首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous data indicate that there are specific features of the corticostriatal pathways from the prefrontal cortex. First, corticostriatal pathways are composed of focal, circumscribed projections and of diffuse, widespread projections. Second, there is some convergence between terminal fields from different functional regions of the prefrontal cortex. Third, anterior cingulate projections from area 24b occupy a large region of the rostral striatum. The goal of this study was to determine whether these features are also common to the corticostriatal projections from area 8A (including the frontal eye field; FEF), the supplementary eye field (SEF), dorsal and rostral premotor cortex (PMdr) and area 24c. Using a new approach of three-dimensional reconstruction of the corticostriatal pathways, along with dual cortical tracer injections, we mapped the corticostriatal terminal fields from areas 9 and 46, 8A-FEF, SEF, PMdr and 24b and c. In addition, we placed injections of retrogradely transported tracers into key striatal regions. The results demonstrated that: (i) a diffuse projection system is a common feature of the corticostriatal projections from different frontal regions; (ii) key striatal regions receive convergent projections from areas 9 and 46 and from areas 8A-FEF, SEF, PMdr and 24c, suggesting a potential pivotal role of these striatal regions in integrating cortical information; (iii) projections from area 24c, like those from area 24b, terminate widely throughout the striatum, interfacing with terminals from several frontal areas. These features of the corticostriatal frontal pathways suggest a potential integrative striatal network for learning.  相似文献   

2.
In the macaque brain, projections from distant, interconnected cortical areas converge in specific zones of the striatum. For example, specific zones of the motor putamen are targets of projections from frontal motor, inferior parietal, and ventrolateral prefrontal hand-related areas and thus are integral part of the so-called “lateral grasping network.” In the present study, we analyzed the laminar distribution of corticostriatal neurons projecting to different parts of the motor putamen. Retrograde neural tracers were injected in different parts of the putamen in 3 Macaca mulatta (one male) and the laminar distribution of the labeled corticostriatal neurons was analyzed quantitatively. In frontal motor areas and frontal operculum, where most labeled cells were located, almost everywhere the proportion of corticostriatal labeled neurons in layers III and/or VI was comparable or even stronger than in layer V. Furthermore, within these regions, the laminar distribution pattern of corticostriatal labeled neurons largely varied independently from their density and from the projecting area/sector, but likely according to the target striatal zone. Accordingly, the present data show that cortical areas may project in different ways to different striatal zones, which can be targets of specific combinations of signals originating from the various cortical layers of the areas of a given network. These observations extend current models of corticostriatal interactions, suggesting more complex modes of information processing in the basal ganglia for different motor and nonmotor functions and opening new questions on the architecture of the corticostriatal circuitry.SIGNIFICANCE STATEMENT Projections from the ipsilateral cerebral cortex are the major source of input to the striatum. Previous studies have provided evidence for distinct zones of the putamen specified by converging projections from specific sets of interconnected cortical areas. The present study shows that the distribution of corticostriatal neurons in the various layers of the primary motor and premotor areas varies depending on the target striatal zone. Accordingly, different striatal zones collect specific combinations of signals from the various cortical layers of their input areas, possibly differing in terms of coding, timing, and direction of information flow (e.g., feed-forward, or feed-back).  相似文献   

3.
The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2-immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1-containing terminals formed axospinous synapses, whereas 87% of vGluT2-positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA-L-labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant axodendritic thalamic inputs to striatal projection neurons. These observations pave the way for understanding differential regulatory mechanisms of striatal outflow from the patch and matrix compartments by thalamostriatal afferents.  相似文献   

