首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes are typically interconnected by gap junction channels that allow, in vitro as well as in vivo, a high degree of intercellular communication between these glial cells. Using cocultures of astrocytes and neurons, we have demonstrated that gap junctional communication (GJC) and connexin 43 (Cx43) expression, the major junctional protein in astrocytes, are controlled by neuronal activity. Moreover, neuronal death downregulates these two parameters. Because in several brain pathologies neuronal loss is associated with an increase in brain macrophage (BM) density, we have now investigated whether coculture with BM affects astrocyte gap junctions. We report here that addition of BM for 24 h decreases the expression of GJC and Cx43 in astrocytes in a density-dependent manner. In contrast, Cx43 is not detected in BM and no heterotypic coupling is observed between the two cell types. A soluble factor does not seem to be involved in these inhibitions because they are not observed either in the presence of BM conditioned media or in the absence of direct contact between the two cell types by using inserts. These observations could have pathophysiological relevance as neuronal death, microglial proliferation and astrocytic reactions occur in brain injuries and pathologies. Because astrocyte interactions with BM and dying neurons both result in the downregulation of Cx43 expression and in the inhibition of GJC, a critical consequence on astrocytic phenotype in those situations could be the inhibition of gap junctions.  相似文献   

2.
Acute hyperammonemia (HA) causes cerebral edema and brain damage in children with urea cycle disorders (UCDs) and in patients in acute liver failure. Chronic HA is associated with developmental delay and mental retardation in children with UCDs, and with neuropsychiatric symptoms in patients with chronic liver failure. Astrocytes are a major cellular target of hyperammonemic encephalopathy, and changes occurring in these cells are thought to be causally related to the brain edema of acute HA. To study the effect of HA on astrocytes in vivo, we crossed the Otc(spf) mouse, a mouse with the X-linked UCD ornithine transcarbamylase (OTC) deficiency, with the hGFAP-EGFP mouse, a mouse selectively expressing green fluorescent protein in astrocytes. We used FACS to purify astrocytes from the brains of hyperammonemic and healthy Otcspf/GFAP-EGFP mice. RNA isolated from these astrocytes was used in microarray expression analyses and qRT-PCR. When compared with healthy littermates, we observed a significant downregulation of the gap-junction channel connexin 43 (Cx43) the water channel aquaporin 4 (Aqp4) genes, and the astrocytic inward-rectifying potassium channel (Kir) genes Kir4.1 and Kir5.1 in hyperammonemic mice. Aqp4, Cx43, and Kir4.1/Kir5.1 are co-localized to astrocytic end-feet at the brain vasculature, where they regulate potassium and water transport. Since, NH4+ ions can permeate water and K+-channels, downregulation of these three channels may be a direct effect of elevated blood ammonia levels. Our results suggest that alterations in astrocyte-mediated water and potassium homeostasis in brain may be key to the development of the brain edema.  相似文献   

3.
Endothelins regulate astrocyte gap junctions in rat hippocampal slices   总被引:9,自引:0,他引:9  
Gap junctional communication (GJC) is a typical feature of astrocytes proposed to contribute to the role played by these glial cells in brain physiology and pathology. In acutely isolated hippocampal slices from rat (P11-P19), intercellular diffusion of biocytin through gap junction channels was shown to occur between hundreds of cells immuno-positive for astrocytic markers studied in the CA1/CA2 region. Single-cell RT-PCR demonstrated astrocytic mRNA expression of several connexin (Cx) subtypes, the molecular constituent of gap junction channels, whereas immunoblotting confirmed that Cx43 and Cx30 are the main gap junction proteins in hippocampal astrocytes. In the brain, astrocytes represent a major target for endothelins (Ets), a vasoactive family of peptides. Our results demonstrate that Ets decrease the expression of phosphorylated Cx43 forms and are potent inhibitors of GJC. The Et-induced effects were investigated using specific Et receptor agonists and antagonists, including Bosentan (Tracleer trade mark ), an EtA/B receptor antagonist, and using hippocampal slices and cultures from EtB-receptor-deficient rats. Interestingly, the pharmacological profile of Ets effects did not follow the classical profile established in cardiovascular systems. The present study therefore identifies Ets as potent endogenous inhibitory regulators of astrocyte networks. As such, the action of these peptides on astrocyte GJC might be involved in the contribution of astrocytes to neuroprotective processes and have a therapeutic potential in neuropathological situations.  相似文献   

