首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The mechanisms underlying the induction of synaptic plasticity and the formation of long-term memory involve activation of cell-signalling cascades and protein modifications such as phosphorylation and dephosphorylation. Based on a protein candidate strategy, studies have identified several protein kinases and their substrates, which show an altered phosphorylation state during the early phases of long-term potentiation (LTP), yet only a limited number of synaptic phosphoproteins are known to be implicated in LTP. To identify new phosphoproteins associated with LTP, we have undertaken a proteomic study of phosphoproteins at different time points following the induction of LTP in the dentate gyrus in vivo (0, 15 and 90 min). For each time point, proteins from the dentate gyrus were separated by two-dimensional gel electrophoresis and stained with Pro−Q® Diamond, a fluorescent stain specific for phosphoproteins. Fourteen proteins whose phosphorylation state varied significantly following LTP were identified using matrix-assisted laser desorption ionization/time of flight mass spectrometry and electrospray ionization-Orbitrap tandem mass spectrometry (MS/MS). They are involved in various cellular functions implicated in synaptic plasticity, such as intracellular signalling, axonal growth, exocytosis, protein synthesis and metabolism. Our results highlight new proteins whose phosphorylation or dephosphorylation is associated with LTP induction or maintenance. Further studies focusing on the regulation of specific phosphorylation sites will lead to greater understanding of the individual implications of these proteins in LTP as well as of their molecular interactions.  相似文献   

2.
This study addressed changes in interneuron driving in the dentate gyrus (DG) of urethane-anaesthetized rats in response to tetanic stimulation of the perforant path (PP) or the converging dentate commissural pathway (CP). Using an extracellular tungsten electrode, we recorded from putative interneurons in the DG that fired to stimulation of both the PP and the CP. Conditioning trains (400 Hz, 17.5 ms) were delivered to each pathway individually and to the two pathways together. The primary measure of synaptic drive was the latency of interneuron discharge. High-intensity PP tetany, CP tetany, and paired tetany consistently reduced firing latency to CP driving (P < .05 for all three), indicating an LTP-like increase in synaptic activation through the CP. High-intensity PP tetany decreased latency to PP driving in only two of seven cases. Heterosynaptic changes occurred frequently in individual experiments. Activity-mediated adjustments in synaptic driving of inhibitory interneurons could play a role in normal physiological function. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Recently it has emerged that hippocampal long-term depression (LTD) may play an important role in the acquisition and storage of spatial memories. This form of synaptic plasticity is tightly regulated by metabotropic glutamate receptors (mGluRs) that negatively couple to adenylyl cyclase. Activation of group III mGluRs is necessary for persistent hippocampal LTD, but is not required for depotentiation or long-term potentiation (LTP) in the dentate gyrus in vivo. In the CA1 region antagonism of group III mGluRs prevents LTD in vivo. Effects on LTP in vivo are as yet unknown. We investigated the effects of group III mGluR antagonism on LTP and LTD at Schaffer collateral-CA1 synapses, and on spatial learning in the eight-arm radial maze. Daily application of the group III mGluR antagonist (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) resulted in impairment of long-term (reference) memory, with effects becoming apparent 4 days after training and drug treatment began. Short-term (working) memory was unaffected throughout the 10-day study. Application of CPPG prevented LTD, but not LTP, in the CA1 region. These data suggest that activation of group III mGluRs is required for the establishment of spatial long-term memory. Their exclusive role in mediating hippocampal LTD provides correlational evidence for a role for LTD in the type of spatial learning studied.  相似文献   

