首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class IA PI3Ks are activated by growth factor receptors and generate lipid second messengers that mediate downstream responses including cell growth, cell migration, and cell survival. The p85 regulatory subunit of PI3K contains Src homology-2 (SH2) domains that mediate binding to tyrosine-phosphorylated receptors or adaptor proteins to facilitate localization and activation of PI3K at the plasma membrane. We report here that persistent activation of PKC family members by phorbol ester stimulation in cells leads to phosphorylation of two serine residues at analogous sites on both SH2 domains of p85α (S361 and S652). The modified serine residues are located in the phospho-tyrosine binding pockets of the two SH2 domains, and in the crystal structures the phosphate moieties are predicted to occupy the same space as the phosphate moieties of bound phospho-tyrosine peptides. Consistent with this prediction, phosphorylation at these serine residues or mutation to aspartate inhibits binding of p85α to tyrosine-phosphorylated peptides. We provide evidence that protein kinase D, which is phosphorylated and activated by PKCs, mediates phosphorylation of S652 in the C-terminal SH2 domain. These results reveal cross talk between PKC signaling and PI3K signaling that impairs PI3K pathway activation under conditions of persistent PKC (and protein kinase D) activity.  相似文献   

2.
Deane JA  Kharas MG  Oak JS  Stiles LN  Luo J  Moore TI  Ji H  Rommel C  Cantley LC  Lane TE  Fruman DA 《Blood》2007,109(7):2894-2902
The class IA subgroup of phosphoinositide 3-kinase (PI3K) is activated downstream of antigen receptors, costimulatory molecules, and cytokine receptors on lymphocytes. Targeted deletion of individual genes for class IA regulatory subunits severely impairs the development and function of B cells but not T cells. Here we analyze conditional mutant mice in which thymocytes and T cells lack the major class IA regulatory subunits p85alpha, p55alpha, p50alpha, and p85beta. These cells exhibit nearly complete loss of PI3K signaling downstream of the T-cell receptor (TCR) and CD28. Nevertheless, T-cell development is largely unperturbed, and peripheral T cells show only partial impairments in proliferation and cytokine production in vitro. Both genetic and pharmacologic experiments suggest that class IA PI3K signaling plays a limited role in T-cell proliferation driven by TCR/CD28 clustering. In vivo, class IA-deficient T cells provide reduced help to B cells but show normal ability to mediate antiviral immunity. Together these findings provide definitive evidence that class IA PI3K regulatory subunits are essential for a subset of T-cell functions while challenging the notion that this signaling mechanism is a critical mediator of costimulatory signals downstream of CD28.  相似文献   

3.
To investigate the signaling processes induced by recombinant thrombopoietin, we used human platelets to recently show that thrombopoietin induces rapid tyrosine phosphorylation of Jak2, Tyk2, Shc, Stat3, Stat5, and other proteins in human platelets. Because the apparent molecular weight of a major tyrosine-phosphorylated protein in platelets stimulated by thrombopoietin is approximately 120 kD, we examined the possibility that this could be p120c-cbl, a protein known to be involved in signaling by many growth factors. Specific antisera against p120c-cbl recognized the same 120-kD protein in lysates of Jurkat cells, which are known to express p120c-cbl, and platelets, indicating that platelets have p120c-cbl. Thrombopoietin induced rapid tyrosine phosphorylation of p120c-cbl in platelets. Thrombopoietin also induced tyrosine phosphorylation of p120c-cbl in FDCP cells genetically engineered to express the thrombopoietin receptor, c-Mpl. Interestingly, FDCP cells, expressing a truncated c-Mpl devoid of the box-2 domain, proliferate in response to thrombopoietin. However, no increase in tyrosine phosphorylation of p120c-cbl was observed upon treatment of these cells with thrombopoietin, indicating that in this system tyrosine phosphorylation of p120c-cbl may not be essential for cell proliferation. This suggests that tyrosine phosphorylation of p120c-cbl may be required for nonmitogenic responses induced by thrombopoietin in postmitotic cells such as platelets. On the other hand, p120c-cbl was not significantly tyrosine-phosphorylated upon treatment of platelets with thrombin. However, it became incorporated into the Triton X-100-insoluble, 10,000g-sedimentable residue in an aggregation-dependent manner, suggesting that it may have a regulatory role in platelet cytoskeletal processes. p120c-cbl was constitutively associated with a 28-kD adapter protein, Grb2, that was also incorporated into the Triton X-100-insoluble, sedimentable residue dependent on aggregation. Further, we found that p120c-cbl is an endogenous substrate for calpain, a protease that may play a role in postaggregation signaling processes. Our data suggest that p120c-cbl may be involved in signal transduction following ligand binding to c- Mpl through its inducible tyrosine phosphorylation, and it may also be involved in signaling during platelet aggregation by its redistribution to the cytoskeleton.  相似文献   

