首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dtsz hamster represents a model of primary paroxysmal nonkinesiogenic dyskinesia in which dystonic episodes can be induced by stress and anxious stimuli. This disease is regarded as a basal ganglia disorder. In fact, a deficit of striatal interneurons could play a key role in the pathophysiology in dystonic hamsters. Because the involvement of limbic structures cannot be excluded so far, the density of parvalbumin-immunoreactive (PV+) interneurons was determined in the basolateral amygdala in the present study. Compared with nondystonic hamsters, the density of PV+ interneurons was moderately decreased in the dtsz mutant. The functional consequence of this finding was examined by behavioral analyses. Examinations in the elevated plus maze and in a modified open field failed to disclose an enhanced anxiety-related behavior in dtsz hamsters (Mesocricetus auratus). A lower acoustic startle response and a stronger habituation in mutant hamsters than in controls correlated with a decreased body weight. Interestingly, prepulse inhibition was absent in mutant hamsters. The latter finding suggests a disturbed sensorimotor gating that can be related to alterations in both the basal ganglia nuclei and in limbic structures.  相似文献   

2.
The pathophysiology of idiopathic dystonia is still unknown, but it is regarded as a basal ganglia disorder. Previous studies indicated an involvement of a striatal GABAergic disinhibition and a cortico-striatal glutamatergic overactivity in the manifestation of stress-inducible dystonic episodes in the dt(sz) hamster, a model of idiopathic paroxysmal dystonia. These investigations were carried out postmortem or in anesthetized animals. In the present study, in vivo microdialysis in conscious, freely-moving dt(sz) and non-dystonic control hamsters was used to examine the levels of GABA, aspartate, glutamate, glutamine, glycine and taurine in each animal during following conditions: (1) at baseline in the absence of dystonia, (2) during an episode of paroxysmal dystonia precipitated by stressful stimuli, (3) during a recovery period and (4) at baseline after complete recovery. In comparison to non-dystonic controls, which were treated in the same manner as the dystonic animals, no differences could be detected under basal conditions. The induction of a dystonic episode in mutant hamsters led to higher contents of glycine in these animals in comparison to stressed but non-dystonic controls. Significant changes of glycine levels within the animal groups were not detected. The levels of the excitatory amino acids glutamate, glutamine and aspartate as well as the levels of the inhibitory amino acids GABA and taurine did not differ between the animal groups or between the periods of measurement. The higher levels of glycine might contribute to the manifestation of paroxysmal dystonia in dt(sz) hamsters, although unaltered glutamate, glutamine and aspartate levels do not support the hypothesis of a critical involvement of a cortico-striatal overactivity. It seems that a deficiency of GABAergic interneurons, found by previous immunohistochemical examinations, does not lead to reduced extracellular GABA levels in the striatum.  相似文献   

3.
Mutant dystonic hamsters (dt(sz)), a model of primary paroxysmal dystonia, display attacks of generalized dystonia in response to mild stress in an age-dependent manner. Recent studies in dystonic hamsters have revealed decreased densities of dopamine D(1) and D(2) in the dorsal striatum. This finding has been interpreted as a down-regulation in response to enhanced dopamine release because systemic treatments with neuroleptics reduced the severity of dystonia while levodopa exerted prodystonic effects. Therefore, in the present study we investigated the effects of amphetamine as well as of selective D(1) or D(2) receptor agonists and antagonists on the severity of dystonia after systemic administrations and after microinjections into the dorsal striatum. Amphetamine and the dopamine D(2) agonist quinpirole increased the severity of dystonia after systemic and striatal injections, while the dopamine D(1) agonist SKF 38393 exerted only moderate prodystonic effects after systemic administration of a high dose but not after striatal injections. These results suggest that a predominant overstimulation of D(2) receptors is pathogenetically involved in the dystonic syndrome. Combined systemic or striatal administrations of the D(1) and D(2) receptor agonists did not reveal synergistic prodystonic effects at the examined doses. The selective D(1) antagonist SCH 23390 as well as the D(2) antagonist raclopride tended to decrease the severity of dystonia after systemic administration but failed to exert significant effects after striatal injection. The coadministration of ineffective doses of the antagonists SCH 23390 and raclopride, however, exerted an enormous antidystonic efficacy after both systemic and striatal injections.Since striatal injections of compounds which enhance dopaminergic activity aggravated dystonia, while coinjections of dopamine D1 and D2 receptor antagonists reduced the severity of dystonia, the present findings clearly support the hypothesis that striatal dopaminergic overactivity plays a crucial role for the manifestation of dystonic attacks in the hamster model of paroxysmal dystonia.  相似文献   

