ;late supernormal period', but frog spindles did not.4. Direct evidence for the ;late supernormal period' was obtained from experiments in which a maintained discharge was restarted by an antidromic action potential in a receptor which had stopped firing, and to which had been applied a stretch just too small to restart the discharge.5. It is shown in an Appendix that a model receptor in which the recovery of excitability following an impulse has a hyperbolic time course, and in which Gaussian distributed noise is superimposed on the generator potential, can have a discharge pattern very closely resembling that of a frog spindle (cf. Buller, 1965).6. After addition of a late supernormal period to the model, its discharge pattern could mimic closely that of a lizard or cat tendon organ, or of a secondary ending of a cat spindle.  相似文献   

12.
Summary The activities of single proprioceptive fibres were recorded from the lateral peroneal nerve using transcutaneously implanted tungsten microelectrodes. Unitary discharges originating from muscle spindle primary and secondary endings and Golgi tendon organs were identified by means of various physiological tests. The sensitivity of proprioceptors to mechanical vibrations with a constant low amplitude (0.2–0.5 mm) applied at various frequencies to the tendon of the receptor-bearing muscle was studied. Muscle spindle primary endings (Ia fibres) were found to be the most sensitive to this mechanical stimulus. In some cases their discharge could be driven in a one-to-one manner up to 180 Hz. Most of them also fired harmonically with the vibration up to 80 Hz and then discharged in a subharmonic manner (1/2–1/3) with increasing vibration frequencies. Muscle spindle secondary endings (II fibres) and Golgi tendon organs (Ib fibres) were found to be either insensitive or only slightly sensitive to tendon vibration in relaxed muscles. The effects of tendon vibration on muscle spindle sensory endings response to muscle lengthening and shortening induced by imposed constant velocity or sinusoidal movements of the ankle joint were studied. Modulation of the proprioceptive discharge frequency coding the various joint movement parameters was either completely or partly masked by the receptor response to vibration, depending on the vibration frequency. Moreover, vibrations combined with sinusoidal joint movements elicited quantitatively erroneous proprioceptive messages concerning the movement parameters (amplitude, velocity). The sensitivity of the Golgi tendon organs to vibration increased greatly when the receptor-bearing muscle was tonically contracted. These data confirm that vibration is able to preferentially activate the Ia afferent channel, even when the vibration amplitude is low. They define the frequency sensitivity of the muscle spindle primary and secondary endings and the Golgi tendon organs. They also show that the physiological messages triggered by ongoing motor activities undergo a series of changes during the exposure of muscles to vibration.  相似文献   

13.
14.
The present investigation documents the patterns of primary afferent depolarization (PAD) of single, functionally identified muscle afferents from the medial gastrocnemius nerve in the intact, anesthetized cat. Classification of the impaled muscle afferents as from muscle spindles or from tendon organs was made according to several criteria, which comprised measurement of conduction velocity and electrical threshold of the peripheral axons, and the maximal frequency followed by the afferent fibers during vibration, as well as the changes in discharge frequency during longitudinal stretch, the projection of the afferent fiber to the motor pool, and, in unparalyzed preparations, the changes in afferent activity during a muscle twitch. In confirmation of a previous study, we found that most muscle spindle afferents (46.1–66.6%, depending on the combination of criteria utilized for receptor classification) had a type A PAD pattern. That is, they were depolarized by stimulation of group I fibers of the posterior biceps and semitendinosus (PBSt) nerve, but not by stimulation of cutaneous nerves (sural and superficial peroneus) or the bulbar reticular formation (RF), which in many cases inhibited the PBSt-induced PAD. In addition, we found a significant fraction of muscle spindle primaries that were depolarized by stimulation of group I PBSt fibers and also by stimulation of the bulbar RF. Stimulation of cutaneous nerves produced PAD in 9.1–31.2% of these fibers (type B PAD pattern) and no PAD in 8.2–15.4% (type C PAD pattern). In contrast to muscle spindle afferents, only the 7.7–15.4% of fibers from tendon organs had a type A PAD pattern, 23–46.1% had a type B and 50–61.5% a type C PAD pattern. These observations suggest that the neuronal circuitry involved in the control of the synaptic effectiveness of muscle spindles and tendon organs is subjected to excitatory as well as to inhibitory influences from cutaneous and reticulospinal fibers. As shown in the accompanying paper, the balance between excitation and inhibition is not fixed, but can be changed by crushing the afferent axons in the peripheral nerve and allowing subsequent reconnection of these afferent fibers with muscle receptors.  相似文献   