4.
CD19 is a coreceptor that amplifies signaling initiated by antigen cross-linking of the B-cell antigen receptor (BCR). CD19 can also signal independently of BCR coligation. This study shows that B-cell adaptor for phosphoinositide 3-kinase (BCAP), previously characterized as a substrate of the tyrosine kinases upon BCR engagement, is phosphorylated by cross-linking of CD19. Tyrosine phosphorylation of BCAP, mediated by Lyn, provides binding site(s) for phosphoinositide 3-kinase (PI3K), thereby participating in Akt activation. Thus, these results provide evidence that BCAP serves as an adaptor molecule for CD19 to activate the PI3K pathway in B cells.  相似文献   

5.
A cDNA encoding a signal transduction protein with a Src homology 2 (SH2) domain and a tyrosine phosphorylation site was cloned from a rat lymph node cDNA library. This protein, which we designate Lnk, has a calculated molecular weight of 33,988. When T lymphocytes were activated by antibody-mediated crosslinking of the T-cell receptor and CD4, Lnk became tyrosine phosphorylated. In activated T lymphocytes, phospholipase C gamma 1, phosphatidylinositol 3-kinase, and Grb-2 coimmunoprecipitated with Lnk. Our results suggest that Lnk becomes tyrosine phosphorylated and links the immediate tyrosine phosphorylation signals of the TCR to the distal phosphatidylinositol 3-kinase, phospholipase C gamma 1 and Ras signaling pathways through its multifunctional tyrosine phosphorylation site.  相似文献   

6.
CD38 is a surface receptor able to induce activation, proliferation, and survival of human and mouse lymphocytes; this molecule is expressed on the surface of both mature and immature B cells. In this work, the function of CD38 in the maturation of murine B lymphocytes in the spleen was analyzed. The results showed that CD38 is highly expressed on Transitional 2 (T2) B lymphocytes with an intermediate expression on Transitional 1 (T1) and mature follicular B cells (M). Correlating with a high expression of CD38, T2 cells are also larger and more granular than T1 or M B cells. T2 cells also showed high levels of other molecules, which indicate an activated phenotype. CD38 crosslinking induced proliferation and maturation of T2 B lymphocytes; in contrast, T1 subset died by apoptosis. Finally, CD38 stimulation of T2 B lymphocytes obtained from Btk-, Lyn-, or Fyn-deficient mice showed a defective differentiation; similarly, drugs interfering with PI3K or ERK decreased the proliferation or differentiation of this subset. This suggests that these molecules participate in the CD38 signaling pathway. As a whole, the results indicate that CD38 plays an important role in the regulation of B-cell maturation in the spleen.  相似文献   

7.
目的探讨磷脂酰肌酶-3激酶(PI3K)在CD3mAb活化T细胞信号转导途径中的作用。方法分离获取健康人外周血单个核细胞(PBMC),用不同浓度的PI3K特异性抑制剂LY294002处理后再用CD3mAb活化T细胞。0、6、12、24、48、72h后检测总T细胞CD69分子的表达及IL-2表达情况,培养10d后计数总T细胞的增殖情况。结果LY294002呈浓度依赖性地抑制总T细胞CD69的表达、IL-2的产生和T细胞增殖。结论PI3K参与CD3mAb诱导T淋巴细胞活化的信号转导途径,对T细胞的充分活化必不可少。  相似文献   