4.
In patients with paroxysmal non-kinesigenic dyskinesias, episodes of dystonia can be provoked by stress and also by methylxanthines (e.g. caffeine), which inhibit adenosine A(1)/A(2A) receptors. In the dt(sz) mutant hamster, a model of this movement disorder, adenosine A(1) receptor antagonists were previously found to worsen dystonia, while adenosine A(1) and A(2A) receptor agonists exerted pronounced beneficial effects. Therefore, in the present study, adenosine receptor A(1) and A(2A) binding was determined by autoradiographic analyses in dt(sz) hamsters under basal conditions, i.e. in the absence of a dystonic attack, and in a group of mutant hamsters which exhibited severe stress-induced dystonic attacks prior to kill. In comparison with non-dystonic control hamsters, [(3)H]DPCPX (8-cyclopentyl-1,3-dipropylxanthine) binding to adenosine A(1) receptors and [(3)H]CGS 21680 (2p-(2carboxyethylphen-ethylamino-5'-N-ethlycarboxamindoadenosine) binding to adenosine A(2A) receptors were significantly lower throughout the brain of dystonic animals. Under normal resting conditions, mutant hamsters showed significant decreases in adenosine A(1) (-12 to-42%) and in A(2A) (-19 to-34%) receptor binding compared with controls. Stressful stimulation increased adenosine A(1) and A(2A) receptor binding in almost all brain regions in both control and dystonic hamsters. The stress-induced increase was more marked in mutant hamsters, leading to a disappearance of differences in most regions compared with stimulated controls, except the striatum. In view of previous findings of striking beneficial effects of adenosine A(1) and A(2A) receptor agonists and of striatal dysfunctions in the dt(sz) mutant, the reduced adenosine receptor binding may be an important factor in the pathogenesis of paroxysmal dystonia.  相似文献   

5.
Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dt(sz)), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [3H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [3H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [3H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals. This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model.  相似文献   

6.
Although the pathophysiology of primary dystonias is currently unknown, it is thought to involve changes in the basal ganglia-thalamus-cortex circuit, particularly activity imbalances between direct and indirect striatal pathways. Substance P, a member of the tachykinin family of neuropeptides, is a major component in the direct pathway from striatum to basal ganglia output nuclei. In the present study quantitative autoradiography was used to examine changes in neurokinin-1 (NK-1) and neurokinin-3 (NK-3) receptors in mutant dystonic hamsters (dt(sz)), a well characterized model of paroxysmal dystonia. NK-1 receptors were labeled in 10 dystonic brains and 10 age-matched controls with 3 nM [(3)H]-[Sar(9), Met(O(2))(11)]-SP. NK-3 binding sites were labeled in adjacent sections with 2.5 nM [(3)H]senktide. NK-1 binding was found to be unaltered in 27 brain areas examined. In contrast, NK-3 binding was significantly reduced in layers 4 and 5 of the prefrontal (-46%), anterior cingulate (-42%) and parietal (-45%) cortices, ventromedial thalamus (-42%) and substantia nigra pars compacta (-36%) in dystonic brains compared to controls. The latter effects may be particularly relevant in view of evidence that activation of NK-3 receptors on dopaminergic neurons in the substantia nigra pars compacta can increase nigrostriatal dopaminergic activity. Since previous studies indicated that a reduced basal ganglia output in mutant hamsters is based on an overactivity of the direct pathway which also innervates substantia nigra pars compacta neurons, the decreased NK-3 binding could be related to a receptor down-regulation.The present finding of decreased NK-3 receptor density in the substantia nigra pars compacta, thalamic and cortical areas substantiates the hypothesis that disturbances of the basal ganglia-thalamus-cortex circuit play a critical role in the pathogenesis of paroxysmal dystonia.  相似文献   