4.
Group I metabotropic glutamate receptors (mGluRs) are critically required for multiple forms of hippocampal synaptic plasticity in vivo. The role of the receptor subtype mGluR1 in long-term potentiation (LTP) and learning is unclear. We examined the contribution of mGluR1 to hippocampal LTP and spatial learning using the selective antagonist (S)-(+)-alpha-amino-4carboxy-2-methylbenzene-acetic acid (LY367385). Male Wistar rats were chronically implanted with recording and stimulating electrodes to enable measurement of evoked potentials from medial perforant path-dentate gyrus granule cell synapses. An injection cannula was inserted into the ipsilateral cerebral ventricle to enable drug application. Experiments were begun 10 days after the implantation procedure. We induced a robust LTP which lasted over 25 h with a 200-Hz tetanization. Injections of LY367385 at all concentrations under investigation (4-32 nmol in a 5-microL injection volume) did not affect basal synaptic transmission. In contrast, we observed a dose-dependent impairment of LTP expression: LY367385 (4 nmol) had no effect on LTP induction, whereas 8 and 16 nmol LY367385 reduced both LTP induction and expression, suggestive of an interaction with N-methyl-d-aspartate receptors. We assessed the effects of daily LY367385 application (8 nmol) on performance in an eight-arm radial maze. LY367385-treated rats showed deficits in reference but not working memory performance compared with vehicle-treated controls. Rearing, grooming and locomotor activity were unaffected by LY367385. These data suggest an important role for mGluR1 in LTP and learning and highlight the specific significance of this mGluR subtype for reference memory.  相似文献   

5.
Previous experiments have shown that long-term potentiation (LTP) generally lasts for only a few days or weeks. The LTP phenomenon would be more attractive as a memory model if it were more enduring. The experiments reported in this paper were designed to test the effects of repeated induction of LTP on the duration of LTP. Three groups of animals received 5 LTP-inducing stimulation sessions. In one group of animals, the stimulation sessions were administered every 24 h. In the 2nd group, the sessions were administered after the LTP effects had decayed to 50% of the peak values. In the 3rd group, the sessions were administered only after the response amplitudes had completely returned to pre-LTP baseline levels. None of the LTP measures were altered, in any group, as a result of repeated induction of LTP. The thresholds, the asymptotic levels of potentiation, and the decay rates were the same after each session. Other treatments may alter the duration of LTP effects, but repeated induction of LTP does not appear to have any lasting effects.  相似文献   

6.
Depotentiation comprises a reversal of tetanization-induced long-term potentiation (LTP) which occurs following low-frequency stimulation (LFS) in the hippocampus in vivo. Although depotentiation has been consistently demonstrated in the CA1 region, no positive reports of the existence of depotentiation in the dentate gyrus in vivo have occurred. This study therefore investigated whether depotentiation is possible in the dentate gyrus in vivo. We found that depotentiation can be induced, but it is very tightly dependent on the interval between tetanization and LFS. Thus, LFS given 2 or 5 min following tetanization produced significant depotentiation, whereas LFS given 10-30 min following tetanization had no significant effect on the expression of LTP. Depotentiation occurred in two phases: a transient depression of evoked responses to below pre-tetanization values, which occurred in the first 60 min following LFS, and a recovery of this response to a stable level of synaptic transmission which comprised a significant reduction in the magnitude of LTP. Group 2 metabotropic glutamate receptors (mGluRs) play an important role in the expression of long-term depression in vivo. We therefore investigated whether group 2 mGluRs contribute to depotentiation. The group 2 antagonist (2S)-alpha-ethylglutamic acid (EGLU) inhibited the early transient depression at a concentration which inhibits LTD in vivo, but did not block the expression of depotentiation. EGLU also inhibited the transient depression induced by 5 Hz given alone. Increasing the concentration of EGLU prevented depotentiation, however. The group 2 agonist (S)-4-carboxy-3-hydroxyphenyl- glycine (4C3HPG) inhibited LTP and enhanced depotentiation. These data suggest a role for group 2 mGluRs in depotentiation.  相似文献   

7.
Research has demonstrated environmentally induced plasticity of hippocampal dentate gyrus-evoked potentials. Other research has shown a role of the NMDA receptor in dentate gyrus long-term potentiation (LTP). The authors tested the role of the NMDA receptor in one form of environmentally induced plasticity, in which transferring animals from their home cages to another environment results in significant excitatory postsynaptic potential (EPSP) enhancement and concomitant depression of the population spike. Rats were chronically implanted with stimulating electrodes in the perforant path and recording electrodes in the dentate gyrus bilaterally. Evoked potentials were recorded from freely behaving rats for four 20-minute sessions (1/wk), which took place immediately following an environmental transfer. Rats received 0.00, 0.05, 0.08, or 0.10 mg/kg MK-801 s.c. 30 minutes prior to recording sessions in either an ascending- or descending-dose series. Results showed that MK-801 produced a reduction of the EPSP enhancement, which takes place over the 20-minute session. The effects of MK-801 on spike depression varied as a function of dose series and time within a session, suggesting a long-term effect of MK-801 on spike depression. There was no detected effect of MK-801 on behavior. Results suggest a role of the NMDA receptor in this form of environmentally induced plasticity with different effects of NMDA receptor antagonism on EPSP enhancement and spike depression.  相似文献   