4.
In primates, thalamostriatal projections from the centromedian (CM) and parafascicular (Pf) nuclei are strong and organized according to a strict pattern of functional connectivity with various regions of the striatal complex. In turn, the CM/Pf complex receives a substantial innervation from the internal globus pallidus (GPi). In this study, we demonstrate that the substantia nigra pars reticulata (SNr) also provides a massive input to Pf in monkeys. These pallidothalamic and nigrothalamic projections provide routes whereby information can flow in functional loops between the basal ganglia and the intralaminar nuclear group. To understand better the anatomical organization and the degree of functional specificity of these loops, we combined retrograde and anterograde labeling methods from functionally defined regions of the striatum and GPi/SNr to determine the relationships between thalamostriatal neurons and basal ganglia afferents. Together with previous studies, our data suggest the existence of tightly connected functional circuits between the basal ganglia and the CM/Pf in primates: 1) A "sensorimotor" circuit links together the medial two-thirds of CM, the postcommissural putamen, and the ventrolateral part of the caudal GPi; 2) a "limbic" circuit involves the rostral one-third of Pf, the ventral striatum, and the rostromedial pole of GPi; and 3) an "associative"circuit exists between the caudal two-thirds of Pf, the caudate nucleus, and the SNr. An additional "associative" circuit that involves the caudate-receiving territory of GPi (dorsal one-third), the dorsolateral Pf (Pfdl), and the precommissural putamen was also disclosed. In conclusion, findings of this study provide additional evidence for the high degree of functional specificity of the thalamostriatal system through which CM/Pf may provide attention-specific sensory information important for conditional responses to the primate striatum.  相似文献   

5.
The organization of the thalamic projections to the ventral striatum in the rat was studied by placing injections of the retrograde tracer cholera toxin subunit B in the ventral striatum and small deposits of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) in individual midline and intralaminar thalamic nuclei. In order to provide a complete map of the midline and intralaminar thalamostriatal projections, PHA-L injections were also made in those parts of the intralaminar nuclei that project to the dorsal striatum. The relationship of thalamic afferent fibres with the compartmental organization of the ventral striatum was assessed by combining PHA-L tracing and enkephalin immunohistochemistry. The various midline and intralaminar thalamic nuclei project to longitudinally oriented striatal sectors. The paraventricular thalamic nucleus sends most of its fibres to medial parts of the nucleus accumbens and the olfactory tubercle, whereas smaller contingents of fibres terminate in the lateral part of the nucleus accumbens and the most ventral, medial, and caudal parts of the caudate-putamen complex. The projections of the parataenial nucleus are directed towards central and ventral parts of the nucleus accumbens and intermediate mediolateral parts of the olfactory tubercle. The intermediodorsal nucleus projects to lateral parts of the nucleus accumbens and the olfactory tubercle and to ventral parts of the caudate-putamen. The projection of the rhomboid nucleus is restricted to the rostrolateral extreme of the striatum. A diffuse projection to the ventral striatum arises from neurons ventral and caudal to the nucleus reuniens rather than from cells inside the nucleus. Fibres from the central medial nucleus terminate centrally and dorsolaterally in the rostral part of the nucleus accumbens and medially in the caudate-putamen. Successively more lateral positions in the caudate-putamen are occupied by fibres from the paracentral and central lateral nuclei, respectively. The lateral part of the parafascicular nucleus projects to the most lateral part of the caudate-putamen, whereas projections from the medial part of this nucleus terminate in the medial part of the caudate-putamen and in the dorsolateral part of the nucleus accumbens. Furthermore, a rostral to caudal gradient in a midline or intralaminar nucleus corresponds to a dorsal to ventral and rostral to caudal gradient in the striatum. In the ventral striatum, thalamic afferent fibres in the "shell" region of the nucleus accumbens avoid areas of high cell density and weak enkephalin immunoreactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The anterograde tracer Phaseolus vulgaris-leucoagglutinin was used to examine the topographical organization of the projections to the striatum arising from the various cytoarchitectonic subdivisions of the prefrontal cortex in the rat. The relationship of the prefrontal cortical fibres with the compartmental organization of the ventral striatum was assessed by combining PHA-L tracing and enkephalin-immunohistochemistry. The prefrontal cortex projects bilaterally with an ipsilateral predominance to the striatum, sparing only the lateral part of the caudate-putamen complex. Each of the cytoarchitectonic subfields of the prefrontal cortex has a longitudinally oriented striatal terminal field that overlaps slightly with those of adjacent prefrontal areas. The projections of the medial subdivision of the prefrontal cortex distribute to rostral and medial parts of the striatum, whereas the lateral prefrontal subdivision projects to more caudal and lateral striatal areas. The terminal fields of the orbital prefrontal areas involve midventral and ventromedial parts of the caudate-putamen complex. The projection of the ventral orbital area overlaps with that of the prelimbic area in the ventromedial part of the caudate-putamen. In the "shell" region of the nucleus accumbens, fibres arising from the prelimbic area concentrate in areas of high cell density that are weakly enkephalin-immunoreactive, whereas fibres from the infralimbic area avoid such areas. Rostrolaterally in the "core" region of the nucleus accumbens, fibres from deep layer V and layer VI of the dorsal part of the prelimbic area avoid the enkephalin-positive areas surrounding the anterior commissure and distribute in an inhomogeneous way over the intervening moderately enkephalin-immunoreactive compartment. The other prefrontal afferents show only a preference for, but are not restricted to, the latter compartment. In the border region between the nucleus accumbens and the ventromedial part of the caudate-putamen complex, patches of strong enkephalin immunoreactivity receive prefrontal cortical input from deep layer V and layer VI, whereas fibres from more superficial cortical layers project to the surrounding matrix. Individual cytoarchitectonic subfields of the prefrontal cortex thus have circumscribed terminal domains in the striatum. In combination with data on the organization of the midline and intralaminar thalamostriatal and thalamoprefrontal projections, the present results establish that the projections of the prefrontal cortical subfields converge in the striatum with those of their midline and intralaminar afferent nuclei. The present findings further demonstrate that the relationship of the prefrontal corticostriatal fibres with the neurochemical compartments of the ventral striatum can be influenced by both the areal and the laminar origin of the cortical afferents, depending on the particular ventral striatal region under consideration.  相似文献   

