首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explored adjustments in multi-digit coordinated action on a hand-held object with finger addition and removal. The subjects (n = 7) kept a vertically oriented handle at rest using a prismatic grasp as if holding a glass of liquid and then either added one finger to the grasp, the index (I) or little (L) finger, or removed one finger. Three external torques were applied on the apparatus: clockwise, counterclockwise, and no torque. The individual digit forces and moments were recorded with six-component sensors. The change in grasping force, normal force of the thumb and virtual finger (VF, an imagined finger that generates the same mechanical effect as all fingers together), depended on the function of the manipulated finger, i.e. on whether the finger resisted external torque (torque agonist) or assisted it (torque antagonist). There was a significant increase of the grasping force when an antagonist was added or when an agonist was removed. These force increases were not necessary for slipping prevention: the normal forces prior to the manipulation were large enough to prevent slipping. All other finger manipulations exhibited no significant change in the grip force, except for the antagonist removal during the supination efforts (after removing the I finger the grasping force decreased). In contrast, the changes in the tangential force of the thumb depended on the manipulated finger, not on the finger function with respect to external torque. There was a significant thumb tangential force increase when the I finger was added or when the L finger was removed; opposite changes were seen when the L finger was added or the I finger was removed. The changes of the virtual finger (VF) tangential force were equal and opposite to the thumb tangential force alterations; these opposite changes caused changes in the moments, these forces generated. The changes in the moments of the tangential forces were counterbalanced by the opposite changes in the moments of normal forces such that the total moment remained constant and the handle orientation was maintained. At the level of individual finger (IF) forces two strategies of error compensation were found: (a) local error compensation—the opposite action of the neighboring finger, i.e. force decrease in response to a force increase (finger addition), and vice versa and (b) distant error compensation—similar action by a finger that is a torque antagonist to the manipulated finger. During the transient periods, the changes in the thumb and VF forces were simultaneous and equal in magnitude. The normal forces increased or decreased concurrently while the changes in the tangential forces were opposite in direction. The data support the existence of chain effects in the digit force adjustments to finger addition or removal. We conclude that the digit force adjustments during the object manipulation are controlled mainly in a feed-forward manner. The obtained data agree with the principle of superposition reported previously. The findings agree with earlier reports on the limited ability of CNS to organize synergies at two levels of a control hierarchy simultaneously.  相似文献   

2.
We studied adjustments in digit forces and moments during holding a vertically oriented handle under slow, externally imposed changes in the width of the grasp. Subjects (n = 8) grasped a customized motorized handle with five digits and held it statically in the air. The handle width either increased (expanded) or decreased (contracted) at a rate of 1.0, 1.5, or 2.0 mm/s, while the subjects were asked to ignore the handle width changes, and their attention was distracted. External torques of 0.0, 0.25, and 0.5 Nm were applied to the handle in two directions. Forces and moments at the digit tips were measured with six-component sensors. The analysis was performed at the virtual finger (VF) and individual finger (IF) levels (VF is an imagined finger that produces the same wrench, i.e., the force and moment, as several fingers combined). In all the tasks, the normal VF and thumb forces increased with the handle expansion and decreased with the handle contraction. Similar behavior was seen for the thumb tangential force. In contrast, the VF tangential force decreased with the handle expansion and increased with the handle contraction. The changes in the tangential forces assisted the perturbations in the tasks requiring exertion of the supination moments and annulled the perturbation in the pronation effort tasks. In the former tasks, the equilibrium was maintained by the changes of the moments of normal forces, whereas in the latter tasks, the equilibrium was maintained by the changes of the moments of the tangential forces. Analysis at the IF level has shown that the resultant force and moment exerted on the object could arise from dissimilar adjustments of individual fingers to the same handle width change. The complex adjustments of digit forces to handle width change may be viewed as coming from two sources. First, there are local spring-like adjustments of individual digit forces and moments caused by both mechanical properties of the digits and the action of spinal reflexes. These stiffness-like reactions mainly assist in perturbing the rotational equilibrium of the object rather than in maintaining it. Second, there are tilt-preventing adjustments defined by the common task constraints that unite the digits into a task-specific synergy. The "virtual springs theory" developed in robotics literature is insufficient for describing the phenomena observed in human grasping.  相似文献   

