首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For tissue engineering applications, effective bone regeneration requires rapid neo‐vascularization of implanted grafts to ensure the survival of cells in the early post‐implantation phase. Incorporation of autologous endothelial progenitor cells (EPCs) for the promotion of primitive vascular network formation ex vivo has offered great promise for improved graft survival, enhanced rate of vascularization and bone regeneration in vivo. For clinical usage, identification of an optimal EPC isolation source from the patient is critical. We have, for the first time, characterized and directly compared EPCs from rabbit peripheral blood and bone marrow (PB‐EPCs and BM‐EPCs, respectively). PB‐EPCs outperformed BM‐EPCs on all measures. PB‐EPCs displayed typical endothelial cell markers, such as CD31, as well as high angiogenic potential in three‐dimensional extracellular matrix in vitro. Furthermore, PB‐EPCs cultured simultaneously with mesenchymal stem cells, displayed significantly enhanced expression levels of key osteogenic and vascular markers, including alkaline phosphatase, bone morphogenetic protein 2, and vascular endothelial growth factor. On the contrary, putative BM‐EPCs did not express CD31, and instead, expressed key smooth muscle markers. BM‐EPCs further failed to display vasculogenic activity. Hence, the highly angiogenic PB‐derived EPCs may serve as an ideal cell population for enhanced vascularization and success of engineered bone tissue. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1507–1515, 2012  相似文献   

2.
The aim of this project was to construct vascularized tissue‐engineered living bone with an autologous vascular network by means of a rabbit bioreactor in vivo. The key components of the in vivo bioreactor for bone formation were the vascularized tibial periosteum and the saphenous vascular bundle. Beta‐tricalcium phosphate (β‐TCP) scaffolds were implanted into the in vivo bioreactor (vascular pedicle implantation and vascularized periosteum encapsulation). At 4 weeks postsurgery, new bone formation was mainly “cartilage‐bone inducing” in the inner periosteum, and was primarily seen in the outer aspects of the scaffold with some amount in the middle part as well. Microvascular infusion showed that direct revascularization of β‐TCP was obtained by means of vascular implantation. Triple staining results showed a large amount of blue collagen fibers. Vascular endothelial growth factor immunohistochemical staining displayed endothelial cells of new blood vessels in bone tissue. The bioreactor established in this study can be used to prepare tissue‐engineered bone with a vascular network.  相似文献   

3.
Standardized particulate bone constructs, obtained by expanding autologous mesenchymal stem cells (MSCs) onto coral granules in vitro, were transplanted into long-bone, critical-size defects in sheep. Control experiments were also performed in which autologous bone grafts were implanted. Defect cavities were lined with a preformed vascularized membrane (induced by temporarily inserting a cement spacer for 6 weeks prior to bone construct implantation), which served as a mold keeping the engineered bone granules in place. Radiographic, histological, and computed tomographic tests performed 6 months later showed that the osteogenic abilities of the engineered construct and autograft were significantly greater than those of coral scaffold alone. No significant differences were found between the amount of newly formed bone in defects filled with coral/MSCs and those filled with autograft, yet radiological scores differed significantly between the two groups (21% and 100% healed cortices, respectively). The present study on a clinically relevant animal model provides the first evidence that standardized particulate bone constructs can be used to repair large bone defects and that their osteogenic ability approaches that of bone autograft, the bone repair benchmark. By proving feasibility, the present study makes possible the treatment of segmental bone losses with bone constructs engineered from granules, a process which is much simpler than preparing customized massive constructs using computer-assisted techniques. Important parameters, such as the rate of scaffold resorption and the number of MSCs to be seeded on the scaffolds, need to be optimized before reaching pertinent definitive conclusions.  相似文献   

