首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 171 毫秒
1.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

2.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

3.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

4.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

5.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

6.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

7.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

8.
目的 探讨变性神经移植后神经传导速度情况. 方法 将30只大鼠分为实验组、对照组和正常组,实验组将60Coγ射线先期辐射处理后的兔自体神经原位再植,对照组切除后不经辐射直接自体再植,正常组不做任何处理.再植术后4月、6月和8月分别对3组大鼠行电生理检查,观察神经传导速度. 结果术后4月实验组的神经传导速度[(47.047±1.203)m/s]与正常组[(92.156±6.456)m/s]、对照组[(54.717±4.139)m/s]比较差异均有统计学差异(P<0.05);而术后6月和8月实验组与正常组、对照组比较,差异无统计学意义(P>0.05). 结论 长段自体神经(约3cm)经60Coγ射线先期处理后再植,神经传导速度可逐渐恢复正常.  相似文献   

9.
目的:探讨利用壳聚糖管(Chitosan tube)加自体神经片断修复大鼠坐骨神经长段神经缺损的可行性和优越性,比较(A组)壳聚糖管自体神经片断串联、(B组)壳聚糖管内包裹自体神经片断、与(C组)单一壳聚糖管三种方式促神经生长得优劣,寻找一种简单、有效的修复长段神经缺损的方法。结果:A、B、C三组、术后4个月检测坐骨神经动作电位传导速度分(20.91±2.05)m/s ( 15.40±2.25)m/s(14.09±1.99)m/s;有髓神经纤维数目(311.79 ±3.78)(240.92 ±8.06)(232.90 ±5.17)。以上指标A组均高于B C组,比较有显著性差异( P<0.01)。结论 A组与B C组比较 可以明显提高神经修复的效果。本实验中可修复 大鼠坐骨神经12mm的缺损。  相似文献   

10.
目的 探讨神经生长因子对糖尿病周围神经病变大鼠神经肽和神经传导速度的影响. 方法 雄性Wistar大鼠35只按随机数字表法分为健康对照组(n=10)、糖尿病模型组(n=13)和神经生长因子治疗组(n=12),后两组用链脲佐菌素制成糖尿病周围神经病变大鼠模型,并给予神经生长因子治疗组神经生长因子治疗(40μg/kg).显微镜下观察并计算背根神经节中P物质、降钙素基因相关肽(CGRP)免疫阳性细胞率,检测运动神经传导速度(MNCV)和感觉神经传导速度(SNCV). 结果 糖尿病模型组大鼠背根神经节中P物质、CGRP免疫阳性细胞率(27.710%±3.471%;36.360%±12.027%)以及神经生长因子治疗组治疗前MNCV [(35.80±6.19) m/s]、SNCV[(39.62±6.69) m/s]与健康对照组[P物质:44.225%±8.213%;CGRP:47.400%±13.723%;MNCV:(55.83±10.30) m/s; SNCV:(47.02±7.52) m/s]相比显著下降,差异有统计学意义(P<0.05).经神经生长因子治疗后,P物质、CGRP免疫阳性细胞率(49.417%±6.753%;53.811%±7.125%)较糖尿病模型组显著增高,MNCV[(41.80±3.45) m/s]、SNCV[(42.92±6.69) m/s]均治疗前显著增高,差异有统计学意义(P<0.05). 结论 糖尿病周围神经病变大鼠可出现神经传导速度下降和神经生长因子相关神经肽P物质、CGRP缺乏,而神经生长因子可促进神经肽的表达并提高神经传导速度.  相似文献   

11.
BACKGROUND: It has been shown that irradiation to the neurolemma can reduce immuuogenicity. However, it is still poorly understood whether the degenerated nerve can affect peripheral nerve regeneration OBJECTIVE: To observe the effect of radiation-damaged nerve transplantation on functional recovery of the peripheral nerve. DESIGN, TIME AND SETTING: Self-control animal trial was performed at the Experimental Center of Orthopedics, Tangdu Hospital of Fourth Military Medical University from January to October 2005. MATERIALS: Fifty-four healthy, Chinese rabbits, irrespective of gender, were randomly divided into experimental (n = 36) and control (n = 18) groups. A 60 Co Y -radiation machine and NDI-200 nerve electromyograph were provided by the Experimental Center of Orthopedics, Tangdu Hospital of Fourth Military Medical University. METHODS: A median incision was made in the posterior right thigh of rabbits after abdominal anesthesia. A 30-mm segment of sciatic nerve was excised from the inferior margin of the piriform muscle to the tibiofibular intersection. The sciatic nerve in the experimental group was sterilely radiated with 350 Gy for 9.5 minutes. The damaged nerve segment was then re-transplanted. In the control group, the sciatic nerve was re-transplanted directly following excision. Nerve conduction velocity was determined at 4, 6, and 8 months post-surgery. MAIN OUTCOME MEASURES: Functional assessments, such as gait, nutritional status of skin on dorsum of foot, toe spreading reflex, and foot holding, were made between 1 and 180 days post-surgery. The common peroneal nerve and tibial nerve reflexes under clamping were observed at 4, 6, and 8 months post-surgery to evaluate functional restoration of the peripheral nerve. Electromyogram was performed to observe nerve conduction velocity. RESULTS: From postoperative days 1 to 26, the limbs that were transplanted with irradiated nerve exhibited dragged walking, foot drop, sole ulcers, depilation, self-induced injury to the toes, and oth  相似文献   

12.
Collagen is one of the best materials used for nerve guide preparation due to its biocompatibility and desirable tensile strength. In this work, we have compared regeneration and functional reinnervation after sciatic nerve resection with bioresorbable crosslinked collagen guides in 10 mm gap. The crosslinking was carried out either with glutaraldehyde (GTA) or microwave irradiation (MWI). The multilayered collagen membrane used for nerve guides are prepared by lamellar evaporation technique. Functional evaluations of the regenerated nerves were performed by measuring the sciatic functional index (SFI), nerve conduction velocity (NCV), and electromyography (EMG). Transmission electron microscopic studies showed growth of axonal cable with fewer myelinated axons, Schwann cells and more unmyelinated axons present in the case of group treated with uncrosslinked collagen tubes after 1 month of implantation. However, we have observed more myelinated axons in the case of autograft, GTA, and MWI crosslinked collagen tube implants across the gap of 1 cm after the same period of implantation. Smaller myelinated fiber diameter was observed in the case of GTA crosslinked collagen tube group when compared with the autograft and MWI collagen tube groups. There were more myelinated axons during the 3rd and 6th months postoperatively using these conduits as substantiated by light microscopic studies of the regenerated nerve. The conduction velocity and recovery index improved significantly after 5 months reaching the normal values in the autograft and MWI crosslinked collagen groups compared to GTA and uncrosslinked collagen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号