4.
5.
Esen N  Shuffield D  Syed MM  Kielian T 《Glia》2007,55(1):104-117
Gap junctions establish direct intercellular conduits between adjacent cells and are formed by the hexameric organization of protein subunits called connexins (Cx). It is unknown whether the proinflammatory milieu that ensues during CNS infection with S. aureus, one of the main etiologic agents of brain abscess in humans, is capable of eliciting regional changes in astrocyte homocellular gap junction communication (GJC) and, by extension, influencing neuron homeostasis at sites distant from the primary focus of infection. Here we investigated the effects of S. aureus and its cell wall product peptidoglycan (PGN) on Cx43, Cx30, and Cx26 expression, the main Cx isoforms found in astrocytes. Both bacterial stimuli led to a time-dependent decrease in Cx43 and Cx30 expression; however, Cx26 levels were elevated following bacterial exposure. Functional examination of dye coupling, as revealed by single-cell microinjections of Lucifer yellow, demonstrated that both S. aureus and PGN inhibited astrocyte GJC. Inhibition of protein synthesis with cyclohexamide (CHX) revealed that S. aureus directly modulates, in part, Cx43 and Cx30 expression, whereas Cx26 levels appear to be regulated by a factor(s) that requires de novo protein production; however, CHX did not alter the inhibitory effects of S. aureus on astrocyte GJC. The p38 MAPK inhibitor SB202190 was capable of partially restoring the S. aureus-mediated decrease in astrocyte GJC to that of unstimulated cells, suggesting the involvement of p38 MAPK-dependent pathway(s). These findings could have important implications for limiting the long-term detrimental effects of abscess formation in the brain which may include seizures and cognitive deficits.  相似文献   

6.
According to previously published ultrastructural studies, oligodendrocytes in white matter exhibit gap junctions with astrocytes, but not among each other, while in vitro oligodendrocytes form functional gap junctions. We have studied functional coupling among oligodendrocytes in acute slices of postnatal mouse corpus callosum. By whole‐cell patch clamp we dialyzed oligodendrocytes with biocytin, a gap junction‐permeable tracer. On average 61 cells were positive for biocytin detected by labeling with streptavidin‐Cy3. About 77% of the coupled cells stained positively for the oligodendrocyte marker protein CNPase, 9% for the astrocyte marker GFAP and 14% were negative for both CNPase and GFAP. In the latter population, the majority expressed Olig2 and some NG2, markers for oligodendrocyte precursors. Oligodendrocytes are known to express Cx47, Cx32 and Cx29, astrocytes Cx43 and Cx30. In Cx47‐deficient mice, the number of coupled cells was reduced by 80%. Deletion of Cx32 or Cx29 alone did not significantly reduce the number of coupled cells, but coupling was absent in Cx32/Cx47‐double‐deficient mice. Cx47‐ablation completely abolished coupling of oligodendrocytes to astrocytes. In Cx43‐deficient animals, oligodendrocyte‐astrocyte coupling was still present, but coupling to oligodendrocyte precursors was not observed. In Cx43/Cx30‐double deficient mice, oligodendrocyte‐to‐astrocyte coupling was almost absent. Uncoupled oligodendrocytes showed a higher input resistance. We conclude that oligodendrocytes in white matter form a functional syncytium predominantly among each other dependent on Cx47 and Cx32 expression, while astrocytic connexins expression can promote the size of this network. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Theis M  Speidel D  Willecke K 《Glia》2004,46(2):130-141
Connexin43 (Cx43) mainly provides the molecular basis for astrocytic gap junctions. Interastrocytic coupling is thought to mediate extracellular ion homeostasis, long-range signaling, and neuroprotection in the brain. Cx43 has been implicated in astrocytic growth control and is also expressed in other cell types in the brain, such as leptomeningeal and vascular cells. Cx43 function has been studied in astrocyte cultures of Cx43-deficient mice, which lack Cx43 in all cell types. We have generated conditionally deficient mice with an astrocyte-directed inactivation of Cx43, which leaves expression in other cell types unaffected. Other connexins have been detected in astrocytes. For the study of astrocytes lacking Cx45 and Cx26 in vitro, which deficiencies are embryonic lethal, conditionally deficient astrocyte cultures are essential. In the present study, we describe the developmental kinetics of Cx43 inactivation and loss of intercellular communication in astrocyte cultures derived from conditional Cx43-deficient mice. Conditional ablation of Cx43 is efficient, reaches a plateau at 4 weeks in culture, but retains Cx43 expression in contaminating nonastrocytic cells. Our findings indicate that conditional knockout astrocytes are a promising tool for the study of embryonic lethal genes in astrocyte cultures.  相似文献   