4.
In addition to a biocompatible scaffold and an osteogenic cell population, tissue‐engineered bone requires an appropriate vascular bed to overcome the obstacle of nutrient and oxygen transport in the 3D structure. We hypothesized that the addition of endothelial cells (ECs) may improve osteogenesis and prevent necrosis of engineered bone via effective neovascularization. Osteoblasts and ECs were differentiated from bone marrow of BALB/c mice, and their phenotypes were confirmed prior to implantation. Cylindrical porous polycaprolactone (PCL)‐hydroxyapatite (HA) scaffolds were synthesized. ECs were seeded on scaffolds followed by seeding of osteoblasts in the EC‐OB group. In the OB group, scaffolds were only seeded with osteoblasts. The cell‐free scaffolds were denoted as control group. A 0.4‐cm‐long segmental femur defect was established and replaced with the grafts. The grafts were evaluated histologically at 6 weeks postimplantation. In comparison with the OB group, the EC‐OB group resulted in a widely distributed capillary network, osteoid generated by osteoblasts and absent ischemic necroses. Pre‐seeding scaffold with ECs effectively promoted neovascularization in grafts, prevented the ischemic necrosis, and improved osteogenesis. The integration of bone marrow‐derived ECs and osteoblasts in porous scaffold is a useful strategy to achieve engineered bone. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1147–1152, 2008  相似文献   

5.
BACKGROUND: Large musculoskeletal defects are commonly reconstructed with allogeneic grafts. As cryopreserved allogeneic grafts lack viable cells, this often results in poorer clinical outcome. Current technology can not incorporate large number of cells to the dense grafts. This study aimed to investigate the feasibility of fabricating sheets of mesenchymal stem cells (MSCs) to revitalize cryopreserved grafts. METHODS: Human MSCs were isolated, characterized, and cultured to form a cell sheet in the presence of ascorbic acid. Once a sheet of MSCs was obtained, it was assembled onto the demineralized bone grafts or frozen tendon grafts by a wrapping technique. Then the assembled structure was cultured for 3 weeks. The macro morphology, histology, and immunohistochemistry of the grafts were evaluated. RESULTS: It was found that MSCs were able to form coherent cellular sheets within 3 weeks. When assembled with demineralized bone matrix, MSC sheets were similar to in situ periosteum and were able to differentiate into the osteochondral lineage. When assembled with frozen tendon graft, MSCs sheets were well-incorporated within the tissue sheath (peritenon) around the tendon, and adopted the characteristic spindle-shaped morphology of tenocyte-like cells. CONCLUSIONS: The results therefore demonstrated that MSCs sheets are easily fabricated and can maintain their differentiation potential within particular scaffolds, which would suggest a novel and convenient strategy for revitalizing large tissue grafts to improve clinical outcome.  相似文献   

6.
The use of exogenous scaffolds to engineer bone tissue faces several drawbacks including insufficient biological activity, potential immunogenicity, elevated inflammatory reaction, fluctuating degradation rate, and low cell‐attachment efficiency. To circumvent these limitations, we sought to engineer large scaffold‐free bone tissue using cell sheets. We harvested intact cell sheets from bone marrow stromal cells using a continuous culture method and a scraping technique. The cell sheets were then rolled and fabricated into large constructs. Finally, the constructs were implanted into the subcutaneous pockets of nude mice. The cells within the sheet maintained in vitro osteogenic potential after osteoblast differentiation. Computed tomography scans and histological examination confirmed new bone formation in vivo. Additionally, the engineered bone exhibited enhanced compressive strength. Our results indicate that the BMSC sheets can facilitate the formation of functional three‐dimensional bone tissue without the use of exogenous scaffolds. Hence, the study provides an intriguing alternative strategy for bone repair. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:697–702, 2010  相似文献   

7.
Bone marrow‐derived early endothelial progenitor cells (BM‐EPCs) are a clinical tool for enhancing revascularization. However, the therapeutic efficacy of co‐transplantation of BM‐EPC with islets has not been investigated. In this study, marginal mass islets were co‐transplanted with or without BM‐EPCs under the kidney capsules of syngeneic streptozotocin‐induced diabetic mice. Using green fluorescent protein transgenic (GFP‐Tg) mice as BM‐EPC and islet donors or recipients, the role of EPCs in revascularization was assessed for graft morphology, vascular density and fate of EPCs by immunohistochemistry. Islet‐EPC co‐transplantation improved the outcome of islet transplantation as measured by glucose tolerance, serum insulin level and diabetes reversal rate, compared with transplantation of islets alone. Between groups, the morphology of islet grafts showed significant differences in size and composition of grafted endocrine tissues. Significantly more vessel density derived from donors and recipients was detected with islet‐EPC co‐transplantation. Abundant GFP‐Tg mice‐derived BM‐EPCs (GFP‐EPCs) were observed in or around islet grafts and incorporated into CD31‐positive capillaries. Remaining GFP‐EPCs expressed VEGF. In conclusion, co‐transplantation of islets with BM‐EPCs could improve the outcome of marginal mass islet transplantation by promoting revascularization and preserving islet morphology.  相似文献   