3.
We studied the coordination of forces and moments exerted by individual digits in static tasks that required balancing an external load and torque. Subjects (n=10) stabilized a handle with an attachment that allowed for change of external torque. Thumb position and handle width systematically varied among the trials. Each subject performed 63 tasks (7 torque values × 3 thumb locations × 3 widths). Forces and moments exerted by the digit tips on the object were recorded. Although direction and magnitude of finger forces varied among subjects, each subject used a similar multidigit synergy: a single eigenvalue accounted for 95.2–98.5% of the total variance. When task parameters were varied, regular conjoint digital force changes (prehension synergies) were observed. Synergies represent preferential solutions used by the subjects to satisfy mechanical requirements of the tasks. In particular, chain effects in force adjustments to changes in the handle geometry were documented. An increased handle width induced the following effects: (a) tangential forces remained unchanged, (b) the same tangential forces produced a larger moment T t , (c) the increased T t was compensated by a smaller moment of the normal forces T n, and (d) normal finger forces were rearranged to generate a smaller moment. Torque control is a core component of prehension synergies. Observed prehension synergies are only mechanically necessitated in part. The data support a theory of hierarchical organization of prehension synergies. Electronic Publication  相似文献   

4.
Internal force is a set of contact forces that does not disturb object equilibrium. The elements of the internal force vector cancel each other and, hence, do not contribute to the resultant (manipulation) force acting on the object. The mathematical independence of the internal and manipulation forces allows for their independent (decoupled) control realized in robotic manipulators. To examine whether in humans internal force is coupled with the manipulation force and what grasping strategy the performers utilize, the subjects (n=6) were instructed to make cyclic arm movements with a customized handle. Six combinations of handle orientation and movement direction were tested. These involved: parallel manipulations (1) VV task (vertical orientation and vertical movement) and (2) HH task (horizontal orientation and horizontal movement); orthogonal manipulations (3) VH task (vertical orientation and horizontal movement) and (4) HV task (horizontal orientation and vertical movement); and diagonal manipulations (5) DV task (diagonal orientation and vertical movement) and (6) DH task (diagonal orientation and horizontal movement). Handle weight (from 3.8 to 13.8 N), and movement frequency (from 1 to 3 Hz) were systematically changed. The analysis was performed at the thumb-virtual finger level (VF, an imaginary finger that produces a wrench equal to the sum of wrenches produced by all the fingers). At this level, the forces of interest could be reduced to the internal force and internal moment. During the parallel manipulations, the internal (grip) force was coupled with the manipulation force (producing object acceleration) and the thumb-VF forces increased or decreased in phase: the thumb and VF worked in synchrony to grasp the object more strongly or more weakly. During the orthogonal manipulations, the thumb-VF forces changed out of phase: the plots of the internal force vs. object acceleration resembled an inverted letter V. The HV task was the only task where the relative phase (coupling) between the normal forces of the thumb and VF depended on oscillation frequency. During the diagonal manipulations, the coupling was different in the DV and DH tasks. A novel observation of substantial internal moments is described: the moments produced by the normal finger forces were counterbalanced by the moments produced by the tangential forces such that the resultant moments were close to zero. Implications of the findings for the notion of grasping synergies are discussed.  相似文献   