7.
The cytoarchitecture of areas 5a and 5b of the cat's parietal cortex was re-examined and the afferent connections from the thalamus were investigated using the horseradish peroxidase (HRP) retrograde transport technique. Single or multiple small injections of the enzyme were made in different points of these areas in the rostral sectors of the lateral and middle suprasylvian gyri. The cytoarchitecture of the cortical region affected by the injections was carefully assessed in each case, and the labeled neurons found in the thalamus were plotted on projection drawings of each histological section. A prominent projection to area 5a arises from the posterior (Po) and ventral lateral (VL) complexes; less substantial projections originate in the ventral anterior nucleus (VA), the lateral intermediate complex (LI), and the central lateral nucleus (CL). Projections to area 5b (and to the laterally adjacent area suprasylviana anterior) mainly arise from LI, the dorsal part of VL, and the caudodorsal part of VA and CL; a moderate projection was also found from Po, the pulvinar, and the lateral dorsal complex. The main conclusions of this study are as follows. The shape and extent of areas 5a and 5b show notable variations when only their projection on the convoluted cortical surface is considered; however, they are relatively constant when plotted on unfolded cortical maps. The thalamic neurons projecting to areas 5a and 5b are organized according to a loose topographic plan, particularly noticeable in Po, VL and LI. In general, the rostral portion of this cortex (5a) receives projections from more ventral regions of the thalamus (mainly Po and VL), whereas the caudal part (5b) has connections from more dorsal regions (mainly LI and VA-VL). Moreover, the medial portions of these areas receive projections from lateral and ventral parts of the thalamic nuclei, whereas more dorsal and medial sectors of the thalamus project to the lateral portions of areas 5a and 5b. When labeled thalamic cell populations resulting from cases with single injections in neighboring cortical loci were compared, no abrupt changes of labeling were observed; rather, we generally observed gradual transitions and overlaps, even across nuclear boundaries. When only layers I and II of the cortex received the HRP, the number of labeled neurons and the intensity of their labeling decreased, their location in the thalamus was more restricted, and the mean size of the labeled cells was significantly smaller than that of the neurons labeled in the same regions after deep HRP injections.  相似文献   

