首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of human platelets, human neutrophils, or highly metastatic mouse lymphoma cells with sulfate-labeled extracellular matrix (ECM) results in heparanase-mediated release of labeled heparan sulfate cleavage fragments (0.5 less than Kav less than 0.85 on Sepharose 6B). This degradation was inhibited by native heparin both when brought about by intact cells or their released heparanase activity. Degradation of heparan sulfate in ECM may facilitate invasion of normal and malignant cells through basement membranes. The present study tested the heparanase inhibitory effect of nonanticoagulant species of heparin that might be of potential use in preventing heparanase mediated extravasation of bloodborne cells. For this purpose, we prepared various species of low-sulfated or low-mol-wt heparins, all of which exhibited less than 7% of the anticoagulant activity of native heparin. N-sulfate groups of heparin are necessary for its heparanase inhibitory activity but can be substituted by an acetyl group provided that the O-sulfate groups are retained. O-sulfate groups could be removed provided that the N positions were resulfated. Total desulfation of heparin abolished its heparanase inhibitory activity. Heparan sulfate was a 25-fold less potent heparanase inhibitor than native heparin. Efficiency of low-mol-wt heparins to inhibit degradation of heparan sulfate in ECM decreased with their main molecular size, and a synthetic pentasaccharide, representing the binding site to antithrombin III, was devoid of inhibitory activity. Similar results were obtained with heparanase activities released from platelets, neutrophils, and lymphoma cells. We propose that heparanase inhibiting nonanticoagulant heparins may interfere with dissemination of bloodborne tumor cells and development of experimental autoimmune diseases.  相似文献   

2.
Binding to proteins usually induces perturbation of nuclear magnetic resonances of ligand molecules. Using sensitive nuclear magnetic resonance (NMR) spectroscopy techniques, these perturbations have been measured for heparin oligosaccharides in aqueous solution in the presence of proteins and the NMR data have been used to characterize the three-dimensional (3D) structure of the oligosaccharides in the bound state. The pentasaccharide corresponding to the active site of heparin/heparan sulfate for antithrombin (AT) adopts in the complex with the protein a conformation different from that in the absence of the protein. A notable difference involves the 2-O-sulfated iduronic acid (IdoA2S) residue, which is driven to adopt an exclusively skew-boat @affil2: 2S 0 form in the complex. In addition, complexing induces a change in the geometry around the glycosidic linkage between the nonreducing end glucosamine and the adjacent glucuronic acid residue as compared with the free state. NMR and molecular modeling data also indicate that the 2-O-sulfate group in the IdoA2S residue is not directly involved in binding to AT. This suggests that its role is mainly that of affecting the conformational equilibrium of this residue, leading to a 3D structure of pentasaccharide in the bound state that meets the stereochemical requirements of the receptor and results in high-affinity binding to the protein. On the other hand, NMR studies of heparin tetrasaccharides in the presence of fibroblast growth factors FGF-1 and FGF-2 indicate that FGF binding stabilizes the @affil1: 1C 4 conformation of the IdoA2S residue directly involved in binding. These studies also confirm the crucial role of the 6-O-sulfate group on at least one glucosamine residue in the formation of the complex with FGF-1 but not with FGF-2.  相似文献   