7.
Dystonia is a common movement disorder which is thought to represent a disease of the basal ganglia. However, the pathogenesis of the idiopathic dystonias, i.e. the neuroanatomic and neurochemical basis, is still a mystery. Research in dystonia is complicated by the existence of various phenotypic and genotypic subtypes of idiopathic dystonia, probably related to heterogeneous dysfunctions.In neurological diseases in which no obvious neuronal degeneration can be found, such as in idiopathic dystonia, the identification of a primary defect is difficult, because of the large number of chemically distinct, but functionally interrelated, neurotransmitter systems in the brain.The variable response to pharmacological agents in patients with idiopathic dystonia supports the notion that the underlying biochemical dysfunctions vary in the subtypes of idiopathic dystonia. Hence, in basic research it is important to clearly define the involved type of dystonia.Animal models of dystonias were described as limited. However, over the last years, there has been considerable progress in the evaluation of animal models for different types of dystonia.Apart from animal models of symptomatic dystonia, genetic animal models with inherited dystonia which occurs in the absence of pathomorphological alterations in brain and spinal cord are described.This review will focus mainly on genetic animal models of different idiopathic dystonias and pathophysiological findings. In particular, in the case of the mutant dystonic (dt) rat, a model of generalized dystonia, and in the case of the genetically dystonic hamster (dtsz), a model of paroxysmal dystonic choreoathetosis has been used, as these show great promise in contributing to the identification of underlying mechanisms in idiopathic dystonias, although even a proper animal model will probably never be equivalent to a human disease.Several pathophysiological findings from animal models are in line with clinical observations in dystonic patients, indicating abnormalities not only in the basal ganglia and thalamic nuclei, but also in the cerebellum and brainstem. Through clinical studies and neurochemical data several similarities were found in the genetic animal models, although the current data indicates different defects in dystonic animals which is consistent with the notion that dystonia is a heterogenous disorder.Different supraspinal dysfunctions appear to lead to manifestation of dystonic movements and postures. In addition to increasing our understanding of the pathophysiology of idiopathic dystonia, animal models may help to improve therapeutic strategies for this movement disorder.  相似文献   

8.
Iron plays an important role in maintaining normal brain function. However, in many neurodegenerative diseases abnormal iron accumulation in specific brain regions has been consistently reported. In this study, we investigated the neurotoxic effect of the intracerebroventricularly injected iron on the cerebellar Purkinje cells in the rat and the role of nitric oxide (NO) in this process. The role of NO in rats administered iron (FeCl36H2O) was examined with the use of a donor of NO, L-arginine (L-Arg) and a central selective inhibitor of NO synthase, 7-nitroindazole (7-NI). For this reason, rats were divided into 5 groups: control, iron-injected, iron plus L-Arg, iron plus 7-NI, and iron plus L-Arg plus 7-NI. Means (value +/- standard deviation) of the total numbers of Purkinje cells in the cerebellum were estimated as 337 +/- 23, 209 +/- 16, 167 +/- 19, 305 +/- 26, and 265 +/- 14 thousands in the control, iron, iron plus L-Arg, iron plus 7-NI, and iron plus L-Arg plus 7-NI groups, respectively. Iron treatment alone and the combination of iron and L-Arg caused a significant reduction in the total number of cerebellar Purkinje cells. Therefore, L-Arg increased the Purkinje cell loss induced by treatment with iron. These data show that inhibition of the neuronal NOS by 7-NI can prevent some of the deleterious effects of iron on cerebellar Purkinje cells. Presence of L-arginine decreased the neuroprotective effect of 7-NI.  相似文献   

9.
The present study investigated in vivo the kinetic of the changes in rat striatal extracellular concentrations of dopamine (DA), and its monoamine oxidase (MAO)-derived metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), following administration either of nitric oxide (NO) synthase (NOS) inhibitors 7-nitroindazole (7-NI) and Nomega-nitro-l-arginine methyl ester (L-NAME) or of the widely used MAO inhibitor pargyline. DA and DOPAC concentrations were determined every 4 min by microdialysis combined with capillary zone electrophoresis coupled with laser-induced fluorescence detection (CZE-LIFD) and by differential normal pulse voltammetry (DNPV), respectively. Administration of 7-NI, both systemic (30 mg/kg, intraperitoneally, i.p.) or intrastriatal (1 mM through the microdialysis probe), as well as administration of pargyline (75 mg/kg, i.p.), induced simultaneously in the striatum a significant increase in extracellular DA and a significant decrease in extracellular DOPAC. However, administration of L-NAME (200 mg/kg, i.p.) produced a significant increase in striatal extracellular DA without changes in extracellular DOPAC. These data suggest a possible MAO inhibitory effect of 7-NI which seems to be restricted to this NOS inhibitor. These results may be of special interest for the studies on functional role of NO in the brain, particularly in dopaminergic transmission.  相似文献   