8.
Zhao M  Zhou J  Li X  Fang T  Dai W  Yin W  Dong J 《Microsurgery》2011,31(2):130-137
This study evaluated the results of repair of the radius defect with a vascularized tissue engineered bone graft composed by implanting mesenchymal stem cells (MSCs) and a vascular bundle into the xenogeneic deproteinized cancellous bone (XDCB) scaffold in a rabbit model. Sixty-four rabbits were used in the study. Among them, four rabbits were used as the MSCs donor. Other 57 rabbits were divided into five groups. In group one (n = 9), a 1.5 cm bone defect was created with no repair. In group two (n = 12), the bone defect was repaired by a XDCB graft alone. In group three (n = 12), the defect was repaired by a XDCB graft that included a vascular bundle. In group four (n = 12), the defect was repaired by a XDCB graft seeded with MSCs. In group five (n = 12), the defect was repaired by a XDCB graft including a vascular bundle and MSCs implantation. The rest three rabbits were used as the normal control for the biomechanical test. The results of X-ray and histology at postoperative intervals (4, 8, and 12 weeks) and biomechanical examinations at 12 weeks showed that combining MSCs and a vascular bundle implantation resulted in promoting vascularization and osteogenesis in the XDCB graft, and improving new bone formation and mechanical property in repair of radius defect with this tissue engineered bone graft. These findings suggested that the vascularized tissue engineered bone graft may be a valuable alternative for repair of large bone defect and deserves further investigations.  相似文献   

9.
10.
Stem cells, such as mesenchymal stem cells (MSCs), contribute to bone fracture repair if they are delivered to the injury site. However, it is difficult to assess the retention and differentiation of these cells after implantation. Current options for non‐invasively tracking the transplanted stem cells are limited. Cell‐based therapies using MSCs would benefit greatly through the use of an imaging methodology that allows cells to be tracked in vivo and in a timely fashion. In this study, we implemented an in vivo imaging methodology to specifically track early events such as differentiation of implanted human MSCs (hMSCs). This system uses the collagen type 1 (Col1α1) promoter to drive expression of firefly luciferase (luc) in addition to a constitutively active promoter to drive the expression of green fluorescent protein (GFP). The resulting dual‐promoter reporter gene system provides the opportunity for osteogenic differentiation‐specific luc expression for in vivo imaging and constitutive expression of GFP for cell sorting. The function of this dual‐promoter reporter gene was validated both in vitro and in vivo. In addition, the ability of this dual‐promoter reporter system to image an early event of osteogenic differentiation of hMSCs was demonstrated in a murine segmental bone defect model in which reporter‐labeled hMSCs were seeded into an alginate hydrogel scaffold and implanted directly into the defect. Bioluminescence imaging (BLI) was performed to visualize the turn‐on of Col1α1 upon osteogenic differentiation and followed by X‐ray imaging to assess the healing process for correlation with histological analyses. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res XX:XXX–XXX, 2013 © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 871–879, 2013  相似文献   

11.
PURPOSE: We generated a vascularized, autologous, reseeded bladder substitute and evaluated immediate vascularization and perfusion of the graft after implantation to the recipient organism in a porcine model. MATERIAL AND METHODS: Acellular matrix was processed from porcine small bowel segments by subsequent mechanical, chemical and enzymatic decellularization, preserving the jejunal arteriovenous pedicles. In 2 separate steps the matrix was reseeded with primary bladder smooth muscle cells (SMCs) and urothelial cells (UCs), and its vascular structures were resurfaced with endothelial progenitor cells (EPCs). To evaluate graft perfusion short-term implantation was performed. RESULTS: The acellular scaffold was successfully repopulated with multilayers of ingrowing SMCs and superficial UCs. After reseeding the jejunal arteriovenous pedicles with EPCs and cultivation for 3 weeks the larger vessels as well as the intramural scaffold capillary network were repopulated with cell monolayers expressing endothelial specific proteins. Perfusion stagnation and implant thrombosis occurred within 30 minutes after the implantation of acellular scaffolds not reseeded with EPCs. In the EPC reseeded group the vascular system revealed intact perfusion and no relevant thrombus formation was observed after 1 or 3 hours. CONCLUSIONS: The current study of successful SMC and UC reseeding, vessel resurfacing with EPCs and short-term vascular patency represents the promising in vitro and in vivo basis for further evaluation of this biological vascularized matrix in chronic long-term large animal implantation experiments.  相似文献   