8.
When T cells are activated by the T-cell antigen receptor, a number of cellular proteins are phosphorylated on tyrosine. We investigated whether any of these proteins were present on the surface of activated T cells. Using the human leukemic T-cell line Jurkat and normal peripheral blood lymphocytes, we identified a 67-kDa cell surface glycoprotein in anti-phosphotyrosine immunoprecipitates, after treatment of the cells with CD3 antibody. When cell lysates were depleted of CD5 by sequential immunoprecipitation, the 67-kDa phosphotyrosyl polypeptide was no longer precipitated by the phosphotyrosine antibody. Western blot analysis of anti-phosphotyrosine precipitates confirmed that this glycoprotein was CD5. It was possible that CD5 was present in the anti-phosphotyrosine immunoprecipitates due to its physical association with phosphotyrosyl proteins rather than being directly tyrosine-phosphorylated itself. However, Western blot analysis of anti-CD5 immunoprecipitates with phosphotyrosine antibody and phosphoamino acid analysis demonstrated that CD5 was indeed phosphorylated on tyrosine after stimulation of the cells with CD3 antibody and was concomitantly phosphorylated on serine and threonine. Tyrosine phosphorylation of CD5 was maximal 2 min after CD3 stimulation and returned to baseline levels by 60 min. CD5 is expressed on the cell surface of all mature T cells and a small proportion of B lymphocytes and has recently been identified as the ligand for CD72, a receptor present on the surface of all B cells. The present data suggest that tyrosine phosphorylation may be involved in B-cell-T-cell communication.  相似文献   

9.
Lipopolysaccharide (LPS) is a major gram-negative bacterial component that stimulates innate immune response and also induces B-lymphocyte activation. Recent studies have revealed that common molecular patterns of microorganisms such as LPS are recognized by toll-like receptors (TLRs). B cells have 2 known TLRs that mediate LPS signaling, TLR4 and RP105 (CD180). While TLR4 is expressed on immune cells of various types, RP105 is preferentially expressed on mature B cells. Here we demonstrate that CD19 plays a major role in regulating signal transduction through RP105. Anti-RP105 ligation induced normal proliferation of B cells from mice deficient for MyD88, an adaptor protein that mediates most TLR pathways. By contrast, the loss of CD19 resulted in modest B-cell proliferation against anti-RP105 stimulation as well as LPS stimulation. LPS induced tyrosine phosphorylation of CD19, which was RP105-dependent but TLR4-independent. CD19 formed a complex with Lyn and Vav following RP105 ligation, and CD19 expression was required for optimal Lyn activation and Vav phosphorylation. Consistently, B cells deficient for CD19 exhibited specific defect in the activation of c-Jun N-terminal kinases following RP105 ligation and LPS stimulation. In contrast, CD19 and phosphatidylinositol 3-kinase independently regulated intracellular calcium mobilization induced by anti-RP105 stimulation. Thus, signaling through the B-cell-specific LPS receptor RP105 is uniquely regulated by the B-cell-specific signaling component, Lyn/CD19/Vav complex.  相似文献   