10.
The GABAB receptor (GABABR) agonist baclofen is known to have a beneficial potency in patients who suffer from dystonia, a neurological syndrome characterized by involuntary co-contractions of opposing muscles. The underlying mechanisms of this movement disorder are still unclear. Previous studies in the dtsz hamster, an animal model of primary paroxysmal dystonia, revealed alterations of the GABAergic system, including a reduction of striatal GABAergic interneurons and an altered GABAA receptor (GABAAR) binding in several brain regions. In order to clarify the pathophysiological role of central GABABRs in the hamster mutant, we performed pharmacological and receptor autoradiographic studies. Systemic administration of the GABABR agonist (R)-baclofen (1.5, 2.5 and 3.5 mg/kg i.p.) produced pronounced antidystonic effects in the dtsz hamster. Striatal microinjections of baclofen (0.125, 0.25 and 0.5 μg/0.5 μl) also strongly reduced the severity of dystonia. Single striatal administration of the selective GABABR antagonist CGP 35348 [(3-Aminopropyl)(diethoxymethyl)phosphinic acid, 5 and 10 μg/0.5 μl] did not influence the severity of dystonia, but antagonized the antidystonic effect of baclofen. For receptor autoradiographic studies, [H3]-CGP 54626 ([S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino]-2-hydroxypropyl](cyclohexylmethyl)phosphinic acid) binding was determined in dtsz hamsters in comparison to non-dystonic control hamsters. [H3]-CGP 54626 binding was not altered in motor areas but in some limbic structures of dtsz hamsters. In view of the absence of striatal changes in GABAB binding, the strong antidystonic effect of baclofen after its striatal microinjection is probably related to a suppression of a pathophysiologically increased synaptic activity.  相似文献   

11.
目的:探讨右美沙芬(DXM)的抗抑郁作用及其机制。方法:利用束缚加噪声刺激法构建抑郁症小鼠模型,并采用强迫游泳实验、悬尾实验及旷场实验探索DXM的抗抑郁作用,采用分子生物学方法检测DXM对小鼠脑内N-甲基-D-天冬氨酸(NMDA)受体活性以及总一氧化氮合酶(NOS)和各类型NOS含量的影响,并研究其作用机制。另外,预先向小鼠腹腔注射NMDA受体拮抗剂MK-801(MK)、NMDA、NO前体L-精氨酸(L-ARG)、内皮型NOS(eNOS)抑制剂Nω-硝基-L-精氨酸甲酯(L-NAME)、诱导型NOS(iNOS)抑制剂氨基胍(AG)、神经元型NOS(nNOS)抑制剂7-硝基吲唑(7-NI)或磷酸二酯酶5抑制剂西地那非,再给予DXM,验证DXM抗抑郁作用的机制。结果:DXM具有抗抑郁作用,且呈剂量依赖性;DXM能够抑制大脑NMDA受体活性,且呈剂量依赖性,DXM能够抑制eNOS及nNOS的表达;MK、L-NAME以及7-NI能够促进DXM的抗抑郁作用,NMDA、L-ARG以及西地那非能够抑制DXM的抗抑郁作用,AG不影响DXM的抗抑郁作用。结论:DXM具有抗抑郁作用。NMDA受体及L-ARGNO-cGMP信号通路可能参与这一过程。  相似文献   

12.
The present study investigated in vivo the kinetics of the changes in rat striatal extracellular concentrations of dopamine (DA), and its monoamine oxidase (MAO)-derived metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), following administration either of nitric oxide (NO) synthase inhibitors 7-nitroindazole (7-NI) and N(omega)-nitro-L-arginine methyl ester (L-NAME) or of the widely used MAO inhibitor pargyline. DA and DOPAC concentrations were determined every 4 min by microdialysis combined with capillary zone electrophoresis coupled with laser-induced fluorescence detection (CZE-LIFD) and by differential normal pulse voltammetry (DNPV), respectively. Administration of 7-NI, both systemic (30 mg/kg, i.p.) or intrastriatal (1 mM through the microdialysis probe), as well as administration of pargyline (75 mg/kg, i.p.), induced simultaneously in the striatum a significant increase in extracellular DA and a significant decrease in extracellular DOPAC. On the other hand, administration of L-NAME (200 mg/kg, i.p.) produced a significant increase in striatal extracellular DA without changes in extracellular DOPAC. These data suggest a possible MAO inhibitory effect of 7-NI which seems to be restricted to this NOS inhibitor. These results may be of special interest for the studies on the functional role of NO in the brain, particularly in dopaminergic transmission.  相似文献   