5.
The effects of surface friction at the digit-object interface on digit forces were studied when subjects (n=8) statically held an object in a five-digit grasp. The friction conditions were SS (all surfaces are sandpaper), RR (all are rayon), SR (S for the thumb and R for the four fingers), and RS (the reverse of SR). The interaction effects of surface friction and external torque were also examined using five torques (–0.5, –0.25, 0, +0.25, +0.5 Nm). Forces and moments exerted by the digits on a handle were recorded. At zero torque conditions, in the SS and RR (symmetric) tasks the normal forces of the thumb and virtual finger (VF, an imagined finger with the mechanical effect equal to that of the four fingers) were larger for the RR than the SS conditions. In the SR and RS (asymmetric) tasks, the normal forces were between the RR and SS conditions. Tangential forces were smaller at the more slippery side than at the less slippery side. According to the mathematical optimization analysis decreasing the tangential forces at the more slippery sides decreases the cost function values. The difference between the thumb and VF tangential forces, ΔF t, generated a moment of the tangential forces (friction-induced moment). At non-zero torque conditions the friction-induced moment and the moment counterbalancing the external torque (equilibrium-necessitated moment) could be in same or in opposite directions. When the two moments were in the same direction, the contribution of the moment of tangential forces to the total moment was large, and the normal forces were relatively low. In contrast, when the two moments were in opposite directions, the contribution of the moment of tangential forces to the total moment markedly decreased, which was compensated by an increase in the moment of normal forces. The apparently complicated results were explained as the result of summation of the friction-related (elemental) and torque-related (synergy) components of the central commands to the individual digits.  相似文献   

6.
This study tests the following hypotheses in multi-digit circular object prehension: the principle of superposition (i.e., a complex action can be decomposed into independently controlled sub-actions) and the hierarchical organization (i.e., individual fingers at the lower level are coordinated to generate a desired task-specific outcome of the virtual finger at the higher level). Subjects performed 25 trials while statically holding a circular handle instrumented with five six-component force/moment sensors under seven external torque conditions. We performed a principal component (PC) analysis on forces and moments of the thumb and virtual finger (VF: an imagined finger producing the same mechanical effects of all finger forces and moments combined) to test the applicability of the principle of superposition in a circular object prehension. The synergy indices, measuring synergic actions of the individual finger (IF) moments for the stabilization of the VF moment, were calculated to test the hierarchical organization. Mixed-effect ANOVAs were used to test the dependent variable differences for different external torque conditions and different fingers at the VF and IF levels. The PC analysis showed that the elemental variables were decoupled into two groups: one group related to grasping stability control (normal force control) and the other group associated with rotational equilibrium control (tangential force control), which supports the principle of superposition. The synergy indices were always positive, suggesting error compensations between IF moments for the VF moment stabilization, which confirms the hierarchical organization of multi-digit prehension.  相似文献   

7.
We examined how the digit forces adjust when a load force acting on a hand-held object continuously varies. The subjects were required to hold the handle still while a linearly increasing and then decreasing force was applied to the handle. The handle was constrained, such that it could only move up and down, and rotate about a horizontal axis. In addition, the moment arm of the thumb tangential force was 1.5 times the moment arm of the virtual finger (VF, an imagined finger with the mechanical action equal to that of the four fingers) force. Unlike the situation when there are equal moment arms, the experimental setup forced the subjects to choose between (a) sharing equally the increase in load force between the thumb and VF but generating a moment of tangential force, which had to be compensated by negatively co-varying the moment due to normal forces, or (b) sharing unequally the load force increase between the thumb and VF but preventing generation of a moment of tangential forces. We found that different subjects tended to use one of these two strategies. These findings suggest that the selection by the CNS of prehension synergies at the VF-thumb level with respect to the moment of force is non-obligatory and reflects individual subject preferences. This unequal sharing of the load by the tangential forces, in contrast to the previously observed equal sharing, suggests that the invariant feature of prehension may be a correlated increase in tangential forces rather than an equal increase.  相似文献   