8.
Anterograde labeling techniques were used to define the terminal distributions in the thalamus of afferents arising in the deep cerebellar nuclei, entopeduncular nucleus and substantia nigra. Anterograde and retrograde labeling methods were then used to determine the extent of the cortical projections of the cerebellar relay nuclei. The cerebellar projection to the contralateral ventral nuclei of the thalamus terminates in a zone which is separate from that receiving pallido- and nigrothalamic fibers. None of the zones of termination of these fiber systems corresponds to commonly recognized cytoarchitectonic divisions. Instead, they include parts of the ventroanterior (VA), ventrolateral (VL) and principal ventromedial (VMp) nuclei. Some cells within the zone of termination of cerebellar afferents project to parietal cortex (areas 5 and 7). A further, distinct group of cells in this zone projects to motor cortex (area 4). But projections to area 4 also arise from small groups of cells: (a) in the zone receiving nigro- and pallidothalamic fibers; (b) in the part of VL, distinct from the cerebellar terminal zone, in which spinothalamic fibers terminate. Cerebellar, nigral, and entopeduncular fibers also terminate in the intralaminar nuclei. These projections are far greater in extent than those arising in the spinal cord. Some parts of the intralaminar nuclei are dominated by a particular afferent system, while others show substantial overlap of the terminal zone of several afferent systems.  相似文献   

9.
The primate mediodorsal (MD) nucleus and its projection to the frontal lobe   总被引:17,自引:0,他引:17  
The frontal lobe projections of the mediodorsal (MD) nucleus of the thalamus were examined in rhesus monkey by transport of retrograde markers injected into one of nine cytoarchitectonic regions (Walker's areas 6, 8A, 9, 10, 11, 12, 13, 46, and Brodmann's area 4) located in the rostral third of the cerebrum. Each area of prefrontal, premotor, or motor cortex injected was found to receive a topographically unique thalamic input from clusters of cells in specific subdivisions within MD. All of the prefrontal areas examined also receive topographically organized inputs from other thalamic nuclei including, most prominently, the ventral anterior (VA) and medial pulvinar nuclei. Conversely, and in agreement with previous findings, MD projects to areas of the frontal lobe beyond the traditional borders of prefrontal cortex, such as the anterior cingulate and supplementary motor cortex. The topography of thalamocortical neurons revealed in coronal sections through VA, MD, and pulvinar is circumferential. In the medial part of MD, for example, thalamocortical neurons shift from a dorsal to a ventral position for cortical targets lying medial to lateral along the ventral surface of the lobe; neurons in the lateral MD move from a ventral to a dorsal position, for cortical areas situated lateral to medial on the convexity of the hemisphere. The aggregate evidence for topographic specificity is supported further by experiments in which different fluorescent dyes were placed in multiple areas of the frontal lobe in each of three cases. The results show that very few, if any, thalamic neurons project to more than one area of cortex. The widespread cortical targets of MD neurons together with evidence for multiple thalamic inputs to prefrontal areas support a revision of the classical hodological definition of prefrontal cortex as the exclusive cortical recipient of MD projections. Rather, the prefrontal cortex is defined by multiple specific relationships with the thalamus.  相似文献   

10.
Although temporomandibular disorders (TMD) have been associated with abnormal gray matter volumes in cortical areas and in the striatum, the corticostriatal functional connectivity (FC) of patients with TMD has not been studied. Here, we studied 30 patients with TMD and 20 healthy controls that underwent clinical evaluations, including Helkimo indices, pain assessments, and resting‐state functional magnetic resonance imaging scans. The FCs of the striatal regions with the other brain areas were examined with a seed‐based approach. As seeds, we used the dorsal caudate, ventral caudate/nucleus accumbens, dorsal caudal putamen, and ventral rostral putamen regions. Voxel‐wise comparisons with controls revealed that the patients with TMD exhibited reduced FCs in the ventral corticostriatal circuitry, between the ventral striatum and ventral frontal cortices, including the anterior cingulate cortex and anterior insula; in the dorsal corticostriatal circuitry, between the dorsal striatum and the dorsal cortices, including the precentral gyrus and supramarginal gyrus; and also within the striatum. Additionally, we explored correlations between the reduced corticostriatal FCs and clinical measurements. These results directly supported the hypothesis that TMD is associated with reduced FCs in brain corticostriatal networks and that these reduced FCs may underlie the deficits in motor control, pain processing, and cognition in TMD. Our findings may contribute to the understanding of the etiologies and pathologies of TMD.  相似文献   

