首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The pharmacokinetics ofN-[2-(dimethylamino)ethyl]acridine-4-carboxamide (AC) were investigated in rats after i. v. administration of 18, 55 and 81 mol/kg [3H]-AC. The plasma concentration-time profiles of AC (as measured by high-performance liquid chromatography) typically exhibited biphasic elimination kinetics over the 8-h post-administration period. Over this dose range, AC's kinetics were first-order. The mean (±SD) model-independent pharmacokinetic parameters were; clearance (Cl), 5.3±1.1 1 h–1 kg–1; steady-state volume of distribution (Vss), 7.8±3.0 l/kg; mean residence time (MRT), 1.5±0.4 h; and terminal elimination half-life (t 1/2Z), 2.1±0.7 h (n=10). The radioactivity levels (expressed as AC equivalents) in plasma were 1.3 times the AC concentrations recorded at 2 min (the first time point) and remained relatively constant for 1–8 h after AC administration. By 6 h, plasma radioactivity concentrations were 20 times greater than AC levels. Taking into account the species differences in the unbound AC fraction in plasma (mouse, 16.3%; rat, 14.8%; human, 3.4%), allometric equations were developed from rat and mouse pharmacokinetic data that predicted a Cl value of 0.075 (range, 0.05–0.10; 95% confidence limits) 1 h–1 kg–1 and a Vss value of 0.63 (range, 0.2–1.1) l/kg for total drug concentrations in humans.  相似文献   

2.
Summary The pharmacokinetics, tissue distribution and toxicity of the antitumour agentN-[2-(dimethylamino)ethyl]acridine-4-carboxamide(AC) were studied after i.v. administration to mice. Over the dose range of 9–121 mol/kg (3–40 mg/kg), AC displayed linear kinetics with the following model-independent parameters: clearance (C), 21.0±1.9 l h–1 kg–1; steady-state volume of distribution (Vss), 11.8±1.4 l/kg; and mean residence time (MRT), 0.56±0.02 h. The plasma concentration-time profiles for AC fitted a two-compartment model with the following parameters:C c, 19.4±2.3 l h–1 kg–1; Vc, 7.08±1.06 l/kg;t 1/2 13.1±3.5 min; andt 1/2Z, 1.60±0.65 h. AC displayed moderately high binding in healthy mouse plasma, giving a free fraction of 15.9%–25.3% over the drug concentration range of 1–561 M. After the i.v. administration of 30 mol/kg [3H]-AC, high radioactivity concentrations were observed in all tissues (especially the brain and kidney), showing a hight 1/2c value (37–59 h). At 2 min (first blood collection), the AC concentration as measured by high-performance liquid chromatography (HPLC) comprised 61% of the plasma radioactivity concentration (expressed as AC equivalents/l). By 48 h, 73% of the dose had been eliminated, with 26% and 47% of the delivered drug being excreted by the urinary and faecal routes, respectively; <1% of the total dose was excreted as unchanged AC in the urine. At least five distinct radiochemical peaks were distinguishable by HPLC analysis of plasma extracts, with some similar peaks appearing in urine. The 121-mol/kg dose was well tolerated by mice, with sedation being the only obvious side effect and no significant alterations in blood biochemistry or haematological parameters being recorded. After receiving a dose of 152 mol/kg, all mice experienced clonic seizures for 2 min (with one death occuring) followed by a period of sedation that lasted for up to 2h. No leucopenia occurred, but some mild anaemia was noted. There was no significant change in blood biochemistry. A further 20% increase in the i.v. dose (to 182 mol/kg) resulted in mortality, with death occurring within 2 min of AC administration.Supported by the Auckland Medical Research Foundation and the Cancer Society of New Zealand  相似文献   

3.
Summary The pharmacology of aminoglutethimide (AG) was studied in two subsequent trials without hydrocortisone supplementation. A total of 79 patients with metastatic breast cancer entered the study, and their plasma and urine samples were analyzed by high-performance liquid chromatography (HPLC). Thirty evaluable patients with a median age of 57 years (range, 37–79) were treated with the standard dose of 1000 mg/day, and 37 evaluable patients with a median age of 59 years (range, 35–79) received 500 mg/day. The median follow-up in the two groups was 5 months (range, 1–16) and 4 months (range, 1–21), respectively. After the first oral dose of 500 mg, peak plasma concentrations of AG were observed 1–4 h after administration in 15 patients. The elimination half-life was 10.1±1.7h (mean ±SD) after initial dosage; it decreased significantly to 6.9±1.2 h after 8 weeks of treatment. The area under the curve of AG concentrations was 92.5±14.2 g/ml x h. The total clearance rate was 5.5±0.91/h and the volume of distribution was 80±11 l. About 23% of the drug was excreted unchanged in the urine. The major metabolite, N-acetyl-AG (AAG), had the same half-life as AG. A comparison on day 7 of treatment revealed that doses of 1000 and 500 mg yielded AG plasma concentrations of 9.0±1.2 and 4.5±0.5 g/ml, respectively. After 1 month of treatment, however, AG plasma levels of 6–7 and 4–5 g/ml were observed, respectively. A 50% reduction of dose, therefore, resulted in only 30% lower AG levels during continuous treatment. Apparently, the induction of metabolism is of greater importance in standard-dose than in lower dose treatment. The plasma concentrations of AG did not bear a relationship to the clinical response.Abbreviations used AG aminoglutethimide - AAG N-acetylaminoglutethimide - G glutethimide - HPLC high-performance liquid chromatography - SD standard deviation - SE standard error of the mean - AUC area under the concentration versus time curve  相似文献   