8.
We studied static prehension of a horizontally oriented object. Specific hypotheses were explored addressing such issues as the sharing patterns of the total moment of force across the digits, presence of mechanically unnecessary digit forces, and trade-off between multi-digit synergies at the two levels of the assumed control hierarchy. Within the assumed hierarchy, at the upper level, the task is shared between the thumb and virtual finger (an imagined finger producing a wrench equal to the sum of the wrenches of individual fingers). At the lower level, action of the virtual finger is shared among the four actual fingers. The subjects held statically a horizontally oriented handle instrumented with six-component force/torque sensors with different loads and torques acting about the long axis of the handle. The thumb acted from above while the four fingers supported the weight of the object. When the external torque was zero, the thumb produced mechanically unnecessary force of about 2.8 N, which did not depend on the external load magnitude. When the external torque was not zero, tangential forces produced over 80% of the total moment of force. The normal forces by the middle and ring fingers produced consistent moments against the external torque, while the normal forces of the index and little fingers did not. Force and moment variables at both hierarchical levels were stabilized by covaried across trials adjustments of forces/moments produced by individual digits with the exception of the normal force analyzed at the lower level of the hierarchy. There was a trade-off between synergy indices computed at the two levels of the hierarchy for the three components of the total force vector, but not for the moment of force components. Overall, the results have shown that task mechanics are only one factor that defines forces produced by individual digits. Other factors, such as loading sensory receptors may lead to mechanically unnecessary forces. There seems to be no single rule (for example, ensuring similar safety margin values) that would describe sharing of the normal and tangential forces and be valid across tasks. Fingers that are traditionally viewed as less accurate (e.g., the ring finger) may perform more consistently in certain tasks. The observations of the trade-off between the synergy indices computed at two levels for the force variables but not for the moment of force variables suggest that the degree of redundancy (the number of excessive elemental variables) at the higher level is an important factor.  相似文献   

9.
During multi-digit grasping both local and non-local digit force responses occur in response to changes in texture at selected digits depending on the grasp configuration. However, the extent to which the specific patterns of force distribution depend on the requirement to hold the object against gravity remains to be determined. In the present study, we examined whether grasp force sharing patterns are invariant when the constraint of maintaining the object orientation vertical against gravity is removed. We used changes in object texture to elicit force changes at single digits during two grasping tasks with different behavioral contexts. One task entailed holding an object against gravity (object hold [OH]). A second (force production [FP]) task consisted of generating lifting forces on an object clamped to the tabletop that were matched to those used during OH. Unlike OH, the FP task lacks the behavioral consequences associated with erroneous sharing of normal and tangential digit forces, e.g., object tilt. Ten subjects lifted and simulated lifting an instrumented object measuring grasping normal and vertical tangential forces at all five digits when the textures were uniformly high-friction sandpaper or low-friction rayon and when one digit contacted a different frictional texture than the other four digits. We found that in both tasks texture changes at individual digits elicited force changes at that digit as well as other digits. However, the specific pattern of force distribution changes differed during OH compared to FP. While subjects modulate the normal and tangential digit forces to different degrees depending on object texture and the grasping task, they ignore the requirement of moment equilibrium when this has no consequences on object orientation (FP task). These findings indicate that multi-digit force responses to texture revealed by previous studies are not obligatory and suggest that the behavioral context of a task should be considered when inferring general principles of multi-digit force coordination.  相似文献   