11.
The supplementary eye field (SEF) was defined electrophysiologically in behaving monkeys to study its connections with the diencephalon and corpus striatum. The specificity of SEF pathways was determined with horseradish peroxidase (HRP) histochemistry to compare its connections with those of the arcuate frontal eye field (FEF), contiguous dorsocaudal area 6 (6DC), and primary motor cortex (M1, arm/hand region). Results indicate that patterns of SEF connectivity were similar to the FEF and markedly different from areas 6DC and M1. Primary reciprocal thalamic pathways of the SEF were with the magnocellular ventral anterior (VA) nucleus, medial parvicellular VA, medial area X, and paralaminar medialis dorsalis (multiformis and parvicellularis). FEF showed similar connections but its most robust pathway was with MD rather than VA. In contrast, area 6DC showed the most extensive reciprocal connections with lateral VApc and lateral area X with only sparse connections with paralaminar MD. Area 6DC also exhibited reciprocal connections with the ventral lateral (VL) complex and the ventral posterior lateral nucleus, pars oralis (VPLo). M1 showed dense bidirectional connections with VPLo, and to a lesser extent, with VL. M1 pathways with the medial dorsal nucleus were negligible. All areas exhibited connections with the paracentral and central lateral nuclei and only M1 lacked connections with the central superior lateral nucleus. SEF and FEF exhibited similar efferent projections to the caudate and putamen. In the caudate, terminal fields were restricted to a central longitudinal core while those from area 6DC were more widely distributed. Eye field efferents were restricted to the putamen's face region while 6DC projections were more exuberant. The arm/hand region of M1 projected to the arm/hand region of the putamen. Pathways are discussed with respect to their significance in oculomotor control.  相似文献   

12.
The present study analyses the anatomical arrangement of the projections linking the Wistar rat parafascicular thalamic nucleus (PF) and basal ganglia structures, such as the striatum and the subthalamic nucleus (STN), by using neuroanatomical tract-tracing techniques. Both the thalamostriatal and the striato-entopeduncular projections were topographically organized, and several areas of overlap between identified circuits were noticed, sustaining the existence of up to three separated channels within the Nauta-Mehler loop. Thalamic afferents arising from dorsolateral PF territories are in register with striatofugal neurons located in dorsolateral striatal areas, which in turn project to dorsolateral regions of the entopeduncular nucleus (ENT). Medial ENT regions are innervated by striatal neurons located within medial striatal territories, these neurons being the target for thalamic afferents coming from medial PF areas. Finally, afferents from neurons located in ventrolateral PF areas approached striatal neurons in ventral and lateral striatal territories, which in turn project towards ventral and lateral ENT regions. Efferent STN neurons projecting to ENT were found to be the apparent postsynaptic target for thalamo-subthalamic axons. The thalamo-subthalamic projection was also topographically organized. Medial, central and lateral STN territories are innervated by thalamic neurons located within medial, ventrolateral and dorsolateral PF areas, respectively. Thus, each individual PF subregion projects in a segregated fashion to specific parts of the striato-entopeduncular and subthalamo-entopeduncular systems. These circuits enabled the caudal intralaminar nuclei to modulate basal ganglia output.  相似文献   

13.
The relationships and cytoarchitecture of the putamen, the caudate, the claustrum, the globus pallidus and the entopeduncular nuclei have been described for the opossum. The neocortical projections to these nuclei have ben studied by employing the Nauta-Gygax technique ('54) and the Swank Davenport modification of the Marchi technique ('34) on animals in which neocortical lesions were previously placed. Degenerating fibers from every cortical lesion were observed to terminate in both the putamen and the caudate with the Nauta-Gygax technique, whereas such connections were traced only to putamen woth the Marchi method. Terminations were present within the claustrum, but equivocal in the globus pallidus. In general, fibers from the more rostral cortices terminate in the rostral parts of both striatal nuclei, whereas fibers from more caudal neocortical areas project to more caudal parts of these same nuclei. In addition, the more dorsal or dorsomedial neocortical areas distribute more fibers to the caudate than to the putamen, whereas the opposite is true for the ventral or ventrolateral neocortical areas. Neocortical fibers did not project to the ventral, medial part of the head of the caudate which was cytoarchitectually different from the rest of the nucleus. A few fascicles of frontal, orbital and parietal origin terminated in the contralateral putamen and caudate after having decussated in the anterior commissure.  相似文献   

