首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABAergic neurons were localized in the rat basal ganglia by glutamate decarboxylase (GAD) immunohistochemistry. In the striatum (caudato-putamen, accumbens nucleus) a medium density of GAD-positive terminals was observed; a small number of medium-to-large size neurons and the vast majority of medium-size neurons were GAD immunoreactive. In addition, opioid peptide-like immunoreactivity was colocalized in a subclass of GAD-positive medium-size striatal neurons. The pallido-nigral system (GP, VP, EP, SNR) displayed a high density of GAD-positive axon terminals which synapsed upon dendrites and nerve cell bodies. The majority of pallido-nigral neurons also were GAD-immunoreactive. In contrast, the substantia nigra pars compacta and the subthalamic nucleus contained only few GAD-immunoreactive neurons.  相似文献   

2.
Summary In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudateputamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.  相似文献   

3.
Summary With indirect immunofluorescence, glutamate decarboxylase (GAD), the GABA synthesizing enzyme, was localized to cell bodies in the inner half of the inner nuclear layer and a few in the outer tier of the ganglion cell layer in the rhesus monkey retina. In the inner plexiform layer there were three strongly GAD-immunoreactive laminae separated by two less immunoreactive laminae. Electron microscopy demonstrated that the GAD was contained in amacrine cells and these GAD-immunoreactive amacrines were primarily pre- and postsynaptic to biopolar cell axon terminals. The GAD-containing processes possessed small synaptic vesicles and formed synapses that could be characterized as symmetrical. Large, dense-cored vesicles were often found in the cell bodies and synaptic processes of the GAD-immunoreactive amacrine cells. As the vast majority of the synaptic input and output of the GAD-containing amacrine cells was to and from bipolar cells and the strongest GAD-immunoreactivity correlated with the endings of bipolar cells that connect with a single cone, the functional effects of GABA in the primate retina are likely to be found in the responses of single cone pathways in the inner plexiform layer.  相似文献   

4.
The distribution of gamma aminobutyric acid (GABA)-containing neurons and nerve terminals was examined in the rat septal area by using specific antibodies to the enzyme glutamic acid decarboxylase (GAD) in combination with the avidin-biotin immunoperoxidase method. Whereas only a few GAD positive neurons were present in the septum of normal rats, the septal area of rats treated with colchicine, an inhibitor of fast axonal transport, showed numerous GAD-immunoreactive neurons. These neurons were evenly filled with GAD-immunoreactive material throughout the cytoplasm of the soma and proximal parts of the dendrites. Although GAD-positive neurons were present in most parts of the septal area, their density differed greatly in the different septal subnuclei. Both the diagonal band of Broca (vertical and horizontal parts) and the lateral septum were rich in GAD positive cell bodies, whereas the medial septal nucleus and the intermediate parts of the lateral septum contained relatively few. Within the lateral septum itself a larger number of labeled cell bodies was present in its ventral subdivision. The anterior hippocampal rudiment (taenia tecta) contained numerous GAD-positive neurons, while the septal component of the island of Calleja (insula magna) was devoid of them. GAD-immuno-positive neurons found within the septum ranged from small (15 microns) to large (30-35 micron). They were round or multipolar in the diagonal band, medium-sized multipolar in the lateral septum, and pyramidal, round or fusiform in the anterior hippocampal rudiment. GAD-immunoreactive nerve terminals are present in most subdivisions of the septal nuclei, with the exception of myelinated fiber tracts, and throughout all rostrocaudal levels of the septum. However, the density of the innervation is not the same within all individual nuclei. The lateral septum (dorsal and ventral parts) contained high density innervation but the diagonal band of Broca had a lower density of GAD-positive terminals. The lateral border of the islands of Calleja was rich in thick GAD-positive processes that appeared to be continuous with GAD-immunoreactive processes of the substantia inominata. The inner portion of the molecular layer adjacent to the granule cells of the anterior hippocampal rudiment contained a rich GAD-positive terminal field.  相似文献   