8.
9.
The hippocampus is believed to play a crucial role in the formation of memory for spatial tasks. In the present study quantitative electron microscopy was used to investigate morphological changes in the hippocampal dentate gyrus of 3-month-old male rats at 3, 9 and 24 h after training to find a hidden platform in a Morris water maze. Average escape latency (time taken to reach the platform) in all trained groups decreased progressively with increased training but data from a probe trial (quadrant analysis test) at the end of training indicated that only animals in the 9- and 24-h groups, not the 3-h group, displayed significant retention of platform location. Unbiased stereological methods were used to estimate synapse and neuronal density at each time point after training. The majority of synapses had unperforated postsynaptic densities, were localized on small dendritic spines and were classed as axo-spinous. In comparison to age-matched untrained rats, significant but transient increases were observed in axo-spinous synapse density and synapse-to-neuron ratio 9 h after the start of training, but not at earlier (3 h) or later (24 h) times. These changes at 9 h post-training were accompanied by transient decreases in both mean synaptic height and area of postsynaptic density. No such changes were observed in an exercise-matched control group of rats, indicating that the transient synaptic changes in the dentate gyrus are most likely to be specifically related to processes involved in memory formation for the spatial learning task.  相似文献   

10.
Previous studies have shown that either norepinephrine (NE) or isoproterenol (ISO) enhances the slope of the field excitatory postsynaptic potential (EPSP) in the dentate gyrus of the rat hippocampal formation. In contrast, NE and ISO cause no increase in excitatory transmission in area CA1 of the hippocampus. The molecular mechanism underlying this brain region-specific increase in synaptic transmission is not known. The phosphorylation of synapsin I and synapsin II, two homologous presynaptic vesicle-associated proteins, is thought to promote neurotransmitter release. The authors have observed previously NE- and ISO-enhanced phosphorylation of synapsins I and II in the dentate gyrus. The purpose of this study was to determine whether ISO-stimulated phosphorylation also occurs in the CA1, where ISO has no effect on excitatory neurotransmission. These studies were correlated with electrophysiological studies in in vitro hippocampal slices. Superfusion of slices with ISO resulted in an increase in EPSP slope in the dentate but not in area CA1. The enhanced dentate EPSP returned to baseline levels within 30 minutes of washout of the drug. Isoproterenol produced corresponding increases in the phosphorylation of the synapsins in dentate slices but had no effect on these proteins in CA1 slices. Moreover, in dentate slices exposed to a 30-minute wash following incubation with ISO, phosphorylation of the synapsins returned to control levels. This close temporal and brain regional correlation between ISO stimulation of both synapsin phosphorylation and synaptic transmission suggests that the synapsin proteins may play a role in the synaptic potentiation produced by ISO in the dentate.  相似文献   

11.
The mechanism of action of norepinephrine (NE)-induced potentiation of the population spike in the dentate gyrus of hippocampal slices was examined and compared with NE effects in field CA1. NE-induced potentiation was confined to the dentate gyrus, where slices perfused for 30 min with concentrations of NE as low as 5 microM exhibited potentiation of the perforant path evoked population spike. Potentiation began within 15 min, and lasted many hours after NE was washed out. Experiments where slices were pre-incubated with the protein synthesis inhibitor emetine indicated that there are two distinct phases to NE-induced potentiation. The initial short-term NE-induced potentiation (NEP) seen during NE application was not affected by a 30 min pre-incubation with emetine, whereas the long-lasting potentiation (NELLP) which persists after NE washout was completely blocked by emetine at a concentration which we have previously shown to be effective in blocking hippocampal long-term potentiation (LTP). Additional experiments indicated that both phases of NE-induced potentiation were completely blocked by the beta-antagonist propranolol and the beta 1-antagonist metoprolol. Furthermore, pre-incubation of slices with the direct-acting adenylate cyclase stimulant forskolin shifted the dose-response curves for both phases of NE-induced potentiation to the left. These results suggest that NE-induced potentiation is probably mediated by beta 1-receptor stimulation of adenylate cyclase. We have previously shown an importance for beta 1-receptor stimulation of adenylate cyclase in the production of LTP in the dentate. Thus, these results demonstrate a number of similarities between hippocampal LTP and NELLP in the dentate gyrus.  相似文献   