10.
We studied characteristics of digit action and their co-variation patterns across trials (prehension synergies) during static holding of an object while the external torque could change slowly and smoothly. The subjects held in the air an instrumented handle with an attachment that allowed a smooth change in the external torque over about 12 s; the load was always kept constant. Series of trials were performed under three conditions: The torque could be zero throughout the trial, or it could change slowly requiring a smooth change of the effort from a non-zero pronation value to zero (PR-0) or from a non-zero supination value to zero (SU-0). The handle was kept vertical at all times. Indices of variance and co-variation of elemental variables (forces and moments of force produced by individual digits) stabilizing such performance variables as total normal force, total tangential force, and total moment of force were computed at two levels of an assumed control hierarchy. At the upper level, the task is shared between the thumb and virtual finger (an imagined digit with the mechanical action equal to that of the four fingers), while at the lower level, the action of the virtual finger is shared among the actual four fingers. We analyzed the total moment of force as the sum of the moments of force produced by the thumb and virtual finger and also as the sum of the moments of force produced by the normal forces and tangential forces. The results showed that the adjustments in the total moment of force were produced primarily with changes in the moment produced by the virtual finger and by changes in the moment produced by the normal forces. The normal force of the thumb at the final state (which was the same across conditions) was larger in the two conditions with changes in the external torque. The safety margin was significantly higher in the PR-0 condition, and it dropped with the decrease in the external torque. A co-contraction index was computed to reflect the moment of force production by the fingers acting against the total moment produced by the virtual finger. It was higher for the SU-0 condition. Most variance indices dropped with a decrease in the external torque. The co-variation indices, however, remained unchanged over the trial duration. They showed signs of a trade-off between the two levels of the assumed hierarchy: larger indices at the higher level corresponded to smaller indices at the lower level. This study and the previous one (Sun et al. in Exp Brain Res 209:571–585, 2011) document several previously unknown features of prehensile tasks. The results show that characteristics of digit action and interaction in such tasks depend not only on the magnitudes of external constraints but also on a variety of other factors including time changes in the constraints and their history.  相似文献   

11.
We performed three-dimensional analysis of the conjoint changes of digit forces during prehension (prehension synergies) and tested applicability of the principle of superposition to three-dimensional tasks. Subjects performed 25 trials at statically holding a handle instrumented with six-component force/moment sensors under seven external torque conditions; -0.70, -0.47, -0.23, 0.00, 0.23, 0.47, and 0.70 Nm about a horizontal axis in the plane passing through the centers of all five digit force sensors (the grasp plane). The total weight of the system was always 10.24 N. The trial-to-trial variability of the forces produced by the thumb and the virtual finger (an imagined finger producing the same mechanical effects as all 4 finger forces and moments combined) increased in all three dimensions with the external torque magnitude. The sets of force and moment variables associated with the moment production about the vertical axis in the grasp plane and the axis orthogonal to the grasp plane consisted of two noncorrelated subsets each; one subset of variables was related to the control of grasping forces (grasp control) and the other sassociated with the control of the orientation of the hand-held object (torque control). The variables associated with the moment production about the horizontal axis in the grasp plane did not include the grip force (the normal thumb and virtual finger forces) and showed more complex noncorrelated subsets. We conclude that the principle of superposition is valid for the prehension in three dimensions. The observed high correlations among forces and moments associated with the control of object orientation could be explained by chain effects, the sequences of cause-effect relations necessitated by mechanical constraints.  相似文献   

12.
The moment production by several fingers on a mechanically fixed vertically oriented handle was studied under the systematic variations of task parameters such as (a) moment magnitude (1.0 Nm and 2.0 Nm) and (b) direction of moment production (into pronation and supination), as well as (c) vertical position of the handle from the moment axis, P (0, 2.0, 4.0, and 6.0 cm in both directions). The purpose of this study was twofold: to investigate the dependences between the task parameters and the performance variables and to test the mechanical advantage hypothesis. The performance variables changed symmetrically with P. In particular, magnitudes of the net horizontal and vertical forces both showed an S-shape change. The position of the point of zero free moment (PZFM) was determined. In the intermediate grasp locations (when 0<P magnitude <PZFM), the contribution of Mfree (moment produced mainly by pronational or supinational effort) and the moment of the resultant force (moment generated mainly by pushing) into the total moment production scaled linearly with the P. The magnitudes of both agonist and antagonist moments (those acting in and against the direction of the required moment, respectively) of normal forces increased with P magnitudes while the magnitude of agonist moments of tangential forces decreased. For individual fingers, the ratio of finger force to its moment arm was not constant. The mechanical advantage hypothesis was successful in explaining some of the data but could not cope with other findings. We assume, therefore, that this hypothesis is limited in its applicability and may be task and effector specific.  相似文献   