5.
The inhibitory neurotransmitter GABA is synthesized by glutamic acid decarboxylase (GAD), and two isoforms of this enzyme exist: GAD65 and GAD67. Immunocytochemical studies of the spinal cord have shown that whilst both are present in the dorsal horn, GAD67 is the predominant form in the ventral horn. The present study was carried out to determine the pattern of coexistence of the two GAD isoforms in axonal boutons in different laminae of the cord, and also to examine the relation of the GADs to the glycine transporter GLYT2 (a marker for glycinergic axons), since many spinal neurons are thought to use GABA and glycine as co-transmitters.Virtually all GAD-immunoreactive boutons throughout the spinal grey matter were labelled by both GAD65 and GAD67 antibodies; however, the relative intensity of staining with the two antibodies varied considerably. In the ventral horn, most immunoreactive boutons showed much stronger labelling with the GAD67 antibody, and many of these were also GLYT2 immunoreactive. However, clusters of boutons with high levels of GAD65 immunoreactivity were observed in the motor nuclei, and these were not labelled with the GLYT2 antibody. In the dorsal horn, some GAD-immunoreactive boutons had relatively high levels of labelling with either GAD65 or GAD67 antibody, whilst others showed a similar degree of labelling with both antibodies. GLYT2 immunoreactivity was associated with many GAD-immunoreactive boutons; however, this did not appear to be related to the pattern of GAD expression.It has recently been reported that there is selective depletion of GAD65, accompanied by a loss of GABAergic inhibition, in the ipsilateral dorsal horn in rats that have undergone peripheral nerve injuries [J Neurosci 22 (2002) 6724]. Our finding that some boutons in the superficial laminae showed relatively high levels of GAD65 and low levels of GAD67 immunoreactivity is therefore significant, since a reduction in GABA synthesis in these axons may contribute to neuropathic pain.  相似文献   

6.
We examined immunoreactivities for gamma-aminobutyric acidB-receptor (GABA(B)R) subtypes, GABA(B)R1 and GABA(B)R2, in the mesencephalic trigeminal nucleus neurons (MTN neurons) of the rat. Immunoreactivity for GABA(B)R1 was prominent in cell bodies of MTN, whereas that for GABA(B)R2 was very weak, if existed. For electron microscopy, the immunogold-silver method for GABA(B)R1 was combined with the immunoperoxidase method for glutamic acid decarboxylase (GAD: the synthetic enzyme of GABA). Immunogold-silver particles indicating GABA(B)R1 immunoreactivity were distributed widely in the cytoplasm of the cell bodies postsynaptic to GAD-immunoreactive axon terminals, but were rarely associated with synaptic membrane specialization or extrasynaptic sites of plasma membrane. It has been indicated that GABA(B)R1 may not be transported to plasma membrane when no GABA(B)R2 exists. Thus, it was presumed that GABA(B)R1 in the cell body of the rat MTN neurons might not be involved in the synaptic transmission.  相似文献   

7.
A rabbit polyclonal antiserum, raised against a C-terminal oligopeptide of the mouse kappa opioid receptor, was used to localize the cellular distribution of kappa receptors in the dorsal and ventral striatum of rats with light and electron microscopic immunocytochemistry. Prominent, diffuse kappa receptor immunoreactivity was present in the nucleus accumbens, particularly in the shell, ventral caudate-putamen and olfactory tubercle. The density of receptor immunoreactivity decreased in more dorsal areas of the caudate-putamen. In contrast, neuronal cell bodies stained clearly in the dorsal endopiriform nucleus, claustrum and layer VI of the adjacent cerebral cortex. Observations at the electron microscopic level in the dorsomedial shell of the nucleus accumbens and caudate-putamen revealed that the kappa receptor immunoreactivity was predominantly located in axons, often associated with synaptic vesicles, remote from the terminal or preterminal area. The few terminals which were labeled made slightly more asymmetrical than symmetrical contacts and the percentage of asymmetrical contacts observed was greater in the caudate than in the accumbens. A small number of postsynaptic spines was labeled; most of them were contacted by asymmetrical terminals. No labeling was observed in dendritic shafts.Thus, the predominant localization of kappa receptor immunoreactivity in axons is consistent with its role as a major inhibitor of glutamate and dopamine release in the dorsal and ventral striatum.  相似文献   