13.
A major component of the cortical regulation of the nigrostriatal dopamine (DA) system is known to occur via activation of striatal efferent systems projecting to the substantia nigra. The potential intermediary role of striatal nitric oxide synthase (NOS)-containing interneurons in modulating the efferent regulation of DA neuron activity was examined using single-unit recordings of DA neurons performed concurrently with striatal microdialysis in anesthetized rats. The response of DA neurons recorded in the substantia nigra to intrastriatal artificial cerebrospinal fluid (ACSF) or drug infusion was examined in terms of mean firing rate, percent of spikes fired in bursts, cells/track, and response to electrical stimulation of the orbital prefrontal cortex (oPFC) and striatum. Intrastriatal infusion of NOS substrate concurrently with intermittent periods of striatal and cortical stimulation increased the mean DA cell population firing rate as compared with ACSF controls. This effect was reproduced via intrastriatal infusion of a NO generator. Infusion of either a NOS inhibitor or NO chelator via reverse microdialysis did not affect basal firing rate but increased the percentage of DA neurons responding to striatal stimulation with an initial inhibition followed by a rebound excitation (IE response) from 40 to 74%. NO scavenger infusion also markedly decreased the stimulation intensity required to elicit an IE response to electrical stimulation of the striatum. In single neurons in which the effects of electrical stimulation were observed before and after drug delivery, NO antagonist infusion was observed to decrease the onset latency and extend the duration of the initial inhibitory phase induced by either oPFC or striatal stimulation. This is the first report showing that striatal NO tone regulates the basal activity and responsiveness of DA neurons to cortical and striatal inputs. These studies also indicate that striatal NO signaling may play an important role in the integration of information transmitted to basal ganglia output centers via corticostriatal and striatal efferent pathways.  相似文献   

14.
The dorsal lateral geniculate nucleus (dLGN) is essential for the transfer of visual information from the retina to visual cortex, and inhibitory mechanisms can play a critical in regulating such information transfer. Nitric oxide (NO) is an atypical neuromodulator that is released in gaseous form and can alter neural activity without direct synaptic connections. Nitric oxide synthase (NOS), an essential enzyme for NO production, is localized in thalamic inhibitory neurons and cholinergic brain stem neurons that innervate the thalamus, although NO-mediated effects on thalamic inhibitory activity remain unknown. We investigated NO effects on inhibitory activity in dLGN using an in vitro slice preparation. The NO donor, SNAP, selectively potentiated the frequency, but not amplitude, of spontaneous inhibitory postsynaptic currents (sIPSCs) in thalamocortical relay neurons. This increase also persisted in tetrodotoxin (TTX), consistent with an increase in GABA release from presynaptic terminals. The SNAP-mediated actions were attenuated not only by the NO scavenger carboxy-PTIO but also by the guanylyl cyclase inhibitor ODQ. The endogenous NO precursor L-arginine produced actions similar to those of SNAP on sIPSC activity and these L-arginine-mediated actions were attenuated by the NOS inhibitor L-NMMA acetate. The SNAP-mediated increase in sIPSC activity was observed in both dLGN and ventrobasal thalamic nucleus (VB) neurons. Considering the lack of interneurons in rodent VB, the NO-mediated actions likely involve an increase in the output of axon terminals of thalamic reticular nucleus neurons. Our results indicate that NO upregulates thalamic inhibitory activity and thus these actions likely influence sensory information transfer through thalamocortical circuits.  相似文献   