12.
Neural cell adhesion molecule (NCAM) is frequently associated with polysialic acid (PSA), and its function is highly dependent on this polysialylation. PSA‐NCAM plays an important role in synaptic plasticity in the hippocampus. STX and PST are the enzymes responsible for NCAM polysialylation. We investigated whether unilateral long‐term potentiation (LTP) induction in vivo, in adult rat dentate gyrus (DG), triggered NCAM polysialylation by STX and PST produced in the hippocampus. We found that levels of STX and PST mRNA increased strongly since the early stage of hippocampal LTP and remained high during the maintenance of DG‐LTP for 4 h. This rapid increase in polysialyltransferase gene expression occurred in both the hippocampi, probably resulting from bilateral LTP induction by strong unilateral HFS. Thus, LTP triggers interhemispheric molecular changes in the hippocampal network. This study is the first to describe the effects of LTP induction and maintenance on polysialyltransferases in vivo. Our findings suggest that hippocampal synaptic remodeling requires NCAM polysialylation. ©2010 Wiley Periodicals, Inc.  相似文献   

13.
Ghrelin, an orexigenic hormone, is mainly produced by the stomach and released into the circulation. Ghrelin receptors (growth hormone secretagogue receptors) are expressed throughout the brain, including the hippocampus. The activation of ghrelin receptors facilitates high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in vitro, and also improves learning and memory. Herein, we report that a single infusion of ghrelin into the hippocampus led to long-lasting potentiation of excitatory postsynaptic potentials (EPSPs) and population spikes (PSs) in the dentate gyrus of anesthetized rats. This potentiation was accompanied by a reduction in paired-pulse depression of the EPSP slope, an increase in paired-pulse facilitation of the PS amplitude, and an enhancement of EPSP-spike coupling, suggesting the involvement of both presynaptic and postsynaptic mechanisms. Meanwhile, ghrelin infusion time-dependently increased the phosphorylation of Akt-Ser473, a downstream molecule of phosphoinositide 3-kinase (PI3K). Interestingly, PI3K inhibitors, but not NMDA receptor antagonist, inhibited ghrelin-induced potentiation. Although ghrelin had no effect on the induction of HFS-induced LTP, it prolonged the expression of HFS-induced LTP through extracellular signal-regulated kinase (ERK)1/2. The Morris water maze test showed that ghrelin enhanced spatial memory, and that this was prevented by pretreatment with PI3K inhibitor. Taken together, the findings show that: (i) a single infusion of ghrelin induced a new form of synaptic plasticity by activating the PI3K signaling pathway, without HFS and NMDA receptor activation; (ii) a single infusion of ghrelin also enhanced the maintenance of HFS-induced LTP through ERK activation; and (iii) repetitive infusion of ghrelin enhanced spatial memory by activating the PI3K signaling pathway. Thus, we propose that the ghrelin signaling pathway could have therapeutic value in cognitive deficits.  相似文献   