8.
Yoo JH  Cho JH  Lee SY  Loh HH  Ho IK  Jang CG 《Neuroscience letters》2005,384(1-2):29-32
The present study was undertaken to investigate changes in the expressions of neuropeptide Y (NPY) and substance P (SP) in mice lacking mu-opioid receptors. In an in situ hybridization study, in which we compared wild type and mu-opioid receptor knockout mice, NPY mRNA levels were found to be lower in the caudate-putamen and nucleus accumbens of mu-opioid receptor knockout mice. In addition, SP mRNA levels were lower in the ventromedial hypothalamic nucleus of mu-opioid receptor knockout mice. Our findings suggest that a lack of mu-opioid receptors modulates basal NPY mRNA levels in striatal regions and SP mRNA levels in the ventromedial hypothalamic nucleus of the mouse, and that these changes are due to compensatory modulation in the brain.  相似文献   

9.
The piriform cortex (PC) is the largest region of the mammalian olfactory cortex with strong connections to other limbic structures, including the amygdala, hippocampus, and entorhinal cortex. In addition to its functional importance in the classification of olfactory stimuli, the PC has been implicated in the study of memory processing, spread of excitatory information, and the facilitation and propagation of seizures within the limbic system. Previous data from the kindling model of epilepsy indicated that alterations in GABAergic inhibition in the transition zone between the anterior and posterior PC, termed here central PC, are particularly involved in the processes underlying seizure propagation. In the present study we studied alterations in GABAergic neurons in different parts of the PC following seizures induced by kainate or pilocarpine in rats. GABA neurons were labeled either immunohistochemically for GABA or its synthesizing enzyme glutamate decarboxylase (GAD) or by in situ hybridization using antisense probes for GAD65 and GAD67 mRNAs. For comparison with the PC, labeled neurons were examined in the basolateral amygdala, substantia nigra pars reticulata, and the hippocampal formation. In the PC of controls, immunohistochemical labeling for GABA and GAD yielded consistently higher neuronal densities in most cell layers than labeling for GAD65 or GAD67 mRNAs, indicating a low basal activity of these neurons. Eight hours following kainate- or pilocarpine-induced seizures, severe neuronal damage was observed in the PC. Counting of GABA neurons in the PC demonstrated significant decreases in densities of neurons labeled for GABA or GAD proteins. However, a significantly increased density of neurons labeled for GAD65 and GAD67 mRNAs was determined in layer II of the central PC, indicating that a subpopulation of remaining neurons up-regulated the mRNAs for the GAD isoenzymes. One likely explanation for this finding is that remaining GABA neurons in layer II of the central PC maintain high levels of activity to control the increased excitability of the region. In line with previous studies, an up-regulation of GAD67 mRNA, but not GAD65 mRNA, was observed in dentate granule cells following seizures, whereas no indication of such up-regulation was determined for the other brain regions examined. The data substantiate the particular susceptibility of the central PC to seizure-induced plasticity and indicate that this brain region provides an interesting tool to study the regulation of GAD isoenzymes.  相似文献   