15.
Hyperbaric oxygen (HBO(2)) exposure induces increases in cerebral blood flow (CBF) and extracellular concentrations of nitric oxide (NO) that precede the appearance of central nervous system toxicity, which may manifest as convulsions. To elucidate the origins of NO production during HBO(2) exposure, we examined the effects of the selective neuronal NO synthase (NOS) inhibitor, 7-nitroindazole (7-NI), and the non-selective NOS inhibitor, N-nitro-l-arginine methyl ester (l-NAME), on changes in CBF and NO metabolites (NO(x), nitrite and nitrate) using a laser Doppler flow probe and in vivo microdialysis techniques, respectively. Rats were anesthetized, artificially ventilated, and pressurized to 5 atmosphere absolute (ATA) with pure oxygen for 60 min. In rats treated with vehicle, CBF and NO(x) levels in the cortex increased to 201% and 239% of basal levels, respectively, before the onset of electrical discharges, measured by electroencephalogram. The increase in CBF and NO(x) was completely inhibited by 7-NI and l-NAME. Both drugs also inhibited the appearance of electrical discharges for 60 min. Dynamic changes in CBF and NO(x) were not significantly different between 7-NI and l-NAME. These findings suggest that neuronal NOS is the main mediator of NO production associated with increase in CBF leading to the appearance of electrical discharge during HBO(2) exposure.  相似文献   

16.
The neurochemical profile was examined at postnatal day 3-4 in mutant mice generated by in vivo Cre mediated activation of an attenuated diphtheria toxin gene inserted into the D1 dopamine receptor gene locus. An earlier study of this model had shown that D1 dopamine receptor, substance P and dynorphin were not expressed in the striatum. Quantitative in situ hybridization analysis showed an increase in D2 dopamine receptor and enkephalin messenger RNA expression. The nigrostriatal pathway in the mutant pups was intact with a normal number of dopaminergic neurons in the substantia nigra and the ventral tegmental area in addition to a normal pattern of striatal dopamine transporter and tyrosine hydroxylase immunoreactivity. Quantitative analysis of striatal dopamine transporter density using [3H]mazindol showed a reduction of 26% suggesting a degree of transneuronal down-regulation. There was also a 49% reduction of striatal GABA receptor binding and a 36% reduction of striatal muscarinic receptor binding in mutant pups. The number of healthy striatal neuropeptide Y-containing interneurons was also substantially down-regulated in the mutant striatum. In contrast, there was an increase in the number of striatal cholinergic interneurons. Down-regulated cortical GABA receptor and muscarinic receptor binding was also observed in addition to subtle morphological changes in the neuropeptide Y-expressing population of cortical neurons. The changes reflect the early cascade of events which follows the ablation of D1 dopamine receptor-positive cells. Although extensive changes in a number of striatal and cortical neurons were demonstrated, only subtle transneuronal effects were seen in the nigrostriatal pathway.  相似文献   

17.
Leptin, which is produced in proportion to adiposity, has been reported to regulate feeding behaviors. Previous researchers reported that inhibition of nitric oxide (NO) synthase (NOS) decreased food intake, while L-arginine attenuated this effect. Recently, studies showed that NO plays an important role as a mediator of feeding behavior induced by a variety of neuropeptides. We investigated whether the anorectic effect of leptin is mediated by nitric oxide in broilers and Leghorns. In the first experiment, leptin was intracerebroventricularly (ICV) administered into the right lateral ventricle of broilers and food intake monitored at 15-min intervals through 180 min postinjection. L-arginine attenuated the decrease in food intake induced by leptin. In the second experiment, leptin was coinjected ICV with NG-nitro-arginine methyl ester HC1 (L-NNA), a NOS inhibitor. In the following study, we investigated whether the decreased feeding induced by leptin (10 microg/l0 microl) is mediated by nitric oxide in chickens. Three week old chickens were administered two levels of leptin (A=aCSF, B=10 microg/l0 microl) into the right lateral ventricle, and nitrate and nitrite (nitric oxide metabolites) were monitored 30-min postinjection. The results showed leptin decreased NO formation significantly compared with the control group. These results suggest that NO interacts with leptin in the central nervous system to modulate feeding behavior in the chicken.  相似文献   