12.
BACKGROUND At present, tissue-engineered human skin substitutes (HSSs) mainly function as temporary bioactive dressings due to inadequate perfusion. Failure to form functional vascular networks within the initial posttransplantation period compromises cell survival of the graft and its long-term viability in the wound bed.
OBJECTIVES Our goal was to demonstrate that adult circulating endothelial progenitor cells (EPCs) seeded onto HSS can form functional microvessels capable of graft neovascularization and perfusion.
MATERIALS AND METHODS Adult peripheral blood mononuclear cells (PBMCs) underwent CD34 selection and endothelial cell (EC) culture conditions. After in vitro expansion, flow cytometry verified EC phenotype before their incorporation into HSS. After 2 weeks in vivo, immunohistochemical analysis, immunofluorescent microscopy, and microfil polymer perfusion were performed.
RESULTS CD34+ PBMCs differentiated into EPC demonstrating characteristic EC morphology and expression of CD31, Tie-2, and E-selectin after TNFα-induction. Numerous human CD31 and Ulex europaeus agglutinin-1 (UEA-1) microvessels within the engineered grafts (HSS/EPCs) inosculated with recipient murine circulation. Limitation of murine CD31 immunoreactivity to HSS margins showed angiogenesis was attributable to human EPC at 2 weeks posttransplantation. Delivery of intravenous rhodamine-conjugated UEA-1 and microfil polymer to HSS/EPCs demonstrated enhanced perfusion by functional microvessels compared to HSS control without EPCs.
CONCLUSION We successfully engineered functional microvessels in HSS by incorporating adult circulating EPCs. This autologous EC source can form vascular conduits enabling perfusion and survival of human bioengineered tissues.  相似文献   

13.
Adult stem cells are a promising tool to positively influence bone regeneration. Concentrated bone marrow therapy entails isolating osteoprogenitor cells during surgery with, however, only low cells yield. Two step stem cell therapy requires an additional harvesting procedure but generates high numbers of progenitor cells that facilitate osteogenic pre‐differentiation. To further improve bone regeneration, stem cell therapy can be combined with growth factors from platelet rich plasma (PRP) or its lysate (PL) to potentially fostering vascularization. The aim of this study was to investigate the effects of bone marrow concentrate (BMC), osteogenic pre‐differentiation of mesenchymal stromal cells (MSCs), and PL on bone regeneration and vascularization. Bone marrow from four different healthy human donors was used for either generation of BMC or for isolation of MSCs. Seventy‐two mice were randomized to six groups (Control, PL, BMC, BMC + PL, pre‐differentiated MSCs, pre‐differentiated MSCs + PL). The influence of PL, BMC, and pre‐differentiated MSCs was investigated systematically in a 2 mm femoral bone defect model. After a 6‐week follow‐up, the pre‐differentiated MSCs + PL group showed the highest bone volume, highest grade of histological defect healing and highest number of bridged defects with measurable biomechanical stiffness. Using expanded and osteogenically pre‐differentiated MSCs for treatment of a critical‐size bone defect was favorable with regards to bone regeneration compared to treatment with cells from BMC. The addition of PL alone had no significant influence; therefore the role of PL for bone regeneration remains unclear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1318–1328, 2019.  相似文献   