10.
Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.  相似文献   

11.
The present study investigated, in rats, whether blockade of cannabinoid CB1 receptors may alter Fos protein expression in a manner comparable to that observed with antipsychotic drugs. Intraperitoneal administration of the selective CB1 receptor antagonist, SR141716, dose-dependently (1.0, 3.0 and 10 mg/kg) increased Fos-like immunoreactivity in mesocorticolimbic areas (prefrontal cortex, ventrolateral septum, shell of the nucleus accumbens and dorsomedial caudate-putamen), while motor-related structures such as the core of the nucleus accumbens and the dorsolateral caudate-putamen were unaffected. In the ventrolateral septum, taken as a representative structure, the Fos-inducing effect of SR141716 (10 mg/kg) was maximal 2 h after injection and returned to near control levels by 4 h. Within the prefrontal cortex, SR141716 increased the number of Fos-positive cells predominantly in the infralimbic and prelimbic cortices, presumptive pyramidal cells being the major cell types in which Fos was induced. The D1-like receptor antagonist, SCH23390 (0.1 mg/kg), did not prevent the Fos-inducing effect of SR141716 in any brain region examined (prefrontal cortex, nucleus accumbens, ventrolateral septum and dorsomedial caudate-putamen), although SCH23390 significantly reduced Fos expression induced by cocaine (20 mg/kg) in all these regions. By contrast, the dopamine D2-like agonist, quinpirole (0.25 mg/ kg), counteracted SR141716-induced Fos-like immunoreactivity in the ventrolateral septum, the nucleus accumbens and the dorsomedial caudate-putamen, while no antagonism was observed in the prefrontal cortex. Microdialysis experiments in awake rats indicated that SR141716, at doses which increased Fos expression (3 and 10 mg/kg), did not alter dopamine release in the shell of the nucleus accumbens. Finally, SR141716 increased the levels of neurotensin-like immunoreactivity in the nucleus accumbens, but not in the caudate-putamen. Collectively, the present results show that blockade of cannabinoid receptors increases Fos- and neurotensin-like immunoreactivity with characteristics comparable to those reported for atypical neuroleptic drugs.  相似文献   

12.
The expression of mRNA encoding for the 67 kilodalton isoform of glutamate decarboxylase (GAD67) was examined by in situ hybridization histochemistry in the entopeduncular nucleus (EP) of adult rats with a 6-hydroxydopamine unilaterally lesion of dopamine neurons. Our results provide original evidence that continuous or intermittent levodopa administration is equally effective at reversing the lesion-induced increase in GAD67 mRNA expression in the EP when compared with vehicle controls. To characterize the GABAergic interactions that may mediate levodopa-induced alterations in the EP, double-labeling in situ hybridization was conducted with a combination of GAD67 radioactive and preproenkephalin or preprotachykinin digoxigenin-labeled complementary RNA probes in the striatum. Levels of GAD67 mRNA labeling were significantly increased by intermittent, but not continuous levodopa. Analysis at the cellular level in a dorsal sector of the striatum revealed that GAD67 mRNA levels increased predominantly in preproenkephalin-unlabeled neuronal profiles, presumably striatal/EP neurons (+99.3%). Saturation analyses of (3)H-flunitrazepam binding to GABA(A) receptors in the EP showed that the increase in GAD67 mRNA in preproenkephalin-unlabeled neurons by intermittent levodopa paralleled a significant decrease in number of GABA(A) receptors (Bmax) in the EP ipsilateral to the lesion. Continuous levodopa failed to alter striatal GAD67 mRNA levels, or the number or affinity of GABA(A) receptors when compared with vehicle-treated controls. These results suggest the normalization of GAD gene expression in the EP by intermittent levodopa involves an increase in GABAergic inhibition by striatonigral/EP neurons of the direct pathway. Conversely, the effects of continuous levodopa on GAD mRNA levels in the EP do not appear to be mediated by GABA.  相似文献   