14.
15.
Various paradigms have been used to assess the capacity of the adult brain to undergo activity-dependent morphological plasticity. In this report we have employed recurrent limbic seizures as a means of studying the effects of this form of enhanced neuronal activity on cellular morphology and, in particular, on the incidence of somatic spines on the dentate gyrus granule cells. Seizure activity was induced by the placement of focal, unilateral electrolytic lesions in the dentate gyrus hilus of adult rats. At various intervals postlesion, rats with behaviorally verified seizures were sacrificed, and the hippocampi contralateral, to the lesions were removed and prepared for electron microscopy. Quantitative analysis showed that as early as 5 hours postlesion there was a dramatic increase in the density and morphological complexity of spines on the perikarya of the granule cells in rats that received seizure-producing hilus lesions when compared to granule cells from control rats. Many of the somatic spines received asymmetric synapses. The increase in somatic spines was dependent on seizure activity and persisted for at least 1 month following a single recurrent seizure episode. CA1 pyramidal neurons, which exhibit changes in gene expression in response to hilus lesion-induced seizures but do not normally possess somatic spines, did not exhibit an activity-dependent elaboration of somatic spines. Thus, the seizure-induced elaboration of somatic spines represents an amplification of an existing feature of the granule cells and not an effect occurring throughout hippocampus. These data provide evidence for very rapid and long-lasting structural plasticity in response to brief episodes of seizure activity in the adult brain. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The present study documents alterations in the size of the postsynaptic density (PSD) of synapses formed by entorhinal afferents with granule cell dendritic spines with long-term potentiation (LTP). These changes appear early and persist for at least 60 minutes after LTP-inducing conditioning stimulation. Each animal received test and conditioning stimulation typical of LTP paradigms. Electron microscopic preparation of the dentate gyri from each animal followed conventional procedures. PSD trace lengths of identified asymmetric synaptic profiles were measured. The total PSD length for four categories of synaptic profiles was determined for each third of the molecular layer. PSD surface area per unit volume of tissue (SV) was then computed from these data. Statistical analysis of the SV data used multivariate analysis of variance. PSD surface area per synapse was also estimated. Total PSD surface area per unit volume does not change significantly throughout the entire molecular layer with LTP-inducing conditioning stimulation. However, in the activated portion of the molecular layer, total PSD surface area per unit volume tends to increase with conditioning stimulation. In the middle third of the molecular layer, total PSD surface area per unit volume associated with the concave spine profiles increases significantly while there is a statistically significant decrease in total PSD SV associated with the nonconcave spine profiles. The PSD surface area per synapse also increases markedly. Since it seems that there is an interconversion of spine synapses from nonconcave to concave with LTP (Desmond and Levy: J. Comp. Neurol. In press, '86a), these data suggest that potentiated synapses have larger responses because, in part, they have larger neurotransmitter receptive regions.  相似文献   

17.
Electron microscopic immunocytochemical methods were used to determine the localization, subcellular distribution and expression of activity-regulated cytoskeletal protein (Arc/Arg3.1) in dentate gyrus after unilateral induction of long-term potentiation (LTP) in the perforant pathway of anaesthetized rats. At 2 h post-induction, immunoreaction product was visible in the dentate gyrus in both the granule cell and molecular layers. Arc expression was higher in the potentiated than the unstimulated contralateral hemisphere. Single-section electron microscopy analysis in unstimulated tissue and in tissue prepared 2 and 4 h after LTP induction showed Arc immunoreactivity (Arc-IR) in dendrites, dendritic spines and glia. Arc-IR was associated with synaptic and non-synaptic plasma membrane apposed to axon terminals and with cytoplasmic organelles, including the cytoskeleton. Arc-IR was also present in neuronal perikarya and there was occasional labelling of nuclei and axons. At 2 h post-LTP induction, there were significant increases in Arc-IR within the granule cell and molecular layers of the dentate gyrus and particularly within the middle molecular layer relative to the inner and outer molecular layers. This increase in Arc expression 2 h after LTP induction was blocked by the N-methyl-D-aspartate receptor antagonist (RS)-3-2-carboxypiperazin-4-yl-propyl-1-phosphonic acid. In animals killed 4 h after LTP induction, Arc expression had declined and differences between the potentiated and unpotentiated hemispheres were no longer significant. Our data provide ultrastructural evidence for a transient LTP-associated increase in the expression of Arc protein in the middle molecular layer of the dentate gyrus, with preferential targeting to dendrites, dendritic spines and glia.  相似文献   