3.
Heparin- and heparan sulfate-like glycosaminoglycans (HLGAGs) represent an important class of molecules that interact with and modulate the activity of growth factors, enzymes, and morphogens. Of the many biological functions for this class of molecules, one of its most important functions is its interaction with antithrombin III (AT-III). AT-III binding to a specific heparin pentasaccharide sequence, containing an unusual 3-O sulfate on a N-sulfated, 6-O sulfated glucosamine, increases 1,000-fold AT-III's ability to inhibit specific proteases in the coagulation cascade. In this manner, HLGAGs play an important biological and pharmacological role in the modulation of blood clotting. Recently, a sequencing methodology was developed to further structure-function relationships of this important class of molecules. This methodology combines a property-encoded nomenclature scheme to handle the large information content (properties) of HLGAGs, with matrix-assisted laser desorption ionization MS and enzymatic and chemical degradation as experimental constraints to rapidly sequence picomole quantities of HLGAG oligosaccharides. Using the above property-encoded nomenclature-matrix-assisted laser desorption ionization approach, we found that the sequence of the decasaccharide used in this study is DeltaU(2S)H(NS,6S)I(2S)H(NS, 6S)I(2S)H(NS,6S)IH(NAc,6S)GH(NS,3S,6S) (+/-DDD4-7). We confirmed our results by using integral glycan sequencing and one-dimensional proton NMR. Furthermore, we show that this approach is flexible and is able to derive sequence information on an oligosaccharide mixture. Thus, this methodology will make possible both the analysis of other unusual sequences in HLGAGs with important biological activity as well as provide the basis for the structural analysis of these pharamacologically important group of heparin/heparan sulfates.  相似文献   

4.
The sulfated oligosaccharide PI‐88 is a potent antiangiogenic, antitumor and anti‐metastatic agent derived from yeast. It is primarily composed of sulfated phosphomannopentaose and phosphomannotetraose oligosaccharide units and is presently under evaluation in Phase II clinical trials for anticancer efficacy. PI‐88 inhibits the heparan sulfate‐degrading enzyme heparanase, exhibits antiangiogenic activity and has anticoagulant properties mediated by heparin cofactor II. It also inhibits vascular smooth muscle cell proliferation, kinase signalling and arterial intimal thickening following balloon injury. Many heparan sulfate‐binding growth factors require heparan sulfate as a co‐receptor in order to effectively deliver growth signals to cells. Thus, the antiangiogenic and antirestenotic activity of PI‐88 may be at least partially due to this highly sulfated oligosaccharide competing with the interaction of growth factors, such as FGF‐2 and VEGF, with cell surface heparan sulfate. This heparan sulfate mimetic has, therefore, multiple functions and therapeutic potential in a variety of vascular disorders.  相似文献   

5.
Heparan sulfate (HS) is a polysaccharide involved in essential physiological functions from regulating cell growth to blood coagulation. HS biosynthesis involves multiple specialized sulfotransferases such as 2-O-sulfotransferase (2OST) that transfers the sulfo group to the 2-OH position of iduronic acid (IdoA) or glucuronic acid (GlcA) within HS. Here, we report the homotrimeric crystal structure of 2OST from chicken, in complex with 3′-phosphoadenosine 5′-phosphate. Structural based mutational analysis has identified amino acid residues that are responsible for substrate specificity. The mutant R189A only transferred sulfates to GlcA moieties within the polysaccharide whereas mutants Y94A and H106A preferentially transferred sulfates to IdoA units. Our results demonstrate the feasibility for manipulating the substrate specificity of 2OST to synthesize HS with unique sulfation patterns. This work will aid the development of an enzymatic approach to synthesize heparin-based therapeutics.  相似文献   

6.
We studied the effect of heparin on proteoglycan synthesis by bovine aortic smooth muscle cells in culture. Confluent, growth-arrested cells were incubated with [35S]sulfate, [3H]glucosamine or [3]serine in the presence of 0-600 micrograms/ml heparin. Metabolically labeled proteoglycans secreted into the culture medium and associated with the cell layer were analyzed. In cultures treated with heparin there was a dose-dependent increase in [35S]sulfate incorporation into secreted proteoglycans which reached a maximum (35% above controls) at 100 micrograms/ml heparin. At higher concentrations of heparin, the stimulatory activity declined and finally disappeared. Radioactivity in cell-associated proteoglycans increased significantly (16% above controls) only in cultures treated with 100 micrograms/ml heparin. Heparin also produced similar increases in the incorporation of [3H]glucosamine and [3H]serine into secreted and cell-associated proteoglycans. While chondroitin sulfate, dermatan sulfate and heparan sulfate were elevated in the media, only chondroitin sulfate and heparan sulfate were increased in the cell layer. Heparin did not alter the degradation of proteoglycans. Heparin, while inhibiting the proliferation of subconfluent smooth muscle cells, also stimulated to a greater extent the incorporation of [35S]sulfate into proteoglycans. Other glycosaminoglycans, such as heparan sulfate, dermatan sulfate, heparin hexasaccharide and Sulodexide caused a significant but lesser stimulation of proteoglycan synthesis, while chondroitin sulfates and hyaluronic acid had no effect. Gel filtration chromatography of proteoglycans and their constituent glycosaminoglycans from heparin-treated and untreated cultures showed no differences in their molecular size. The results indicate that heparin can stimulate proteoglycan synthesis by vascular smooth muscle cells irrespective of their state of proliferation. This might have implications in vessel wall repair and arterial wall lipid deposition.  相似文献   