13.
Several lines of evidence suggest that dopamine exerts a chronic inhibitory action on GABAergic cells in the striatum, and striatal glutamic acid decarboxylase (GAD) mRNA levels are increased after ipsilateral dopaminergic denervation. In the present study we have used GAD immunocytochemistry to assess whether dopaminergic denervation results in an increase in GAD protein synthesis. In three 6-hydroxydopamine-lesioned animals, there was a perceptible increase in the density of GAD-immunoreactive (ir)staining on the side ipsilateral to the lesion. Computer-assisted densitometric analysis showed a significant increase in GAD-ir staining in the ipsilateral striatum compared to the contralateral (control) side. These data suggest that removal of striatal dopaminergic innervation results in an increase in the amount of immunoreactive GAD, the rate limiting enzyme in the synthesis of GABA.  相似文献   

14.
15.
In order to assess the effect of sigma (sigma) receptor activity on striatal and limbic enkephalinergic cells we measured proenkephalin mRNA levels by in situ hybridization histochemistry after chronic treatment with the sigma-receptor agonist drugs SKF 10047 or pentazocine. Chronic treatment with SKF 10047 decreased proenkephalin mRNA levels in the anterior aspect of the caudate-putamen (CPU) and the nucleus accumbens by 20-22% relative to controls. No significant effect was observed in the medial aspect of the CPU. Treatment with pentazocine decreased proenkephalin mRNA levels by 20-25% in all 3 brain regions. The results demonstrate that sigma-receptor activity can exert tonic effects on proenkephalin mRNA expression in the striatum and the nucleus accumbens of the rat.  相似文献   

16.
The presence of glutamic acid decarboxylase (GAD), the enzyme synthesizing gamma-aminobutyric acid (GABA), was investigated in the red nucleus by an immunocytochemical method. The ipsilateral sensorimotor cortex was ablated prior to the immunocytochemical procedures to examine whether cortical neurons make synaptic contacts with GAD-immunoreactive neurons. Small GAD-immunoreactive neurons with a major diameter of 16.1 +/- 3.2 micron (mean +/- S.D.) were observed in the red nucleus under both light and electron microscopy. They were uniformly distributed throughout the nucleus. Degenerating axon terminals were found making synaptic contact with GAD-immunoreactive neurons in the red nucleus, which suggests that there is an input from the ipsilateral sensorimotor cortex to these neurons. This observation, along with our previous findings that GABAergic axon terminals make synaptic contact with the rubrospinal neurons, provides anatomical evidence for the presence of intrinsic GABAergic interneurons which mediate cortical inhibition in cat rubrospinal neurons.  相似文献   

17.
Summary In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarily, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudateputamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.  相似文献   

18.
Gephyrin is an ubiquitously expressed protein that, in the central nervous system, generates a protein scaffold to anchor inhibitory neurotransmitter receptors in the postsynaptic membrane. It was first identified as a protein component of the glycine receptor complex. Recent studies have demonstrated that gephyrin is colocalized with several subtypes of GABA(A) receptors and is part of postsynaptic GABA(A) receptor clusters. Here, we describe a study of the regional and cellular distribution of gephyrin in the human brain, determined by immunohistochemical localisation at the light and confocal laser scanning microscopic levels. At the regional level, gephyrin immunoreactivity was observed in most of the major brain regions examined. The most intense staining was in the cerebral cortex, hippocampus and caudate-putamen, in various brainstem nuclei with more moderate levels in the thalamus and cerebellum. At the cellular level gephyrin immunoreactivity was present on the plasma membranes of the soma and dendrites of pyramidal neurons throughout the various cortical regions examined. In the hippocampus, intense staining was observed on the granule cells of the dentate gyrus, and neurons of the CA1 and CA3 regions showed intense punctate gephyrin staining on their apical dendrites and cell bodies. Gephyrin immunoreactivity was also observed on neurons in the thalamus, globus pallidus and substantia nigra. In the putamen intense labelling of the striosomes was observed; most of the medium-sized neurons in the caudate-putamen were weakly labelled and many large neurons of the striatum were conspicuously stained. Many of the brainstem nuclei, notably the dorsal motor nucleus of the vagus, hypoglossal nucleus, trigeminal nucleus and inferior olive were all labelled with gephyrin. The spinal cord also showed high levels of gephyrin immunoreactivity. Our results demonstrate that the anchoring protein gephyrin is ubiquitously present in the human brain. We therefore suggest that gephyrin may have a central organizer role in assembling and stabilizing inhibitory postsynaptic membranes in human brain and is similar in function to those observed in the rodent brain. These findings contribute towards elucidating the role of gephyrin in the human brain.  相似文献   