10.
Kitanaka  A; Ito  C; Nishigaki  H; Campana  D 《Blood》1996,88(2):590-598
The signalling pathways that arrest the cell cycle and trigger cell death are only partially known. Dimerization of CD38, a 45-kD transmembrane type II glycoprotein highly expressed in immature B cells, inhibits cell growth and causes apoptosis in normal and leukemic B-cell progenitors, but the molecular mechanisms underlying these cellular responses are unknown. In the present study, we found that CD38 ligation in the immature B-cell lines 380, REH, and RS4;11 caused rapid tyrosine phosphorylation of the protein product of the proto- oncogene c-cbl. Dimerization of CD38 was accompanied by the association of cbl with the p85 subunit of phosphatidylinositol 3-kinase (Pl 3-K), resulting in markedly increased Pl 3-K activity in antiphosphotyrosine and anti-cbl immunoprecipitates. Wortmannin and LY294002, two potent inhibitors of Pl 3-K, rescued immature B cells from CD38-mediated growth suppression. This effect was observed not only in model B-cell lines, but also in cultures of leukemic lymphoblasts from patients, and in normal bone marrow B-cell progenitors as well. Concentrations of inhibitors that reversed cellular responses to CD38 significantly decreased Pl 3-K activity. By contrast, rapamycin, a p70 S6-kinase inhibitor, did not rescue immature B cells from CD38-mediated suppression. These results suggest that Pl 3-K activity is essential for CD38-mediated inhibition of lymphopoiesis and that cbl and Pl 3-K are regulatory molecules whose activation can result in suppression of cell proliferation and apoptosis in immature lymphoid cells.  相似文献   

11.
In lymphoid organs, follicular dendritic cells (FDCs), monocytes, and macrophages are targets for HIV infection and reservoirs for infectious virus. Strikingly, the apoptotic cells in these sites are essentially uninfected CD4+ T lymphocytes, but lie in close proximity to infected cells or FDCs carrying trapped HIV virions. To decipher this apoptotic pathway, we have established a two-step experimental system that reproduces in vitro the HIV envelope protein-mediated apoptosis restricted to uninfected CD4+ T lymphocytic cell lines. In this assay, uninfected CD4+ T cell targets undergo apoptosis following an initial priming step on HeLa cells expressing functional HIV envelope proteins at their plasma membrane and a second and necessary stimulation step via the CD3-TCR complex. The CD4+ T lymphocytic cells susceptible to apoptosis are, in contrast, resistant to cell fusion mediated by HIV envelope protein and express SDF-1. FDCs and macrophages are known to be high B7 expressors. Thus in lymph nodes, the cells that have trapped HIV particles in immune complexes at the plasma membrane present both HIV envelope proteins and B7.1 at their surface. We mimicked this situation in vitro by priming CD4+ T lymphocytes on cells expressing the costimulatory molecule B7 in addition to HIV envelope proteins, and show that it resulted in an acceleration and a twofold increase in apoptosis. Finally, we characterized two enzymes, PI3Kinase and PI-PLC, which are both downstream effectors of the CD4 (HIV envelope protein receptor) and CD28 (B7 receptor) activation pathways, and that participated in the early steps of priming for apoptosis.  相似文献   

12.
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K. In the present work, using HTC-IR cells, we have found that insulin stimulation promotes the relocalization of Sam68 from the nucleus to the cytoplasm, and we have further studied the role of Sam68 in insulin receptor signaling complexes, by co-precipitating experiments. Thus, Sam68 is co-precipitated with p85 PI3K, IRS-1 and IR. The association of Sam68 with these complexes is mediated by the SH2 domains of PI3K. Moreover, we have found that Sam68 is a p120GAP associated protein after Tyr-phosphorylation by the IR. This association is mediated by the SH2 domains of GAP (preferentially the C-terminal SH2). Thus, Sam68 is linking p120GAP to PI3K signaling pathway. In fact, PI3K activity was increased in both anti-Sam68 and anti-GAP immmunoprecipitates upon insulin stimulation. We propose that the recruitment of the docking protein Sam68 to the PI3K pathway may serve to allow the association of other signaling molecules, i.e. p120GAP. In this way, these signaling complexes may modulate other signaling cascades of IR, such as p21Ras pathway.  相似文献   