7.
P Bashkin  E Razin  A Eldor  I Vlodavsky 《Blood》1990,75(11):2204-2212
Mast cells are widely distributed in perivascular connective tissues, especially in areas of active tumor growth and vascular reactivity. Incubation of metabolically [35S]O4 = -labeled subendothelial extracellular matrix (ECM) with lysates of bone marrow-derived mouse mast cells (BMMC) resulted in extensive degradation of heparan sulfate (HS) into fragments 5 to 6 times smaller than intact HS side chains. A much lower activity (seven- to eightfold) was expressed by intact BMMC incubated in contact with the ECM. These fragments were not produced in the presence of heparin, were sensitive to deamination with nitrous acid, and resistant to further degradation with papain or chondroitinase ABC. These results indicate that an endoglycosidase (heparanase) is involved in BMMC-mediated degradation of HS in the subendothelial ECM. Heparanase activity was not detected in medium conditioned by cultured BMMC, or in lysates of Ableson transformed BMMC and rat basophilic leukemic (RBL) cells. Both heparanase and beta-hexosaminidase, a mast cell granule enzyme, were released on degranulation of BMMC induced by the calcium ionophore A23187, or by exposure to IgE-Ag, suggesting that heparanase is localized in the cell granules. Under these conditions, less than 5% of the cellular content of lactate dehydrogenase were released. Degradation of the ECM-HS by the mast cell heparanase and the associated release of HS-bound endothelial cell growth factors that are stored in ECM (Vlodavsky et al, Proc Natl Acad Sci USA 84:2292, 1987; Bashkin et al, Biochemistry 28:1737, 1989) may play a role in the proposed mast cell-mediated stimulation of neovascularization.  相似文献   

8.
Multiple functional domains of the heparin molecule.   总被引:15,自引:4,他引:11       下载免费PDF全文
Affinity-fractionated porcine heparin was randomly scissioned by chemical techniques to give hexasaccharides, octasaccharides, decasaccharides, and mucopolysaccharide fragments of approximately 14 residues and approximately 16 residues that were able to complex with the protease inhibitor. Direct measurements of the kinetic behavior of the hexasaccharides, octasaccharides, and decasaccharides showed that these fractions greatly enhanced the rate of Factor Xa inactivation by antithrombin. Indeed, these species exhibited specific molar activities that ranged from 6.9% (hexaccharide) to 60.9% (decasaccharide) of that of the heparin fragment of approximately 16 residues. However, these oligosaccharides exhibited essentially no ability to accelerate thrombin-antithrombin interactions. The avidity of the hexasaccharides, octasaccharides, and decasaccharides for the protease inhibitor increased as a function of size with the respective dissociation constants ranging from 5.5 X 10(-6) M to 2.9 X 10(-7) M. These data suggest that the region of the heparin molecule needed for catalyzing Factor Xa-antithrombin interaction is intimately related to the antithrombin binding domain. The smallest complex carbohydrate fragment that accelerated the inactivation of thrombin by antithrombin had approximately 14 residues. This fraction had an avidity for the protease inhibitor of 2.8 X 10(-7) M and specific molar activities of 140 units per mumol (thrombin neutralization) and 460 units per mumol (factor Xa inactivation). The largest heparin fragment examined contained approximately 16 residues. This fraction had an avidity for antithrombin of 2.4 X 10(-7) M and specific molar activities of 500 units per mumol (thrombin neutralization) and 560 units per mumol (Factor Xa inactivation). Detailed kinetic analyses showed that these two species are able to directly activate antithrombin to the same extent with respect to thrombin inhibition. However, the larger mucopolysaccharide fragment is also capable of approximating free enzyme with protease inhibitor.  相似文献   