15.
1. In human subjects, microelectrode recordings were made from 25 muscle spindle afferents and two tendon organ afferents coming from muscles innervated by the peroneal nerve. 2. Stimulation at low intensity through the recording microelectrode activated efferent axons innervating motor units in close proximity to the muscle spindle or tendon organ. There was a clear alteration in the discharge of 17 afferents (15 muscle spindle, 2 tendon organ) in response to twitch contractions that involved only one, two, or three motor units. With three other afferents there was a less overt but statistically significant alteration in discharge rate by the twitch contraction of a single motor unit. 3. The sensitivity of 21 receptors (20 spindles, 1 tendon organ) to twitch contractions of anatomically close motor units was contrasted with their sensitivity to twitches of more remote motor units in the muscle. In no instance was the sensitivity to the contraction of remote motor units greater than that to the contraction of local motor units stimulated through the microelectrode; with remote stimulation many units usually had to be activated before the resulting twitch contraction altered the discharge of an afferent. 4. It is concluded that muscle spindles as well as tendon organs can play a role in monitoring the activity of motor units anatomically close to the receptor.  相似文献   

16.
Motor and sensory innervation of muscle spindles in the neonatal rat   总被引:1,自引:0,他引:1  
Summary Neural and muscular elements of three muscle spindles from the soleus muscles of 4-day-old rats were reconstructed by electron microscopy of skip-serial transverse ultrathin sections. Each spindle contained four encapsulated intrafusal fibers, including a minimum of one bag1, one bag2 and one chain fiber. The fibers were innervated by unmyelinated motor and sensory axons. The primary and secondary afferents approached the spindles as single axons and terminated on the central region of the intrafusal fibers. Single profiles of terminal axons occupied the sites of sensory neuromuscular junctions, similar to adult sensory endings. No morphological features suggested retraction of afferents from 4-day postnatal spindles. Motor axons approached spindles tightly packed in bundles of 5–20 axons and terminated in the juxtaequatorial and polar regions of both bag and chain fibers. Multiple profiles of terminal axons were visible for each intrafusal motor ending. More motor axons innervated 4-day postnatal spindles and a greater number of axon terminals were visible in immature intrafusal motor endings than in adult spindles. The data suggest that postnatal maturation of motor innervation to intrafusal fibers involves the elimination of supernumerary motor nerve inputs. Synapse elimination in the development of the fusimotor system might represent a mechanism whereby individual axons adjust the number of spindles they innervate.  相似文献   