18.
Hilus lesion-induced recurrent limbic seizures cause a dramatic increase in the numbers of somatic spines on dentate gyrus granule cells in the adult rat. Somatic spines are maximally increased 3 h after the initiation of seizures at which time many of these spines form synapses. The present quantitative electron microscopic study assessed the numbers and types of synapses present on the granule cell perikarya and somatic spines of control and experimental seizure rats with the goal of determining if newly elaborated somatic spines arise at the site of pre-existing synapses or are associated with new innervation. Experimental rats were sacrificed 5 h after hilar lesion placement (or 3 h after seizure onset). In both control and hilus-lesioned (HL) rats, 15–20% of the somatic spines could be seen to form synaptic contacts within a single plane of section; these synapses were almost exclusively of the asymmetric type. With the increased incidence of spines in experimental-seizure rats, there was a 6.25-fold greater number of spine synapses in HL versus control rats. There was, in addition, a 60% decrease in the number of asymmetric synapses occurring directly on the granule cell perikarya but no change in the total (spine plus somatic) number of asymmeteric synapses. Although few asymmetric synapses were associated with spines in control tissue, 60–70% of asymmetric synapses were associated with spines in experimental-seizure tissue. In addition, in hilus lesion rats symmetric somatic synapses were increased by 20% on cells in deep stratum granulosum resulting in a dissolution of the superficial-to-deep innervation gradient present in the untreated rat. These findiings support the conclusion that spines induced by seizure activity form at the site of pre-existing asymmetric synapses on the granule cells and demonstrate that brief seizure episodes can rapidly induce marked changes in innervation patterns in the adult brain. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The role of the N-methyl-d-aspartate (NMDA) type of glutamate receptor in long-term potentiation (LTP) of the medial (MPP) and lateral (LPP) divisions of the perforant path - granule cell system was investigated in urethane-anaesthetized rats. A stimulating electrode was positioned in the dorsomedial or ventrolateral aspect of the angular bundle for selective activation of either the MPP or LPP, respectively. A push - pull cannula served to focally perfuse artificial cerebrospinal fluid (ACSF) across the perforant path synaptic zone, while evoked potentials were monitored in the dentate hilus. Identification of LPP and MPP responses was based on (1) differences in population excitatory postsynaptic potential (EPSP) waveform obtained during stimulus depth profiles, and (2) differential sensitivity of evoked EPSPs to the glutamate receptor agonist l-aminophosphonobutyrate (AP4), and the antagonist gamma-d-glutamylglycine (DGG). High-frequency stimulation (400 Hz, 8 bursts of 8 pulses) applied to the lateral and medial perforant path elicited LTP of the EPSP and population spike in rats perfused with standard medium. In the MPP, LTP was almost completely blocked when d-aminophosphonopentanoate (AP5; 100 microM), a selective NMDA receptor antagonist, was perfused during the tetanus. Surprisingly, in the LPP experiments, AP5 did not impair induction of the 'synaptic' EPSP component of LTP. This occurred despite the ability of AP5 to block LTP of the LPP evoked population spike. The results suggest the existence of a novel, NMDA receptor-independent form of synaptic LTP in the lateral perforant path.  相似文献   

20.
Anxiety disorders are presumably associated with negative memory. Psychological therapies are widely used to treat this mental deficit in human beings based on the view that positive memory competes with negative memory and relieves anxiety status. Cellular and molecular processes underlying psychological therapies remain elusive. Therefore, we have investigated its mechanisms based on a mouse model in which food reward at one open‐arm of the elevated plus‐maze was used for training mice to form reward memory and challenge the open arms. Mice with the reward training showed increased entries and stay time in reward open‐arm versus neutral open‐arm as well as in open‐arms versus closed‐arms. Accompanying with reward memory formation and anxiety relief, glutamatergic synaptic transmission in dentate gyrus in vivo and dendritic spines in granule cells became upregulated. This synaptic up‐regulation was accompanied by the expression of more protein kinase C (PKC) in the dendritic spines. The inhibition of PKC by chelerythrine impaired the formation of reward memory, the relief of anxiety‐related behavior and the up‐regulation of glutamate synapses. Our results suggest that reward‐induced positive memory relieves mouse anxiety‐related behavior by strengthening synaptic efficacy and PKC in the hippocampus, which imply the underlying cellular and molecular processes involved in the beneficial effects of psychological therapies treating anxiety disorders. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号