9.
OBJECTIVE: Connective tissue activating protein-III (CTAP-III), with molecular weight 9278 Da and isoforms including CTAP-III des 1-15 (neutrophil activating peptide-2, NAP-2) and other amino terminal deletion isoforms, has been isolated from human platelets and characterized. Platelets have also been shown to possess significant heparin/heparanase activity. We investigated whether human platelet heparin/heparanase activity derives from CTAP-III. METHODS: Radial immunodiffusion measurement showed substantial amounts of CTAP-III in plasma from outdated platelet packs. A convenient method for measurement of heparin/heparanase activity is described, and with this method platelet associated plasma was investigated for heparin/heparanase activity assayed against 3H-heparin and 35S-heparan sulfate. RESULTS: Removal of CTAP-III from platelet associated plasma with an immunospecific immunoaffinity column did not remove the heparin/heparanase activity from the plasma. Highly purified CTAP-III eluted from an immunospecific affinity column lacked heparin/heparanase activity. CONCLUSION: Human platelet heparin/heparanase activity resides not in CTAP-III but in a protein or proteins with molecular weight >/= 55 kDa.  相似文献   

10.
Xiao H  Miller SJ  Bang NU  Faulk WP 《Haemostasis》1999,29(4):237-246
We used thrombin times and a competitive radiometric assay to identify, quantitate and characterize endogenous heparin-like molecules in umbilical cord (n = 58) and normal adult (n = 25) plasma. Thrombin times for cord plasma (29.6+/-3.6 s) were significantly longer (p< or = 0.0005) than those for adult plasma (18. 9+/-2.3 s), suggesting increased endogenous heparins. A radiometric assay based on the displacement of (125)I-heparin from protamine-Sepharose revealed that protease-digested plasma contained heparin/heparan sulfate, and plasma that was not digested with protease appeared not to contain heparin/heparan sulfate. More heparin/heparan sulfate was identified in cord than in adult plasma (p< or =0.05), but heparinase digestion produced significantly (p< or =0.001) reduced concentrations of heparin/heparan sulfate in only 39% of the samples. The lack of heparinase sensitivity in 61% of the protease-digested samples apparently was due to low molecular weight (LMW) heparins, for control heparin fragments of 5 kD that did not extend thrombin times were also less affected by heparinase, but the same LMW heparins were detected by radiometric assay. Despite normal thrombin times in all samples, the amounts of endogenous heparin/heparan sulfate identified in protease-digested samples by radiometric assay were of sufficient concentrations to produce inordinately prolonged thrombin times when compared with the same concentrations of unfractionated heparin. Collectively, these findings suggest the presence of a plasma reservoir of endogenous heparin/heparan sulfates in normal cord and adult plasma. These endogenous heparin/heparan sulfates are bound to plasma proteins, and an as yet undetermined proportion of these bound heparin/heparans are most likely LMW molecules.  相似文献   