8.
9.
Brain edema in acute hepatic encephalopathy (HE) is due mainly to swelling of astrocytes. Efflux of potassium is implicated in the prevention of glial swelling under hypoosmotic conditions. We investigated whether pathogenic factors of HE, glutamine (Gln) and/or ammonia, induce alterations in the expression of glial potassium channels (Kir4.1, Kir2.1) and Na(+) -K(+) -2Cl(-) cotransporter-1 (NKCC1) in rat cerebral cortex and cultured rat cortical astrocytes and whether these alterations have consequences for potassium efflux and astrocytic swelling. Thioacetamide-induced acute liver failure in rats resulted in significant decreases in the Kir4.1 mRNA and protein contents of cerebral cortex, whereas expression of Kir2.1 and NKCC1 remained unaltered. Incubation of primary cortical astrocytes for 72 hr in the presence of Gln (5 mM), but not of ammonia (5 mM or 10 mM), induced a decrease in the levels of Kir4.1 mRNA and protein. Similarly to incubation with Gln, reduction of Kir4.1 mRNA expression by RNA interference caused swelling of astrocytes as shown by confocal imaging followed by 3D computational analysis. Gln reduced the astrocytic uptake of D-[(3) H]aspartate, but, in contrast to the earlier reported effect of ammonia, this reduction was not accompanied by decreased expression of the astrocytic glutamate transporter GLT-1 mRNA. Both Gln and ammonia decreased hypoosmolarity-induced (86) Rb efflux from the cells, but the effect was more pronounced with Gln. The results indicate that down-regulation of Kir4.1 may mediate distinct aspects of Gln-induced astrocytic dysfunction in HE.  相似文献   

10.
Severe brain lesions are accompanied by sustained increases in endothelin (ET) levels, which in turn profoundly affect brain microcirculation and neural cell function. A known response of astrocytes to acute increases in ET levels is the rapid and transient closure of gap junctions and the subsequent decrease of gap junction-mediated intercellular communication (GJIC). Because evidence exists that the loss of GJIC alters astrocytic gene expression, we analyzed the effects of chronic ET exposure on astrocytic gap junction coupling. We found that within 24 hr, cultured cortical astrocytes respond to low nanomolar concentrations (2-10 nM) of either ET-1 or ET-3 with a robust inhibition of connexin (Cx)43 expression, the major junctional protein in astrocytes, and a subsequent decline of GIJC. We further observed that in the continuous presence of ETs, Cx43 expression remained inhibited for at least 7 days. In addition, a similar decrease of Cx43 expression occurred in cultured spinal cord astrocytes maintained with ET-1 for 3 days. Applying ETs in combination with the highly selective ETA and ETB receptor antagonists, BQ123 and BQ788, respectively, revealed that the inhibitory influences on astrocytic Cx43 expression depend on activation of ETB receptors. We suggest that the observed ET-dependent inhibition of Cx43 expression and the resulting decline of GJIC might represent a major pathway by which ETs regulate astrocytic gene expression in the injured brain.  相似文献   