18.
In the dt sz mutant hamster with idiopathic generalized dystonia, functional abnormalities of several neurotransmitters have been suggested to play a role in the development of symptoms. In the present study, we have used histochemistry with 35S-ATP labeled oligonucleotides to determine whether these abnormalities are associated with modulation in the expression of neurotransmitter genes in motor regions. We examined the expression of genes encoding cholecystokinin (CCK), somatostatin (SRIF), thyrotropin-releasing hormone (TRH), glutamic acid decarboxylase (GAD), tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP43) in the cortex and basal ganglia of dystonic hamsters and of non-dystonic control hamsters of a related inbred line and of a non-related outbred line. The distribution of these mRNAs in normal hamster brain was similar to that in normal rat brain. In all cortical regions studied (frontal, parietal and piriformis), the expression of CCK was similar in dystonic and inbred controls but was significantly greater than in outbred controls. In the anterior thalamus, CCK expression was lower in dystonic hamsters than in both control groups. SRIF expression was significantly decreased in the cortex and striatum of dystonic animals than in inbred and outbred control hamsters. GAD expression was lower in the striatum and substantia nigra, pars reticulata of dystonic than in outbred hamsters, but similar values were found in all groups in the other regions studied. TH was lower in the substantia nigra of dystonic than in inbred controls. No changes were found in GAP43 expression. This study demonstrates that changes in modulation of the expression of some peptides and neurotransmitter enzymes can be found in the dystonic hamster, which is in contrast to other animal models such as the dystonic rat, where no such changes have been found. The present data are consistent with previous findings in dt sz hamsters that suggest a dysfunction within the basal ganglia-thalamocortical circuits. Received: 29 June 1998 / Accepted: 17 May 1999  相似文献   

19.
This study aimed to examine whether celecoxib influences clonic seizure thresholds through modulation of nitric oxidergic (NO) pathway. The effect of celecoxib (1-5 mg per kg, p.o.) was investigated on clonic seizures induced by pentylenetetrazole (PTZ, 50 and 80 mg per kg, i.p.) in male Swiss mice. The interaction of celecoxib-induced effects with NO pathway was examined using a NO synthase (NOS) inhibitor, N(G)-omega-nitro-L-arginine methyl ester (L-NAME, 20 and 50 mg per kg, i.p.) and a NOS substrate, L-arginine (100 and 200 mg per kg, i.p.). The criteria for the development of seizure activity were the possibility for appearance of generalized clonus and prolongation of latency to the onset of convulsions following administration of 50 and 80 mg per kg of PTZ, respectively. Pretreatment with celecoxib (2.5 and 5 mg per kg) or L-NAME (50 mg per kg) induced anticonvulsant effect on the PTZ-induced clonic seizures. L-arginine at the dose of 200 mg per kg had proconvulsant effect. A sub-effective dose of celecoxib (1 mg per kg) induced an additive anticonvulsant effect when co-administered with L-NAME (20 mg per kg). Although L-arginine (100 mg per kg) per se did not influence PTZ-induced convulsion, it could attenuate the anticonvulsant effect of celecoxib (5 mg per kg). Our results indicate that celecoxib induces an anticonvulsant effect on clonic seizure threshold that may involve NO pathway.  相似文献   

20.
Bleeding tendency in uraemic patients seems to be related to alterations in the activity of the L-arginine-nitric oxide (NO) signalling pathway in platelets. We have reported previously that L-arginine influx into human platelets is mediated by the high-affinity cationic amino acid transport system y(+)L. In the present study we examined the dependency of nitric oxide synthase (NOS) activity on L-arginine transport in platelets isolated from healthy controls and uraemic patients on haemodialysis. We investigated basal and ADP-stimulated NOS activity, as reflected by the conversion of L-[(3)H]arginine to L-[(3)H]citrulline, in platelets obtained from healthy controls and uraemic patients on haemodialysis. To determine whether NOS activity depended on L-arginine transport, we analysed the effects of competitive inhibitors of L-arginine transport via system y(+)L on NOS activity. Basal NOS activity was increased from 0.21+/-0.06 to 0.7+/-0.2 pmol/10(8) platelets ( n=9, P<0.05) in uraemic patients. Stimulation by ADP (10 micro M) significantly increased NOS activity (inhibitable by L-NAME) in control platelets (252%) but failed to increase further the elevated NOS activity in uraemic platelets. Homocysteine and L-leucine, competitive inhibitors of system y(+)L, markedly inhibited NOS activity in uraemic platelets. These observations indicate that platelets from uraemic patients on haemodialysis generate more NO than control platelets and that entry of L-arginine via system y(+)L is most likely rate-limiting for platelet NO production in chronic renal failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号