19.
Ma J  Ye N  Lange N  Cohen BM 《Neuroscience》2003,121(4):991-998
Administration of typical and atypical antipsychotic drugs leads to activation of cells in the nucleus accumbens shell, central amygdaloid nucleus, and midline thalamic central medial nucleus, implicating important shared effects of these drugs. However, the exact cell types responding to antipsychotic drugs in the nucleus accumbens shell, central amygdaloid nucleus, and midline thalamic central medial nucleus are unclear. We report here that, in a rat model, the results of studies using double immunofluorescence labeling with antibodies directed against markers specific to candidate cell types suggest that the cells responding to haloperidol and clozapine in all three sites are: 1) neurons, rather than astrocytes; 2) inhibitory GABA neurons, but not acetylcholinergic neurons; and 3) dynorphin-containing GABA neurons, but not M-enkephalin-containing GABA neurons. The present study provides pharmacological evidence, at the cellular level in vivo, that the shared effects of antipsychotic drugs, whether typical and atypical, is activation of dynorphinergic GABA neurons in the nucleus accumbens shell, central amygdaloid nucleus, and midline thalamic central medial nucleus. Alternative ways to modulate dynorphinergic GABA neuronal activity or its target receptors might present an important new avenue for the treatment of schizophrenia and other psychotic disorders.  相似文献   

20.
Digoxigenin-labeled RNA probes and in situ hybridization histochemistry were used to examine choline acetyltransferase gene expression in the rat central nervous system. Hybridization signal was present only in brain sections processed with the antisense riboprobe. The sense probe did not yield labeling, further validating the specificity of tissue reactivity. Telencephalic neurons containing the mRNA for the cholinergic synthetic enzyme were found in the caudate-putamen nucleus, nucleus accumbens, olfactory tubercule, islands of Calleja complex, medial septal nucleus, vertical and horizontal limbs of the diagonal band, substantia innominata, nucleus basalis, and nucleus of the ansa lenticularis. Some somata evincing hybridization signal were observed in the anterior amygdalar area, and an occasional such cell was seen in the basolateral and central amygdalar nuclei. Neurons in the cerebral cortex, hippocampus, and primary olfactory structures did not demonstrate hybridocytochemically detectable amounts of choline acetyltransferase mRNA. Thalamic cells were devoid of reactivity, with the exception of several neurons located primarily in the ventral two-thirds of the medial habenula. A few somata labeled with riboprobe were found in the lateral hypothalamus, caudal extension of the internal capsule, and zona incerta. Neurons in the pedunculopontine and laterodorsal tegmental nuclei were moderately reactive, whereas cells of the parabigeminal nucleus exhibited a very weak hybridization signal. No somata in the brainstem raphe nuclei, including raphe obscurus and raphe magnus, were observed to bind riboprobe. In contrast, motor neurons of the cranial nerve nuclei demonstrated relatively large amounts of choline acetyltransferase mRNA. Putative cholinergic somata in the ventral horns and intermediolateral cell columns of the spinal cord were also labeled with riboprobe, as were a few cells around the central canal. We conclude that hybridocytochemistry with digoxigenin-labeled riboprobes confirms the existence of cholinergic neurons (i.e. those that synthesize and use acetylcholine as a neurotransmitter) in most of the neural regions deduced to contain them on the basis of previous histochemical and immunocytochemical data. Notable exceptions are the cerebral cortex and hippocampus, which do not possess neurons expressing detectable levels of choline acetyltransferase mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号