11.
Heparanase, tissue factor, and cancer   总被引:1,自引:0,他引:1  
Heparanase is an endo-beta- D-glucuronidase that is capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular matrix, activity that is strongly implicated in tumor metastasis and angiogenesis. Evidence was provided that heparanase overexpression in human leukemia, glioma, and breast carcinoma cells results in a marked increase in tissue factor (TF) levels. Likewise, TF was induced by exogenous addition of recombinant heparanase to tumor cells and primary endothelial cells, induction that was mediated by p38 phosphorylation and correlated with enhanced procoagulant activity. TF induction was further confirmed in heparanase-overexpressing transgenic mice and correlated with heparanase expression levels in leukemia patients. Heparanase was also found to be involved in the regulation of tissue factor pathway inhibitor (TFPI). It was shown that heparanase overexpression or exogenous addition induces two- to threefold increase of TFPI expression. Similarly, heparanase stimulated accumulation of TFPI in the cell culture medium. Extracellular accumulation exceeded, however, the observed increase in TFPI at the protein level and appeared to be independent of heparan sulfate and heparanase enzymatic activity. Instead, a physical interaction between heparanase and TFPI was demonstrated, suggesting a mechanism by which secreted heparanase interacts with TFPI on the cell surface, leading to dissociation of TFPI from the cell membrane and increased coagulation activity, thus further supporting the local prothrombotic function of heparanase. As heparins are strong inhibitors of heparanase, in view of the effect of heparanase on TF/TFPI pathway, the role of heparins' anticoagulant activity may potentially be expanded.  相似文献   

12.
Ofosu  FA; Modi  GJ; Smith  LM; Cerskus  AL; Hirsh  J; Blajchman  MA 《Blood》1984,64(3):742-747
Heparan with a low affinity for antithrombin III has previously been demonstrated to inhibit thrombin generation in both normal plasma and plasma depleted of antithrombin III. In addition, standard heparin and heparin with a low affinity for antithrombin III have been demonstrated to have equivalent inhibitory actions on thrombin generation in plasma depleted of antithrombin III. These observations prompted the investigation of the effects of four normal vessel wall glycosaminoglycans (heparan sulfate, dermatan sulfate, chondroitin-4- sulfate, and chondroitin-6-sulfate) on the intrinsic pathway generation of thrombin and factor Xa and on the inactivation of thrombin and factor Xa in plasma. Heparan sulfate inhibited thrombin generation and accelerated the inactivation of added thrombin and factor Xa in normal plasma but not in antithrombin III-depleted plasma. In contrast, dermatan sulfate inhibited thrombin generation in both normal and antithrombin III-depleted plasma. In addition, heparan sulfate was an effective inhibitor of factor Xa generation, while dermatan sulfate was not. Neither chondroitin-4-sulfate nor chondroitin-6-sulfate inhibited the generation of thrombin or factor Xa nor did they accelerate the inactivation of factor Xa or thrombin by plasma. These results suggest that heparan sulfate acts primarily by potentiating antithrombin III, while dermatan sulfate acts by potentiating heparin cofactor II. The inhibition of thrombin generation by heparan sulfate and dermatan sulfate thus appears to occur by complementary pathways, both of which may contribute to the anticoagulation of blood in vivo.  相似文献   

13.
Aims/hypothesis Recent studies suggest that loss of heparan sulphate in the glomerular basement membrane (GBM) of the kidney with diabetic nephropathy is due to the increased production of heparanase, a heparan sulphate-degrading endoglycosidase. Our present study addresses whether heparan sulphate with different modifications is differentially reduced in the GBM and whether heparanase selectively cleaves heparan sulphate with different domain specificities. Methods The heparan sulphate content of renal biopsies (14 diabetic nephropathy, five normal) were analysed by immunofluorescence staining with four anti-heparan sulphate antibodies: JM403, a monoclonal antibody (mAb) recognising N-unsubstituted glucosamine residues; two phage display-derived single chain antibodies HS4C3 and EW3D10, defining sulphated heparan sulphate domains; and anti-K5 antibody, an mAb recognising unmodified heparan sulphate domains. Results We found that modified heparan sulphate domains (JM403, HS4C3 and EW3D10), but not unmodified domains (anti-K5) and agrin core protein were reduced in the GBM of kidneys from patients with diabetic nephropathy, compared with controls. Glomerular heparanase levels were increased in diabetic nephropathy kidneys and inversely correlated with the amounts of modified heparan sulphate domains. Increased heparanase production and loss of JM403 staining in the GBM correlated with the severity of proteinuria. Loss of modified heparan sulphate in the GBM as a result of degradation by heparanase was confirmed by heparan sulphate staining of heparanase-treated normal kidney biopsy specimens. Conclusions/interpretation Our data suggest that loss of modified heparan sulphate in the GBM is mediated by an increased heparanase presence and may play a role in the pathogenesis of diabetes-induced proteinuria. T. J. M. Wijnhoven and M. J. W. van den Hoven contributed equally to this study.  相似文献   