11.
12.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting upper and lower motor neurons. Dysfunction and death of motor neurons are closely related to the modified astrocytic environment. Astrocytic endfeet, lining the blood–brain barrier (BBB), are enriched in two proteins, aquaporin‐4 (AQP4) and inwardly rectifying potassium channel (Kir) 4.1. Both channels are important for the maintainance of a functional BBB astrocytic lining. In this study, expression levels of AQP4 and Kir4.1 were for the first time examined in the brainstem and cortex, along with the functional properties of Kir channels in cultured cortical astrocytes of the SOD1G93A rat model of ALS. Western blot analysis showed increased expression of AQP4 and decreased expression of Kir4.1 in the brainstem and cortex of the ALS rat. In addition, higher immunoreactivity of AQP4 and reduced immunolabeling of Kir4.1 in facial and trigeminal nuclei as well as in the motor cortex were also observed. Particularly, the observed changes in the expression of both channels were retained in cultured astrocytes. Furthermore, whole‐cell patch‐clamp recordings from cultured ALS cortical astrocytes showed a significantly lower Kir current density. Importantly, the potassium uptake current in ALS astrocytes was significantly reduced at all extracellular potassium concentrations. Consequently, the Kir‐specific Cs+‐ and Ba2+‐sensitive currents were also decreased. The changes in the studied channels, notably at the upper CNS level, could underline the hampered ability of astrocytes to maintain water and potassium homeostasis, thus affecting the BBB, disturbing the neuronal microenvironment, and causing motoneuronal dysfunction and death. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Connexin43 (Cx43), involved in intercellular signaling, is expressed in spinal dorsal horn astrocytes and crucial in the maintenance of neuropathic pain. Downregulation of spinal astrocytic Cx43 in mice enhances glutamatergic neurotransmission by decreasing glutamate transporter GLT‐1 expression, resulting in cutaneous hypersensitivity. Decreased expression of astrocytic Cx43 could lead to altered expression of other nociceptive molecules. Transfection of Cx43‐targeting siRNA in cultured spinal astrocytes increased expression of the pronociceptive cytokine interleukin‐6 (IL‐6) and the prostaglandin synthesizing enzyme cyclooxygenase‐2 (COX‐2). Increased expression of IL‐6 and COX‐2 was due to decreased Cx43 expression rather than due to diminished Cx43 channel function. In mice, downregulation of spinal Cx43 expression by intrathecal treatment with Cx43‐targeting siRNA increased IL‐6 and COX‐2 expression and induced hind paw mechanical hypersensitivity. Cx43 siRNA‐induced mechanical hypersensitivity was attenuated by intrathecal treatment with anti‐IL‐6 neutralizing antibody and intraperitoneal treatment of selective COX‐2 inhibitor celecoxib, demonstrating that these molecules play a role in nociceptive processing following Cx43 downregulation. Restoring spinal Cx43 by intrathecal injection of an adenovirus vector expressing Cx43 in mice with a partial sciatic nerve ligation reduced spinal IL‐6 and COX‐2 expression. Suppression of glycogen synthase kinase‐3β (GSK‐3β), a serine/threonine protein kinase, prevented upregulation of IL‐6 and COX‐2 expression induced by Cx43 downregulation in both cultured astrocytes and in mouse spinal dorsal horn. Inhibition of spinal GSK‐3β also ameliorated Cx43 siRNA‐induced mechanical hypersensitivity. The current findings indicate that downregulation of spinal astrocytic Cx43 leads to changes in spinal expression of pronociceptive molecules underlying the maintenance of pain following nerve injury.  相似文献   

14.
There is intensive gap‐junctional coupling between glial processes, but their significance in sensory functions remains unknown. Connexin‐43 (Cx43), a major component of astrocytic gap‐junction channels, is abundantly expressed in astrocytes. To investigate the role of Cx43‐mediated gap junctions between astrocytes in sensory functions, we generated Cx43 knockout (KO) mice with a mouse line carrying loxP sites flanking exon 2 of the Cx43 gene and the transgenic line expressing Cre recombinase under control of the glial fibrillary acidic protein promoter, which exhibited a significant loss of Cx43 in astrocytes in the barrel cortex. Although Cx43 expression between the astrocytes measured by immunohistochemistry was virtually abolished in Cx43 KO mice, they had normal architecture in the barrel cortex but the intensity of cytochrome oxide histochemistry decreased significantly. In vivo electrophysiological analysis revealed that the long‐term potentiation of the vibrissal evoked responses in the barrel cortex evoked by high‐frequency rhythmic vibrissal stimuli (100 Hz, 1 s) was abolished in Cx43 KO mice. Current source density analysis also revealed that astrocytic Cx43 was important to the flow of excitation within the laminar connections in barrel cortex. Behavioral tests showed that the ability of Cx43 KO mice to sense the environment with their whiskers decreased. Even so, the jump‐stand experiment showed that they could still discriminate rough from smooth surfaces. Our findings suggest that Cx43‐mediated gap‐junctional coupling between astrocytes is important in the neuron–glia interactions required for whisker‐related sensory functions and plasticity.  相似文献   