13.
CD28 is a costimulatory receptor found on the surface of most T lymphocytes. Engagement of CD28 induces interleukin 2 (IL-2) production and cell proliferation when combined with an additional signal such as treatment with phorbol ester, an activator of protein kinase C. Recent studies have established that after CD28 ligation, the cytoplasmic domain of CD28 can bind to the 85-kDa subunit of phosphatidylinositol 3-kinase (PI3 kinase). There is a concomitant increase in PI3 lipid kinase activity that may be important in CD28 signaling. Despite the requirement of phorbol 12-myristate 13-acetate (PMA) for effector function, we have found, however, that treatment of Jurkat T cells with the phorbol ester PMA dramatically inhibits (i) the association of PI3 kinase with CD28, (ii) the ability of p85 PI3 kinase to be immunoprecipitated by anti-phosphotyrosine antibodies, and (iii) the induction of PI3 kinase activity after stimulation of the cells with the anti-CD28 monoclonal antibody 9.3. These changes occur within minutes of PMA treatment and are persistent. In addition, we have found that wortmannin, a potent inhibitor of PI3 kinase, does not interfere with the induction of IL-2 after stimulation of Jurkat T cells with anti-CD28 monoclonal antibody and PMA. We conclude that PI3 kinase activity may not be required for CD28-dependent IL-2 production from Jurkat T cells in the presence of PMA.  相似文献   

14.
Stem cell factor (SCF) binds the receptor tyrosine kinase c-Kit and is critical for normal hematopoiesis. Substitution of valine for aspartic acid 816 (D816V) constitutively actives human c-Kit, and this mutation is found in patients with mastocytosis, leukemia, and germ cell tumors. Immortalized murine progenitor cells (MIHCs) transduced with wild-type c-Kit proliferate in response to SCF, whereas cells expressing D816V c-Kit (MIHC-D816V) are factor-independent and tumorigenic. However, the mechanisms mediating transformation by D816V c-Kit are unknown. The objective of this study was to identify signaling components that contribute to D816V c-Kit-mediated transformation. SCF stimulates association of p85PI3K with phosphorylated tyrosine 721 of wild-type c-Kit. Phosphatidylinositol 3 kinase (PI3K) subsequently contributes to the activation of Akt and Jnks. In contrast, these studies demonstrated that the D816V c-Kit mutant was constitutively associated with phosphorylated p85PI3K, and, downstream of PI3K, Jnk 1 and Jnk 2 were activated but Akt was not. Interestingly, Erks 1 and 2 were not constitutively activated by D816V c-Kit. Thus, D816V c-Kit maintains the activity of PI3K but not of all signaling pathways activated by wild-type c-Kit. Further, all pathways downstream of PI3K are not constitutively active in MIHC-D816V cells. Studies with a PI3K inhibitor and D816V/Y721F c-Kit, a mutant incapable of recruiting PI3K, indicate that constitutive activation of PI3K through direct recruitment by D816V c-Kit plays a role in factor-independent growth of MIHC and is critical for tumorigenicity.  相似文献   

15.
Monoclonal antibodies (mAbs) of IPO series were developed following immunization with human B cell lines RPMI-1788, Daudi, and spleen cells from a patient with hairy cell leukemia. Reactivity of these mAbs was studied on 19 human cell lines, mononuclear cells of 50 healthy persons and 142 patients with leukemias and lymphomas. It was shown that mAbs IPO-3, IPO-10 and IPO-24 define B cell-specific antigens expressed at different stages of maturation. MAb IPO-3 reacted with activated B lymphocytes. MAb IPO-10 defined the antigen which appears on B cell progenitors following HLA-DR and proceeding CD19, CD10, CD22, CD37; cy mu and CD20 and have been lost during terminal differentiation. The antigen detected by mAb IPO-24 was expressed throughout B cell ontogeny from pre-B cell until the B-blasts. MAb IPO-4 detected an antigen of activated T and B lymphocytes. These mAbs are useful tools in the leukemia and lymphoma phenotypic characterization and classification.  相似文献   