14.
In a search for small molecule antagonists of heparan sulfate, we examined the activity of bis-2-methyl-4-amino-quinolyl-6-carbamide, also known as surfen. Fluorescence-based titrations indicated that surfen bound to glycosaminoglycans, and the extent of binding increased according to charge density in the order heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate. All charged groups in heparin (N-sulfates, O-sulfates, and carboxyl groups) contributed to binding, consistent with the idea that surfen interacted electrostatically. Surfen neutralized the anticoagulant activity of both unfractionated and low molecular weight heparins and inhibited enzymatic sulfation and degradation reactions in vitro. Addition of surfen to cultured cells blocked FGF2-binding and signaling that depended on cell surface heparan sulfate and prevented both FGF2- and VEGF165-mediated sprouting of endothelial cells in Matrigel. Surfen also blocked heparan sulfate-mediated cell adhesion to the Hep-II domain of fibronectin and prevented infection by HSV-1 that depended on glycoprotein D interaction with heparan sulfate. These findings demonstrate the feasibility of identifying small molecule antagonists of heparan sulfate and raise the possibility of developing pharmacological agents to treat disorders that involve glycosaminoglycan–protein interactions.  相似文献   

15.
Pituitary tumorigenesis involves remodeling of the extracellular matrix (ECM). Heparanase, an endoglycosidase capable of degrading heparan sulfate, a major polysaccharide constituent of the ECM, is implicated in diverse processes associated with ECM remodeling, such as morphogenesis, angiogenesis, and tumor invasion. The aim of this study was to investigate the possible role of heparanase in pituitary tumorigenesis. Human normal pituitaries and pituitary tumors were examined for heparanase mRNA and protein expression using real-time PCR and immunohistochemistry, respectively. Cell proliferation was assessed by colony formation after heparanase overexpression in GH3 and MtT/S cells. Cell viability and cell cycle progression were evaluated after heparanase gene silencing. Higher heparanase mRNA and protein expression was noted in GH tumors as compared with normal pituitaries. Heparanase overexpression in GH3 and MtT/S cells resulted in a 2- to 3-fold increase in colony number, compared with control cells. Cell viability decreased by 50% after heparanase gene silencing due to induced apoptosis reflected by increased fraction of cleaved poly-ADP-ribose polymerase and sub-G1 events. Notably, exogenously added heparanase enhanced epidermal growth factor receptor, Src, Akt, ERK, and p38 phosphorylation in pituitary tumor cells. Our results indicate that heparanase enhances pituitary cell viability and proliferation and may thus contribute to pituitary tumor development and progression.  相似文献   

16.
Amyloid diseases encompass >20 medical disorders that include amyloid protein A (AA) amyloidosis, Alzheimer's disease, and type 2 diabetes. A common feature of these conditions is the selective organ deposition of disease-specific fibrillar proteins, along with the sulfated glycosaminoglycan, heparan sulfate. We have generated transgenic mice that overexpress human heparanase and have tested their susceptibility to amyloid induction. Drastic shortening of heparan sulfate chains was observed in heparanase-overproducing organs, such as liver and kidney. These sites selectively escaped amyloid deposition on experimental induction of inflammation-associated AA amyloidosis, as verified by lack of material staining with Congo Red, as well as lack of associated polysaccharide, whereas the same tissues from control animals were heavily infiltrated with amyloid. By contrast, the spleens of transgenic mice that failed to significantly overexpress heparanase contained heparan sulfate chains similar in size to those of control spleen and remained susceptible to amyloid deposition. Our findings provide direct in vivo evidence that heparan sulfate is essential for the development of amyloid disease.  相似文献   