13.
Humans are known to show anticipatory adjustments in the grip force prior to a self-generated or predictable action or perturbation applied to a hand-held object. We investigated whether humans can also adjust covariation of individual finger forces (multi-finger synergies) prior to self-triggered perturbations. To address this issue, we studied adjustments in multi-digit synergies associated with applied load/torque perturbations while the subjects held a customized handle steadily. The main hypothesis was that the subjects would be able to demonstrate the phenomenon of anticipatory covariation, that is changes in covariation patterns among digit forces and moments of force in anticipation of a perturbation, but only when the perturbation was triggered by the subjects themselves. Based on the principle of superposition (decoupled grasping force and resultant torque control), we also expected to see different adjustments in indices of multi-digit synergies stabilizing the total gripping force and the total moment of force. The task for the subjects (n = 8) was to return the initial handle position as quickly as possible after a perturbation, which consisted of removing one of three loads hanging from the handle. There were six experimental conditions: two types of perturbations (self-triggered and experimenter-triggered) by three positions of the load (left, center, and right). Three-dimensional forces and moments of force recorded from each digit contact were used for the analysis. Indices of covariation among digit forces and among moments of force, previously employed for studying motor synergies, were computed across trials. Positive values of the indices reflected negative covariations of individual digit forces and moments of force (their inter-compensatory changes) to stabilize the total force and moment acting on the handle. In steady-state conditions, subjects showed strong positive indices for both digit forces and digit moments. Under the self-triggered conditions, changes in the indices of digit force and moment covariation were seen about 150 ms prior to the perturbation, while such changes were observed only after the perturbation under the experimenter-triggered conditions. Immediately following a perturbation, the indices of force and moment covariation rapidly changed to negative revealing the lack of inter-compensation among the individual digit forces and moments. Later, both indices showed a recovery to positive values; the recovery was faster in the self-triggered conditions than in the experimenter-triggered ones. During the steady-state phase after the perturbation, the indices of force and moment covariation decreased and increased, respectively, as compared to their values during the steady-state phase prior to the perturbation. We conclude that humans are able to adjust multi-digit synergies involved in prehensile tasks in anticipation of a self-triggered perturbation. These conclusions speak against hypotheses on the organization of multi-element actions based on optimal control principles. Different changes in the indices of force and moment covariation after a perturbation corroborate the principle of superposition. We discuss relations of anticipatory covariation to anticipatory postural adjustments.  相似文献   

14.
The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5–11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.  相似文献   

15.
The primary purpose was to examine the effect of enslaving on finger force perception during isometric finger force production using an ipsilateral force-matching paradigm. Fourteen subjects were instructed to produce varying levels of reference forces [10, 20, 30, and 40% maximal voluntary contraction (MVC)] force using one finger (index, I or little, L) and to reproduce these forces using the same finger (homo-finger tasks, I/I and L/L) or a different finger (hetero-finger tasks, I/L and L/I). Forces of all fingers were recorded. During homo-finger tasks, no differences were found in force magnitude or relative level of force (expressed as a proportion of MVC). The index finger matching force magnitudes were greater than the little finger reference force magnitudes, with significantly lower levels of relative force during L/I tasks; while the little finger matching forces underestimated the index finger reference forces with significantly higher levels of relative force during I/L tasks. The difference in the matching and reference forces by the instructed finger(s), i.e., matching error, was larger in hetero-finger tasks than in homo-finger tasks, particularly at high reference force levels (30, 40% MVC). When forces of all fingers were considered, enslaving (uninstructed finger forces) significantly minimized matching errors of the total force during both I/L and L/I hetero-finger tasks, especially at high reference force levels. Our results show that there is a tendency to match the absolute magnitude of the total force during ipsilateral finger force-matching tasks. This tendency is likely related to enslaving effects. Our results provide evidence that all (instructed and uninstructed) finger forces are sensed, thus resulting in perception of the absolute magnitude of total finger force.  相似文献   