14.
The thalamus is a critical component of the frontal cortical-basal ganglia-thalamic circuits that mediate motivation and emotional drive, planning and cognition for the development and expression of goal-directed behaviors. Each functional region of the frontal cortex is connected with specific areas of each basal ganglia (BG) structure and of the thalamus. In addition, the thalamus sends a massive, topographically organized projection directly to the striatum. Tract-tracing and physiological experiments have indicated a general topographic organization of the cortical-BG-thalamic loops and supported a model of BG function based on parallel and segregated pathways. However, the learning and execution of appropriate behavioral responses require integration of inputs related to emotional, cognitive, and motor cortical functions. Our recent data indicate that integration may occur via non-reciprocal connections between the striatum and substantia nigra and within "hot spots" of convergence between corticostriatal projections from different functional regions. Similarly, integration may exist in the thalamus. There are non-reciprocal connections between the thalamus and cortex via thalamocortical projections that terminate in the superficial and deep cortical layers. These terminals can influence different functional cortical areas that, in turn, project to the striatum and back to the thalamus. In addition, a non-reciprocal corticothalamic projection terminates in thalamic regions that are parts of other circuits. Finally, 'hot spots' of convergence between terminals from different cortical regions may also occur in the thalamus as is seen in the striatum. Thus, via several different pathways, the thalamus may serve as an important center of integration of networks that underlie the ability to modulate behaviors.  相似文献   

15.
The degree of parallel processing in frontal cortex-basal ganglia circuits is a central and debated issue in research on the basal ganglia. To approach this issue directly, we analyzed and compared the corticostriatal projections of two principal oculomotor areas of the frontal lobes, the frontal eye field (FEF) and the supplementary eye field (SEF). We first identified cortical regions within or adjacent to each eye field by microstimulation in macaque monkeys and then injected each site with either 35S-methionine or WGA-HRP conjugate. We analyzed the corticostriatal projections and also the interconnections of the pairs of cortical areas. We observed major convergence of the projections of the FEF and the SEF within the striatum, principally in the caudate nucleus. In cross sections through the striatum, both projections were broken into a series of discontinuous input zones that seemed to be part of complex three-dimensional labyrinths. Where the FEF and SEF projection fields were both present, they overlapped patch for patch. Thus, both inputs were dispersed within the striatum but converged with one another. Striatal afferents from cortex adjacent to the FEF and the SEF did not show convergence with SEF and FEF inputs, but did, in part, converge with one another. For all pairs of cortical areas tested, the degree of overlap in the corticostriatal projections appeared to be directly correlated with the degree of cortical interconnectivity of the areas injected. All of the corticostriatal fiber projections observed primarily avoided immunohistochemically identified striosomes. We conclude that there is convergence of oculomotor information from two distinct regions of the frontal cortex to the striatal matrix, which is known to project into pallidonigral circuits including the striatonigrocollicular pathway of the saccadic eye movement system. Furthermore, functionally distinct premotor areas near the oculomotor fields often systematically projected to striatal zones adjacent to oculomotor field projections, suggesting an anatomical basis for potential interaction of these inputs within the striatum. We propose that parallel processing is not the exclusive principle of organization of forebrain circuits associated with the basal ganglia. Rather, patterns of both convergence and divergence are present and are likely to depend on multiple functional and developmental constraints.  相似文献   