17.
18.
The heparan sulfate proteoglycan syndecan-1 is expressed by myeloma cells and shed into the myeloma microenvironment. High levels of shed syndecan-1 in myeloma patient sera correlate with poor prognosis and studies in animal models indicate that shed syndecan-1 is a potent stimulator of myeloma tumor growth and metastasis. Overexpression of extracellular endosulfatases, enzymes which remove 6-O sulfate groups from heparan sulfate chains, diminishes myeloma tumor growth in vivo. Together, these findings identify syndecan-1 as a potential target for myeloma therapy. Here, 3 different strategies were tested in animal models of myeloma with the following results: (1) treatment with bacterial heparinase III, an enzyme that degrades heparan sulfate chains, dramatically inhibited the growth of primary tumors in the human severe combined immunodeficient (SCID-hu) model of myeloma; (2) treatment with an inhibitor of human heparanase, an enzyme that synergizes with syndecan-1 in promoting myeloma progression, blocked the growth of myeloma in vivo; and (3) knockdown of syndecan-1 expression by RNAi diminished and delayed myeloma tumor development in vivo. These results confirm the importance of syndecan-1 in myeloma pathobiology and provide strong evidence that disruption of the normal function or amount of syndecan-1 or its heparan sulfate chains is a valid therapeutic approach for this cancer.  相似文献   

19.
Endotoxin neutralizing protein (ENP) from Limulus polyphemus is an amphipathic, 11.8 kDa protein with an isoelectric point of 10.2. ENP neutralizes lipopolysaccharide (LPS) and possesses antibacterial activity against Gram-negative bacteria. Heparin binds to ENP and blocks its LPS-neutralizing activity. The relative blocking activity of heparin is equal to low molecular weight heparin and polyanetholsulfonic acid > heparan sulfate > chondroitin sulfate A > chondroitin sulfate C. Endoproteinase Glu-C hydrolysis of recombinant ENP results in four major peptides, three of which are seen following separation on reversed phase HPLC. Heparin binds to the loop peptide (31-72), which includes the heparin binding consensus sequence XBBXBX between the two cysteine residues of ENP. When heparin is added to the digest and then applied to a C18 column, the loop peptide is bound; however, it dissociates and elutes with either 5 M NaCl or 0.1 M sodium phosphate, demonstrating reversible binding to heparin. LPS and lipid A both bind to the loop peptide and remove it from digests of ENP; however, neither complex could be dissociated by salt or sodium phosphate. Heparin, LPS, and lipid A individually bind to the same site on ENP.  相似文献   

20.
The structure of the glycosaminoglycan chain of a heparan sulfate proteoglycan isolated from the conditioned medium of an endothelial cell line has been analyzed by using various degradative enzymes (heparitinase I, heparitinase II, heparinase, glycuronidase, sulfatases) from Flavobacterium heparinum. This proteoglycan inhibits the thromboplastin-activated pathway of coagulation; as a consequence, the catalytic conversion of prothrombin to thrombin is arrested. Heparitinase I (EC 4.2.2.8), an enzyme with specificity restricted to the heparan sulfate portion of the polysaccharide, releases fragments with the electrophoretic mobility and the structure of heparin. Conversely, an assessment of the size and distribution of the heparan sulfate regions has been provided by the use of heparinase (EC 4.2.2.7), which, by degrading the heparin sections of the chain, releases two segments that exhibit the structure of heparan sulfate. One of these segments is attached to the protein core. On the basis of these findings, the heparan sulfate chain can be defined as a copolymer containing heparin regions in its structure. The combined use of these enzymes has made it possible to establish the disaccharide sequence of parts of the glycosaminoglycan moiety of this proteoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号