15.
Role of Kir4.1 channels in growth control of glia   总被引:1,自引:0,他引:1  
Higashimori H  Sontheimer H 《Glia》2007,55(16):1668-1679
The inwardly rectifying potassium channel Kir4.1 is widely expressed by astrocytes throughout the brain. Kir4.1 channels are absent in immature, proliferating glial cells. The progressive expression of Kir4.1 correlates with astrocyte differentiation and is characterized by the establishment of a negative membrane potential (> -70 mV) and an exit from the cell cycle. Despite some correlative evidence, a mechanistic interdependence between Kir4.1 expression, membrane hyperpolarization, and control of cell proliferation has not been demonstrated. To address this question, we used astrocyte-derived tumors (glioma) that lack functional Kir4.1 channels, and generated two glioma cell lines that stably express either AcGFP-tagged Kir4.1 channels or AcGFP vectors only. Kir4.1 expression confers the same K+ conductance to glioma membranes and a similar responsiveness to changes in [K+]o that characterizes differentiated astrocytes. Kir4.1 expression was sufficient to move the resting potential of gliomas from -50 to -80 mV. Importantly, Kir4.1 expression impaired cell growth by shifting a significant number of cells from the G2/M phase into the quiescent G0/G1 stage of the cell cycle. Furthermore, these effects could be nullified entirely if Kir4.1 channels were either pharmacologically inhibited by 100 microM BaCl2 or if cells were chronically depolarized by 20 mM KCl to the membrane voltage of growth competent glioma cells. These studies therefore demonstrate directly that Kir4.1 causes a membrane hyperpolarization that is sufficient to account for the growth attenuation, which in turn induces cell maturation characterized by a shift of the cells from G2/M into G0/G1.  相似文献   

16.
Expression of connexin26 (Cx26), Cx30 and Cx43 in astrocytes and expression of Cx29, Cx32 and Cx47 in oligodendrocytes of adult rodent brain has been well documented, as has the interdependence of connexin expression patterns of macroglial cells in Cx32- and Cx47-knockout mice. To investigate this interdependence further, we examined immunofluorescence labelling of glial connexins in transgenic Cx30 null mice. Ablation of astrocytic Cx30, confirmed by the absence of immunolabelling for this connexin in all brain regions, resulted in the loss of its coupling partner Cx32 on the oligodendrocyte side of astrocyte-oligodendrocyte (A/O) gap junctions, but had no effect on the localization of astrocytic Cx43 and oligodendrocytic Cx47 at these junctions or on the distribution of Cx32 along myelinated fibres. Surprisingly, gene deletion of Cx30 led to the near total elimination of immunofluorescence labelling for Cx26 in all leptomeningeal tissues covering brain surfaces as well as in astrocytes of brain parenchyma. Moreover northern blot analysis revealed downregulation of Cx26 mRNA in Cx30-knockout brains. Our results support earlier observations on the interdependency of Cx30/Cx32 targeting to A/O gap junctions and further suggest that Cx26 mRNA expression is affected by Cx30 gene expression. In addition, Cx30 protein may be required for co-stabilization of gap junctions or for co-trafficking in cells.  相似文献   