16.
We investigated the effects of exercise-induced fatigue of a digit on the biomechanics of a static prehension task. The participants were divided into two groups. One group performed the fatiguing exercise using the thumb (group-thumb) and the second group performed the exercise using the index finger (group-index). We analyzed the prehensile action as being based on a two-level hierarchy. Our first hypothesis was that fatigue of the thumb would have stronger effects at the upper level (action shared between the thumb and all four fingers combined—virtual finger) and fatigue of the index finger would have stronger effects at the lower level of the hierarchy (action of the virtual finger shared among actual fingers). We also hypothesized that fatigue would cause a decrease in the normal force applied by the exercised digit and correspondingly lead to a decrease in the normal force applied by the opposing digit(s). Our third hypothesis was that fatigue would leave the tangential forces unaffected. Fatigue led to a significant drop in the normal force of both exercised and non-exercised (opposing) digits. The tangential forces of the exercised digits increased after fatigue. This led to a drop in the safety margin in the group-thumb, but not group-index. As such, the results supported the first two hypotheses but not the third hypothesis. Overall, the results suggested that fatigue triggered a chain reaction that involved both forces and moments of force produced by individual digits leading to a violation of the principle of superposition. The findings are interpreted within the framework of the referent configuration hypothesis.  相似文献   

17.
We studied changes in multi-finger synergies associated with predictable and unpredictable force perturbations applied to a finger during a multi-finger constant total force production task. The main hypothesis was that indices of multi-finger synergies can show anticipatory changes in preparation for a predictable perturbation. Subjects sat in a chair and pressed on force sensors with the four fingers of the right hand. The task was to produce a constant level of total force. The fingers acted against loads that produced upward directed forces. The loads (applied either to the index or to the ring finger) could be disengaged either by the subject or by the experimenter. An index of finger co-variation, ΔV was computed across sets of 12 trials at each time sample and for all tasks separately. During steady-state force production, all subjects showed positive ΔV values corresponding to strong negative covariation among finger forces interpreted as a force-stabilizing synergy. Prior to self-triggered unloading, subjects showed an anticipatory drop in ΔV that started 100–125 ms prior to the unloading time. Such early changes were absent in trials with experimenter-triggered unloading. After an unloading, subjects changed forces of both perturbed and unperturbed fingers and reached a new sharing pattern of the total force. In experimenter-triggered conditions, changes in the forces of unperturbed fingers could be seen as early as 120 ms following an unloading. The index ΔV dropped following a perturbation and then recovered; the recovery occurred faster in self-triggered conditions. We conclude that humans can use feed-forward changes in multi-finger synergies (anticipatory synergy adjustments) in anticipation of a predictable perturbation. These changes may help avoid prolonged weakening of a multi-digit force-stabilizing synergy. We discuss a possibility that anticipatory postural adjustments may represent a particular case of the phenomenon of anticipatory synergy adjustments and suggest a hierarchical control scheme that incorporates a possibility of independent control over the output of a multi-element system and covariation patterns among outputs of its elements.  相似文献   

18.
We address issues of simultaneous control of the grasping force and the total moment of forces applied to a handheld object during its manipulation. Six young healthy male subjects grasped an instrumented handle and performed its cyclic motion in the vertical direction. The handle allowed for setting different clockwise (negative) or counterclockwise torques. Three movement frequencies: 1, 1.5 and 2 Hz, and five different torques: –1/3, –1/6, 0, 1/6 and 1/3 Nm, were used. The rotational equilibrium was maintained by two means: (1) Concerted changes of the moments produced by the normal and tangential forces, specifically anti-phase changes of the moments during the tasks with zero external torque and in-phase changes during the non-zero-torque tasks, and (2) Redistribution of the normal forces among individual fingers such that the agonist fingers—the fingers that resist external torque—increased the force in phase with the acceleration, while the forces of the antagonist fingers—those that assist the external torque—especially, the fingers with the large moment arms, the index and little fingers, stayed unchanged. The observed effects agree with the principle of superposition—according to which some complex actions, for example, prehension, can be decomposed into elemental actions controlled independently—and the mechanical advantage hypothesis according to which in moment production the fingers are activated in proportion to their moment arms with respect to the axis of rotation. We would like to emphasize the linearity of the observed relations, which was not prescribed by the task mechanics and seems to be produced by specific neural control mechanisms.  相似文献   