16.
A diverse range of insulin-regulated cellular processes are dependent on class I(A) phosphatidylinositol 3-kinases (PI 3-Ks) and their association with and activation by up-stream signaling molecules. Here we report on the identification of the phosphoinositide 5'-kinase PIKfyve as a partner of class I(A) PI 3-K. Thus, both p85 and p110 subunits (class I(A)) of PI 3-Ks co-precipitated with anti-PIKfyve antibodies from lysates of resting 3T3-L1 adipocytes and, vice versa, PIKfyve co-precipitated with anti-p85 PI 3-K antibodies. Assignment to class I(A) PI 3-K enzymatic activity was further substantiated by the inhibition of PtdIns 3-P production in PIKfyve immune complexes by low concentrations of wortmannin and Triton X-100, and its preferences for Mg(2+) versus Mn(2+). Insulin but not PDGF or EGF stimulation of 3T3-L1 adipocytes markedly increased the PtdIns 3-P production (4.2-fold) in PIKfyve immune complexes, primarily as a result of increased PI 3-K intrinsic enzymatic activity. Intriguingly, while both insulin and PDGF caused an increase of class I(A) PI 3-K activity co-immunoprecipitated with tyrosine phosphorylated proteins, only insulin treatment yielded an activation of class I(A) PI 3-K in PIKfyve immune complexes. Studies aiming at identifying the underlying mechanism revealed that PIKfyve-class I(A) PI 3-K association and the insulin-induced activation likely operate independently of tyrosine phosphorylated insulin receptor substrate proteins. Together, these results establish PIKfyve as a novel source of activated class I(A) PI 3-K molecules that may be relevant in the insulin-signal transduction pathway.  相似文献   

17.
BACKGROUND AND OBJECTIVES: B1647 is a cell line derived from bone marrow cells of a patient with acute myeloid leukemia (M2) with a complete erythro-megakaryocytic phenotype and bears both k and p isoforms of c-mpl. Interestingly, spontaneous B1647 cell proliferation is significantly potentiated by thrombopoietin (TPO). DESIGN AND METHODS: We aimed to evaluate the proliferative signal transduction events following the activation of c-mpl and we stimulated B1647 cells with TPO 40 ng/mL for 3, 7, 15 and 30 minutes; cells were then lysed and whole lysates were immunoprecipitated with anti-phosphotyrosine antibodies. RESULTS: In our hands, TPO stimulation induced phosphorylation of several substrate proteins in B1647 cells. The increase in tyrosine phosphorylation from background spontaneous activation was transient, maximal after 10 minutes and declined to reach constitutive levels after 30 minutes. In particular, protein substrates between 50 and 140 kDa appeared to be selectively phosphorylated by TPO. We demonstrated that Jak2, Stat3 and Shc were activated in B1647 cells after TPO, as already shown for different cell lines by other authors. Moreover, Lyn kinase activation was detected. Grb2 co-immunoprecipitated with phosphorylated proteins. The phosphorylation of Syk kinase was not demonstrated, whereas Vav was activated by TPO. INTERPRETATION AND CONCLUSIONS: The pattern of protein phosphorylation determined in B1647 cells by TPO testifies the role of this cytokine in sustaining cell growth and indicates Lyn tyrosine kinase as a possible target protein in transduction of the TPO proliferative signal.  相似文献   

18.
19.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 micromol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.  相似文献   

20.
Aiba Y  Kameyama M  Yamazaki T  Tedder TF  Kurosaki T 《Blood》2008,111(3):1497-1503
Despite the importance of phosphoinositide 3-kinase (PI3K) in B-cell development, its activation mechanism still remains elusive. In this study, we show that deletion of both BCAP and CD19 leads to an almost complete block of BCR-mediated Akt activation and to severe defects in generation of immature and mature B cells. The YXXM motifs in BCAP and CD19 are crucial for regulating B-cell development in that mutation of these motifs abrogated their ability to induce BCR-mediated Akt activation as well as to promote B-cell development. Furthermore, the developmental defect in CD19(-/-)BCAP(-/-) B cells was partly relieved by introducing a constitutively active form of PI3K or PDK1. Together, our data suggest that BCAP and CD19 have complementary roles in BCR-mediated PI3K activation, thereby, at least in part, contributing to B-cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号