16.
Connections of the perirhinal cortex in the.rat brain were studied using anterograde (3H-proline/leucine) and retrograde (horseradish peroxidase) tracers. The perirhinal cortex receives major projections from medial precen-tral, anterior cingulate, prelimbic, ventral lateral orbital, ventral and posterior agranular insular, temporal, superior and granular parietal, lateral occipital, agranular retrosplenial, and ectorhinal cortices, and from the pre-subiculum, subiculum, and diagonal band of Broca. Rostral neocortical areas project predominantly to rostral perirhinal regions while more caudal neocortical and subicular areas project predominantly to caudal perirhinal regions. Terminal fields are further segregated within perirhinal cortex to either the dorsal or ventral banks of the rhinal sulcus. All afferents from frontal areas terminate predominantly in the deep layers of its ventral bank; afferents from temporal, parietal, and lateral occipital areas terminate predominantly in the deep and superficial layers along its dorsal bank; and afferents from ectorhinal cortex terminate in a column within its dorsal bank. Cortical cells which project to perirhinal areas are found predominantly in layer II and the superficial part of layer III. However, ventrolateral orbital, parietal, and lateral occipital cortex projections originate predominantly from layer V. Perirhinal areas also receive afferents from the nucleus reuniens of the thalamus, lateral nucleus of the amygdala, claustrum, supramammillary nuclei, and the dorsal raphe nuclei.  相似文献   

17.
The central projections of the main olfactory bulb and the accessory olfactory bulb of the adult leopard frog (Rana pipiens) were reexamined, by using a horseradish peroxidase anterograde tracing method that fills axons with a continuous deposit of reaction product. The fine morphology preserved by this method allowed the terminal fields of the projection tracts to be delineated reliably, and for the first time. Herrick's amygdala has been newly subdivided into cortical and medial nuclei on the basis of cytoarchitecture, dendritic morphology, and the differential projections of the main and accessory olfactory tracts. The main olfactory bulb projects through the medial and lateral olfactory tracts to the postolfactory eminence, the rostral end of the medial cortex, the rostral end of the medial septal nucleus, the cortical amygdaloid nucleus, the nucleus of the hemispheric sulcus, and both the dorsal and ventral divisions of the lateral cortex, including its retrobulbar fringe. The lateral olfactory tract overlaps the dorsal edge of the striatal plate along the ventral border of the lateral cortex, but it is not certain whether any striatal cells are postsynaptic to the tract fibers. The lateral cortex is the largest of these territories, and receives the terminals of the main olfactory projection throughout its extent. It extends from the olfactory bulb to the posterior pole, and from the striatum to the summit of the hemisphere, where it borders the dorsal cortex. The medial and lateral olfactory tracts combine in the region of the amygdala to form a part of the stria medullaris thalami. These fibers cross in the habenular commissure and terminate in the contralateral cortical amygdaloid nucleus and periamygdaloid part of the lateral cortex. Cells projecting to the main olfactory bulb are found in the diagonal band and adjacent cell groups, but there is no evidence of an interbulbar projection arising from either the olfactory bulb proper or a putative anterior olfactory nucleus. The accessory olfactory bulb projects through the accessory olfactory tract to the medial and cortical amygdaloid nuclei. A fascicle of the tract crosses in the anterior commissure to terminate in the contralateral amygdala. While the main and accessory olfactory projections may converge in the cortical amygdaloid nucleus, the medial amygdaloid nucleus is connected exclusively with the accessory olfactory bulb.  相似文献   

18.
The thalamostriatal system is a major network in the mammalian brain, originating principally from the intralaminar nuclei of thalamus. Its functions remain unclear, but a subset of these projections provides a pathway through which the cerebellum communicates with the basal ganglia. Both the cerebellum and basal ganglia play crucial roles in motor control. Although songbirds have yielded key insights into the neural basis of vocal learning, it is unknown whether a thalamostriatal system exists in the songbird brain. Thalamic nucleus DLM is an important part of the song system, the network of nuclei required for learning and producing song. DLM receives output from song system basal ganglia nucleus Area X and sits within dorsal thalamus, the proposed avian homolog of the mammalian intralaminar nuclei that also receives projections from the cerebellar nuclei. Using a viral vector that specifically labels presynaptic axon segments, we show in Bengalese finches that dorsal thalamus projects to Area X, the basal ganglia nucleus of the song system, and to surrounding medial striatum. To identify the sources of thalamic input to Area X, we map DLM and cerebellar‐recipient dorsal thalamus (DTCbN). Surprisingly, we find both DLM and dorsal anterior DTCbN adjacent to DLM project to Area X. In contrast, the ventral medial subregion of DTCbN projects to medial striatum outside Area X. Our results suggest the basal ganglia in the song system, like the mammalian basal ganglia, integrate feedback from the thalamic region to which they project as well as thalamic regions that receive cerebellar output.  相似文献   