17.
1. Using floating electrodes, we recorded from neck-muscle spindle afferents in the C2 dorsal root ganglion of the decerebrate cat. Nerves to dorsal neck muscles were cut so that the afferents presumably originated mainly from ventral and ventrolateral perivertebral muscles and sternocleidomastoid. One goal of our experiments was to study possible vestibular influence exerted on these spindles via the fusimotor system. Unparalyzed preparations were therefore used. 2. Stimuli consisted of sinusoidal rotations in vertical planes. Neck tilt stretched neck muscles, whereas whole-body tilt stimulated vestibular receptors. 3. For each afferent we first determined the most effective direction of neck tilt, then used stimuli oriented close to this direction to study response dynamics, particularly gain of responses to stimuli of different amplitudes (0.5-7.5 degrees). 4. Three-quarters of the afferents failed to respond to 0.5 degrees, 0.2-Hz neck rotations. Stimuli that were effective usually elicited responses that had low gain and were linear over the whole range of amplitudes. Only a few afferents had behavior typical of spindle primary afferents: high-gain responses to small sinusoidal stimuli, gain decreasing as stimulus amplitude increases. This prevalence of static spindle responses in the unparalyzed cat is in striking contrast to results obtained on neck-muscle spindles in paralyzed, decerebrate cats, and on hindlimb extensor muscle spindles in decerebrate, unparalyzed cats. 5. Paralysis produced by injection of Flaxedil changed the behavior of 2/4 spindle afferents tested, causing the appearance of high-gain responses to 0.5 degrees stimuli and of nonlinear behavior.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary Muscle spindles form de novo in reinnervated muscles of neonatal rats treated with nerve growth factor. Whether the spindles can also form in muscle reinnervated only by afferents was investigated by removing the lumbosacral segment of the spinal cord immediately after crushing the nerve to the medial gastrocnemius muscle at birth, and administering nerve growth factor for 10 days afterwards. As predicted, the medial gastrocnemius muscles were reinnervated by afferents, but not efferents. No motor endplates were visible on any muscle fibers, and extrafusal fibers were atrophied. The reinnervated muscles contained spindle-like encapsulations of one to four fibers at 5, 7, 9 and 30 days after the nerve crush. The number of spindles as well as encapsulated fibers exceeded that of normal medial gastrocnemius muscles. The encapsulated fibers resembled typical intrafusal fibers. They had normal sensory-muscle contacts, but no motor endings. The fibers displayed equatorial clusters of myonuclei and expressed the spindle-specific slow-tonic myosin heavy chain isoform at postnatal day 30. Thus, efferents are not essential for the formation and differentiation of muscle spindles in reinnervated muscles of neonatal rats.  相似文献   

19.
Distributions of one sensory and 13 motor axons to intrafusal fibers in a human spindle from the biceps brachii muscle were reconstructed from serial, 1 micron thick transverse sections. The primary afferent was distributed predominantly to nuclear bag fibers. Motor innervation in the human spindle was characterized by the presence of shared innervation among different types of intrafusal fiber, long unmyelinated preterminal segments of axon, and numerous short motor endings on both bag1 and bag2 fibers. These neuroanatomical features differ grossly from those in the cat tenuissimus spindles and may reflect a major functional difference.  相似文献   

20.
This report describes the effects of succinylcholine (SCh) on the secondary endings of cat soleus muscle spindles and attempts to explain them in terms of the action of the drug on intrafusal fibres. All but 2 of 41 secondary endings studied in detail showed a significant response to a single intravenous injection of 200 g kg-1 SCh. This consisted of a rise in the resting rate or development of a resting discharge if the spindle had previously been silent and an increase in the response to stretch. The increases in the responses to stretch were weaker than those observed for primary endings of spindles, but were much larger than those of tendon organs, which showed very little effect with this concentration of drug. The response to SCh showed two features consistent with its action being mediated via an intrafusal muscle fibre contraction rather than a direct depolarising action on the afferent nerve ending. In the presence of SCh, secondary endings were able to maintain a discharge during muscle shortening at rates, on average, more than 5 times greater than under control conditions. Secondly, the increase in spindle discharge produced by SCh showed a length dependence similar to that for fusimotor stimulation. Further support for the action of SCh being principally via an intrafusal fibre contraction was provided by the observation that its effects were abolished by the neuromuscular blocker gallamine triethiodide. The time course of recovery of SCh responses, following their blockade by gallamine, was much slower than recovery of extrafusal tension and closely paralleled that for the recovery of fusimotor responses. In three separate experiments on the medial gastrocnemius muscle the possibility that SCh may exert an excitatory action on spindle sensory endings through the liberation of potassium ions from the muscle was tested by tetanic stimulation of the muscle. This had no detectable excitatory effect. Several observations were made on the effect of SCh on responses of cutaneous receptors. SCh did not change levels of spontaneous activity or responses to mechanical stimulation of either slowly or rapidly adapting mechanoreceptors. It was argued for both tendon organs and cutaneous receptors that if SCh had a direct action on the nerve ending at the concentrations used here, some responses of these receptors to the drug might have been expected. All of the above supports the view that secondary endings of spindles are able to respond to SCh by the development of an intrafusal fibre contracture. The question of the intrafusal fibre types involved is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号