19.
The organization of thumb and index finger forces in a pinch formation was investigated under conditions where kinetic constraints on interdigit force coupling were removed. Two visually guided isometric force tasks at submaximal levels were used to characterize the spatial and temporal aspects of interdigit force coupling. Task 1 provided an initial characterization of interdigit force coordination when the force relationship between the digits was not specified. Task 2 probed the extent to which a preferred coordination of the thumb and index finger could be decoupled, both temporally and with respect to force magnitude, by specifying the coordination between the digit forces. Digit forces were measured using a pinch apparatus that was instrumented to record the magnitude and direction of the thumb (F t) and index finger (F i) forces, independently. Two apparatus conditions allowed further examination of interdigit force coordination when the relationship between digit forces was mechanically constrained (pivot condition), and when the relationship between digit forces was not constrained, allowing the neuromotor system to select a preferred pattern of interdigit coordination (fixed condition). Sixteen right-handed adults exerted a pinch force against the apparatus to match a single-cycle sine wave that varied between 15 and 35% of each participant’s maximal voluntary pinch force. The target was presented with positive or negative target sense, to vary the order of force level and direction of force change across the trials. When the mechanical constraints allowed selection of a preferred coordination pattern, F t = F i was a robust result. In contrast, when the coordination between the digit forces was specified by the requirement to simultaneously produce and control independent thumb and index finger forces while acting on a stable object, subjects were able to produce forces that markedly deviated from the F t = F i coordination. The organization of pinch is characterized by a preferred, tight coupling of digit forces, which can be modified based on task demands.  相似文献   

20.
Previous studies of control of fingertip forces in skilled manipulation have focused on tasks involving two digits, typically the thumb and index finger. Here we examine control of fingertip actions in a multidigit task in which subjects lifted an object using unimanual and bimanual grasps engaging the tips of the thumb and two fingers. The grasps resembled those used when lifting a cylindrical object from above; the two fingers were some 4.25 cm apart and the thumb was approximately 5.54 cm from either finger. The three-dimensional forces and torques applied by each digit and the digit contact positions were measured along with the position and orientation of the object. The vertical forces applied tangential to the grasp surfaces to lift the object were synchronized across the digits, and the contribution by each digit to the total vertical force reflected intrinsic object properties (geometric relationship between the object's center of mass and the grasped surfaces). Subjects often applied small torques tangential to the grasped surfaces even though the object could have been lifted without such torques. The normal forces generated by each digit increased in parallel with the local tangential load (force and torque), providing an adequate safety margin against slips at each digit. In the present task, the orientations of the force vectors applied by the separate digits were not fully constrained and therefore the motor controller had to choose from a number of possible solutions. Our findings suggest that subjects attempt to minimize (or at least reduce) fingertip forces while at the same time ensure that grasp stability is preserved. Subjects also avoid horizontal tangential forces, even at a small cost in total force. Moreover, there were subtle actions exerted by the digits that included changes in the distribution of vertical forces across digits and slight object tilt. It is not clear to what extent the brain explicitly controlled these actions, but they could serve, for instance, to keep tangential torques small and to compensate for variations in digit contact positions. In conclusion, we have shown that when lifting an object with a three-digit grip, the coordination of fingertip forces, in many respects, matches what has been documented previously for two-digit grasping. At the same time, our study reveals novel aspects of force control that emerge only in multidigit manipulative tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号