17.
Connexin43 (Cx43) is the most abundant gap junction protein of the brain, where it is predominantly expressed in astrocytes. Recent studies imply a role of Cx43 in the regulation of important cellular processes, including migration, proliferation, and shape formation. These processes are assumed to be reflected by the proteome of the Cx43 expressing cells. To analyze the influence of Cx43 on the astrocytic proteome, we used RNA interference to downregulate the expression of this connexin in cultures of mouse astrocytes. We applied difference gel electrophoresis (DIGE) to compare silenced astrocytes with control cells. The differential proteome analysis revealed 15 significantly regulated proteins (between 1.2‐ and 1.6‐fold), of which six are known to belong to a group of cytoskeletal proteins involved in cortical platform formation. Astrocytes treated with Cx43 small interfering (si)RNA showed an increased expression of the cytoskeletal proteins: actin, tropomyosin, microtubule‐associated protein RP/EB1, transgelin, and GFAP, and a decreased expression of cofilin‐1. Quantitative immunocytochemistry and Western blotting revealed similar results showing an upregulation of actin, tubulin, tropomyosin, EB1, transgelin and GFAP, and a downregulation of Ser‐3‐phosphorylated cofilin. Furthermore, Cx43 silencing led to phenotypical changes in cell morphology, migratory activity, and cell adhesion. Our results provide mechanistic clues for an understanding of Cx43 interaction with cellular motor activities such as migration and process formation in astrocytes. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Gap junctions (GJs) are vital for oligodendrocyte survival and myelination. In order to examine how different stages of inflammatory demyelination affect oligodendrocyte GJs, we studied the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and astrocytic Cx43 in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) induced by recombinant myelin oligodendrocyte glycoprotein. EAE was characterized by remissions and relapses with demyelination and axonal loss. Formation of GJ plaques was quantified in relation to the lesions and in normal appearing white matter (NAWM). During acute EAE at 14 days postimmunization (dpi) both Cx47 and Cx32 GJs were severely reduced within and around lesions but also in the NAWM. Cx47 was localized intracellularly in oligodendrocytes while protein levels remained unchanged, and this redistribution coincided with the loss of Cx43 GJs in astrocytes. Cx47 and Cx32 expression increased during remyelination at 28 dpi but decreased again at 50 dpi in the relapsing phase. Oligodendrocyte GJs remained reduced even in NAWM, despite increased formation of Cx43 GJs toward lesions indicating astrogliosis. EAE induced in Cx32 knockout mice resulted in an exacerbated clinical course with more demyelination and axonal loss compared with wild-type EAE mice of the same backcross, despite similar degree of inflammation, and an overall milder loss of Cx47 and Cx43 GJs. Thus, EAE causes persistent impairment of both intra- and intercellular oligodendrocyte GJs even in the NAWM, which may be an important mechanism of MS progression. Furthermore, GJ deficient myelinated fibers appear more vulnerable to CNS inflammatory demyelination.  相似文献   

19.
Previous studies have shown that two subpopulations of cells with astrocytic properties coexist in the mouse hippocampus, which display distinct morphological and functional characteristics, specifically a nonoverlapping expression of either AMPA-type glutamate receptors (GluR cells) or glutamate transporters (GluT cells). Use of transgenic mice with hGFAP promoter-controlled EGFP expression and patch-clamp recordings allow reliable identification of the two cell types in hippocampal slices. Extending functional characterization, we report here the complete lack of gap junctional tracer coupling in GluR cells, while GluT cells are shown to be extensively coupled. This distinction is valid in immature as well as adult animals. Analysis of transgenic mice expressing beta-Gal under regulatory elements of the Cx43 promoter revealed the absence of Cx43 in GluR cells. Experiments using gap junction blockers demonstrated that passive currents, displayed primarily by GluT cells, do not reflect intercellular coupling but are attributable to intrinsic membrane properties of individual cells. This study supports the notion that the two subpopulations of hGFAP-EGFP-positive cells represent distinct cell types with contrasting physiological properties. Since GluR cells do not participate in the astrocytic gap junctional network, their functional role must be different from spatial buffering of ions or signaling molecules, i.e., properties generally assigned to astrocytes.  相似文献   

20.
To study a possible involvement of inwardly rectifying K+ 4.1 (Kir 4. 1) channels in neural cell development, RT-PCR, immunocytochemistry and whole-cell patch-clamp techniques were used to assess expression of Kir 4.1 channels in proliferating and differentiated NG108-15 cells. RT-PCR revealed co-expression of Kir 4.1 and rat ether-a-go-go-related gene (R-ERG) mRNAs in both proliferating and differentiated cells. The relative Kir 4.1 mRNA concentration increased markedly as cells progressed from undifferentiated to differentiated cells. Kir 4.1-immunoreactivity was barely detectable in undifferentiated cells, but clearly detected in differentiated cells, indicating that Kir 4.1 gene and protein expressions are developmentally regulated. However, corresponding Kir 4.1 current could not be detected in differentiated cells using whole-cell patch-clamp recording. The 'silent' channel/receptor, often found in tumor cells, may carry genetic defects, which prevent functional expression of the channel. NG108-15 may serve as unique model for studying the relationship between the expression of an ion channel gene and the electrophysiological phenotype it encodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号