14.
15.
OBJECTIVE: The objective of this study is to investigate if bone marrow-derived cells (BMCs) regenerate vascular tissues and improve patency in tissue-engineered small-diameter (internal diameter = 3 mm) vascular grafts. SUMMARY BACKGROUND DATA: BMCs have demonstrated the ability to differentiate into endothelial-like cells and vascular smooth muscle-like cells and may offer an alternative cell source for vascular tissue engineering. Thus, we tissue-engineered small-diameter vascular grafts with BMCs and decellularized arteries. METHODS: Canine BMCs were differentiated in vitro into smooth muscle alpha-actin/smooth muscle myosin heavy-chain-positive cells and von Willebrand factor/CD31-positive cells and seeded onto decellularized canine carotid arteries (internal diameter = 3 mm). The seeded grafts were implanted in cell donor dogs. The vascular-tissue regeneration and graft patency were investigated with immunohistochemistry and angiography, respectively. RESULTS: The vascular grafts seeded with BMCs remained patent for up to 8 weeks in the canine carotid artery interposition model, whereas nonseeded grafts occluded within 2 weeks. Within 8 weeks after implantation, the vascular grafts showed regeneration of the 3 elements of artery (endothelium, media, and adventitia). BMCs labeled with a fluorescent dye prior to implantation were detected in the retrieved vascular grafts, indicating that the BMCs participated in the vascular tissue regeneration. CONCLUSIONS: Here we show that BMCs have the potential to regenerate vascular tissues and improve patency in tissue-engineered small-diameter vascular grafts. This is the first report of a small-diameter neovessel engineered with BMCs as a cell source.  相似文献   

16.
The treatment of long‐segment tracheal defect requires the transplantation of effective tracheal substitute, and the tissue‐engineered trachea (TET) has been proposed as an ideal tracheal substitute. The major cause of the failure of segmental tracheal defect reconstruction by TET is airway collapse caused by the chondromalacia of TET cartilage. The key to maintain the TET structure is the regeneration of chondrocytes in cartilage, which can secrete plenty of cartilage matrices. To address the problem of the chondromalacia of TET cartilage, this study proposed an improved strategy. We designed a new cell sheet scaffold using the poly(lactic‐co‐glycolic acid) (PLGA) and poly(trimethylene carbonate) (PTMC) to make a porous membrane for seeding cells, and used the PLGA–PTMC cell‐scaffold to pack the decellularized allogeneic trachea to construct a new type of TET. The TET was then implanted in the subcutaneous tissue for vascularization for 2 weeks. Orthotopic transplantation was then performed after implantation. The efficiency of the TET we designed was analyzed by histological examination and biomechanical analyses 4 weeks after surgery. Four weeks after surgery, both the number of chondrocytes and the amount of cartilage matrix were significantly higher than those contained in the traditional stem‐cell–based TET. Besides, the coefficient of stiffness of TET was significantly larger than the traditional TET. This study provided a promising approach for the long‐term functional reconstruction of long‐segment tracheal defect, and the TET we designed had potential application prospects in the field of TET reconstruction.  相似文献   

17.
Ligament reconstruction using a tissue‐engineered artificial ligament (TEAL) requires regeneration of the ligament‐bone junction such that fixation devices such as screws and end buttons do not have to be used. The objective of this study was to develop a TEAL consisting of elastin‐coated polydioxanone (PDS) sutures covered with elastin and collagen fibers preseeded with ligament cells. In a pilot study, a ring‐type PDS suture with a 2.5 mm (width) bone insertion was constructed with/without elastin coating (Ela‐coat and Non‐coat) and implanted into two bone tunnels, diameter 2.4 mm, in the rabbit tibia (6 cases each) to access the effect of elastin on the bond strength. PDS specimens taken together with the tibia at 6 weeks after implantation indicated growth of bone‐like hard tissues around bone tunnels accompanied with narrowing of the tunnels in the Ela‐coat group and not in the Non‐coat group. The drawout load of the Ela‐coat group was significantly higher (28.0 ± 15.1 N, n = 4) than that of the Non‐coat group (7.6 ± 4.6 N, n = 5). These data can improve the mechanical bulk property of TEAL through extracellular matrix formation. To achieve this TEAL model, 4.5 × 106 ligament cells were seeded on elastin and collagen fibers (2.5 cm × 2.5 cm × 80 µm) prior to coil formation around the elastin‐coated PDS core sutures having ball‐shape ends with a diameter of 2.5 mm. Cell‐seeded and cell‐free TEALs were implanted across the femur and the tibia through bone tunnels with a diameter of 2.4 mm (6 cases each). There was no incidence of TEAL being pulled in 6 weeks. Regardless of the remarkable degradation of PDS observed in the cell‐seeded group, both the elastic modulus and breaking load of the cell‐seeded group (n = 3) were comparable to those of the sham‐operation group (n = 8) (elastic modulus: 15.4 ± 1.3 MPa and 18.5 ± 5.7 MPa; breaking load: 73.0 ± 23.4 N and 104.8 ± 21.8 N, respectively) and higher than those of the cell‐free group (n = 5) (elastic modulus: 5.7 ± 3.6 MPa; breaking load: 48.1 ± 11.3 N) accompanied with narrowed bone tunnels and cartilage matrix formation. These data suggest that elastin increased the bond strength of TEAL and bone. Furthermore, our newly developed TEAL from elastin, collagen, and ligament cells maintained the strength of the TEAL even if PDS was degraded.  相似文献   