19.
The autoradiographic anterograde axonal transport technique was used to study efferent projections of the opossum basolateral amygdala. All nuclei of the basolateral amygdala send topographically organized fibers to the bed nucleus of the stria terminalis (BST) via the stria terminalis (ST). Injections into rostrolateral portions of the basal nuclei label fibers that surround the commissural bundle of the ST, cross the midline by passing along the outer aspect of the anterior commissure, and terminate primarily in the contralateral BST, anterior subdivision of the basolateral nucleus (BLa), ventral putamen, and olfactory cortex. Each of the basal nuclei project ipsilaterally to the anterior amygdaloid area, substantia innominata and topographically to the ventral part of the striatum and adjacent olfactory tubercle. The posterior subdivision of the basolateral nucleus (BLp), but not the basomedial nucleus (BM), projects to the ventromedial hypothalamic nucleus. BLa and BLp have projections to the nucleus of the lateral olfactory tract and also send fibers to the central nucleus, as does the lateral nucleus (L). The lateral nucleus also has a strong projection to BM and both nuclei project to the amygdalo-hippocampal area. BLa and BLp send axons to the ventral subiculum and ventral lateral entorhinal area whereas L projects only to the latter area. The lateral nucleus and BLp project to the perirhinal cortex and the posterior agranular insular area. The BLa sends efferents to the anterior agranular insular area. Rostrally this projection is continuous with a projection to the entire frontal cortex located rostral and medial to the orbital sulcus. All of the nuclei of the basolateral amygdala project to areas on the medial wall of the frontal lobe that appear to correspond to the prelimbic and infralimbic areas of other mammals. Despite the great phylogenetic distance separating the opossum from placental mammals, the projections of the opossum basolateral amygdala are very similar to those seen in other mammals. The unique frontal projections of the opossum BLa to the dorsolateral prefrontal cortex appear to be related to the distinctive organization of the mediodorsal thalamic nucleus and prefrontal cortex in this species.  相似文献   

20.
Birds have well-developed basal ganglia within the telencephalon, including a striatum consisting of the medially located lobus parolfactorius (LPO) and the laterally located paleostriatum augmentatum (PA), Relatively little is known, however, about the extent and organization of the telencephalic “cortical” input to the avian basal ganglia (i. e., the avian “corticostriatal” projection system). Using retrograde and anterograde neuroanatomical pathway tracers to address this issue, we found that a large continuous expanse of the outer pallium projects to the striatum of the basal ganglia in pigeons. This expanse includes the Wulst and archistriatum as well as the entire outer rind of the pallium intervening between Wulst and archistriatum, termed by us the pallium externum (PE). In addition, the caudolateral neostriatum (NCL), pyriform cortex, and hippocampal complex also give rise to striatal projections in pigeon. A restricted number of these pallial regions (such as the “limbic” NCL, pyriform cortex, and ventral/caudal parts of the archistriatum) project to such ventral striatal structures as the olfactory tubercle (TO), nucleus accumbens (Ac), and bed nucleus of the stria terminalis (BNST). Such “limbic” pallial areas also project to medialmost LPO and lateralmost PA, while the hyperstriatum accessorium portion of the Wulst, the PE, and the dorsal parts of the archistriatum were found to project primarily to the remainder of LPO (the lateral two-thirds) and PA (the medial four-fifths). The available evidence indicates that the diverse pallial regions projecting to the striatum in birds, as in mammals, are parts of higher order sensory or motor systems. The extensive corticostriatal system in both birds and mammals appears to include two types of pallial neurons: (1) those that project to both striatum and brainstem (i. e., those in the Wulst and the archistriatum) and (2) those that project to striatum but not to brainstem (i. e., those in the PE). The lack of extensive corticostriatal projections from either type of neuron in anamniotes suggests that the anamniote-amniote evolutionary transition was marked by the emergence of the corticostriatal projection system as a prominent source of sensory and motor information for the striatum, possibly facilitating the role of the basal ganglia in movement control. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号