18.
CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal‐derived‐factor 1 (SDF‐1). SDF‐1/CXCR4 interaction is reported to play an important role in vascular development. On the other hand, the therapeutic potential of endothelial progenitor cells (EPCs) in fracture healing has been demonstrated with mechanistic insight of vasculogenesis/angiogenesis and osteogenesis enhancement at sites of fracture. The purpose of this study was to investigate the influence of the SDF‐1/CXCR4 pathway in Tie2‐lineage cells (including EPCs) in bone formation. We created CXCR4 gene conditional knockout mice using the Cre/loxP system and set two groups of mice: Tie2‐CreER CXCR4 knockout mice (CXCR4?/?) and wild‐type mice (WT). We report here that in vitro, EPCs derived from of CXCR4?/? mouse bone marrow demonstrated severe reduction of migration activity and EPC colony‐forming activity when compared with those derived from WT mouse bone marrow. In vivo, radiological and morphological examinations showed fracture healing delayed in the CXCR4?/? group and the relative callus area at weeks 2 and 3 was significantly smaller in CXCR4?/? group mice. Quantitative analysis of capillary density at perifracture sites also showed a significant decrease in the CXCR4?/? group. Especially, CXCR4?/?group mice demonstrated significant early reduction of blood flow recovery at fracture sites compared with the WT group in laser Doppler perfusion imaging analysis. Real‐time RT‐PCR analysis showed that the gene expressions of angiogenic markers (CD31, VE‐cadherin, vascular endothelial growth factor [VEGF]) and osteogenic markers (osteocalcin, collagen 1A1, bone morphogenetic protein 2 [BMP2]) were lower in the CXCR4?/? group. In the gain‐of‐function study, the fracture in the SDF‐1 intraperitoneally injected WT group healed significantly faster with enough callus formation compared with the SDF‐1 injected CXCR4?/? group. We demonstrated that an EPC SDF‐1/CXCR4 axis plays an important role in bone fracture healing using Tie2‐CreER CXCR4 conditional knockout mice. © 2014 American Society for Bone and Mineral Research.  相似文献   

19.
20.
Mesenchymal stem cells (MSCs) are multipotent progenitors and can differentiate into osteogenic, chondrogenic, and adipogenic lineages. Bone morphogenetic proteins (BMPs) play important roles in stem cell proliferation and differentiation. We recently demonstrated that BMP9 is a potent but less understood osteogenic factor. We previously found that BMP9‐induced ectopic bone formation is not inhibited by BMP3. Here, we investigate the effect of BMP antagonist noggin on BMP9‐induced osteogenic differentiation. BMP antagonists noggin, chording, gremlin, follistatin, and BMP3 are highly expressed in MSCs, while noggin and follistatin are lowly expressed in more differentiated pre‐osteoblast C2C12 cells. BMP9‐induced osteogenic markers and matrix mineralization are not inhibited by noggin, while noggin blunts BMP2, BMP4, BMP6, and BMP7‐induced osteogenic markers and mineralization. Likewise, ectopic bone formation by MSCs transduced with BMP9, but not the other four BMPs, is resistant to noggin inhibition. BMP9‐induced nuclear translocation of Smad1/5/8 is not affected by noggin, while noggin blocks BMP2‐induced activation of Smad1/5/8 in MSCs. Noggin fails to inhibit BMP9‐induced expression of downstream targets in MSCs. Thus, our results strongly suggest that BMP9 may effectively overcome noggin inhibition, which should at least in part contribute to BMP9's potent osteogenic capability in MSCs. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1796–1803, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号