4.
The pharmacokinetics of the polyethylene glycol-conjugated form of the enzymel-asparaginase and the depletion ofl-asparagine from the plasma and cerebrospinal fluid (CSF) following an i.m. dose of 2500 IU/m2 PEG-l-asparaginase was studied in rhesus monkeys. PEG-l-asparaginase activity in plasma was detectable by 1 h after injection and maintained a plateau of approximately 4 IU/ml for more than 5 days. Subsequent elimination from plasma was monoexponential with a half-life of 6±1 days. Plasmal-asparagine concentrations fell from pretreatment levels of 14–47 M to <2 M by 24 h after injection in all animals and remained undetectable for the duration of the 25-day observation period in four of six animals. In two animals, plasmal-asparagine became detectable when the PEG-l-asparaginase plasma concentration dropped below 0.1 IU/ml. Pretreatment CSFl-asparagine levels ranged from 4.7 to 13.6 M and fell to <0.25 M by 48 h in five of six animals. CSFl-asparagine concentrations remained below 0.25 M for 10–14 days in four animals. One animal had detectable CSFl-asparagine concentrations within 24 h and another had detectable concentrations within 1 week of drug administration despite a plasma PEG-l-asparaginase activity profile that did not differ from that of the other animals. These observations may be useful in the design of clinical trials with PEG-l-asparaginase in which correlations among PEG-l-asparaginase pharmacokinetics, depletion ofl-asparagine, and clinical outcome should be sought.  相似文献   

5.
Summary The pharmacokinetics, tissue distribution and toxicity of the antitumour agentN-[2-(dimethylamino)-ethyl]acridine-4-carboxamide (AC) were studied after i.p. administration of [3H]-AC (410 mol/kg) to mice. The latter is the optimal single dose for the cure of advanced Lewis lung tumours. AC was rapidly absorbed into the systemic circulation after i.p. administration, with the maximal concentration (C max) occurring at the first time point (5 min). There was no reduction in bioavailability as compared with previous i.v. studies, but the shape of the plasma concentration-time profile was considerably different, reflecting a 3-fold lowerC max value (20.9±3.6 mol/l) and a longert 1/2 value (2.7±0.3 h) as compared with that observed after i.v. administration (1.6±0.6 h). Model independent pharmacokinetic parameters after i.p. administration were: clearance (C), 17.5 l h–1 kg–1; steady-state volume of distribution (Vss), 14.1 l/kg; and mean residence time (MRT), 1.46 h. High but variable tissue uptake of AC was observed, with tissue/plasma AUC ratios being 5.7 for heart, 8.4 for brain, 18.9 for kidney and 21.0 for liver but with similar eliminationt 1/2 values ranging from 1.3 to 2.7 h. All radioactivity profiles in plasma and tissues were greater than the respective parent AC profiles and showed prolonged eliminationt 1/2 values ranging from 21 h in liver to 93 h in brain. However, tissue/plasma radioactivity AUC ratios were near unity, ranging from 0.7 to 1.57, with the exception of the gallbladder (15.6), which contained greater amounts of radioactivity. By 48 h, approximately 70% of the total dose had been eliminated, with the faecal to urinary ratio being approximately 2:1. This i.p. dose was well tolerated by mice, with sedation being the only obvious side effect. No major change was observed in blood biochemistry or haematological parameters. Comparisons ofC max,t max and AUC values determined for AC in brain after its i.p. and i.v. administration suggest that the reduction in acute toxicity after i.p. administration is not due to reduced exposure of the brain to AC as measured by AUC but may be associated with the lowerC max value or the slower rate of entry of AC into the brain after i.p. administration.This study was supported by the Cancer Society of New Zealand. The senior author (S.M.H.E.) is the recipient of a Health Research Council of New Zealand Junior Research Award  相似文献   

6.
Summary The antitumor activity of eight new metal complexes (three platinum, one titanium, four ruthenium derivatives) was investigated in a cisplatin (DDP)-sensitive (O-342) and a DDP-resistant (O-342/DDP) ovarian tumor line using the bilayer soft-agar assay. A continuous exposure set up at logarithmically spaced concentrations was used to test the drugs; to uncover possible pharmacokinetic features, a short-term exposure was additionally included for selected compounds. DDP served as the reference drug. The following compounds were investigated: 18-crown-6-tetracarboxybis-diammineplatinum(II) (CTDP),cis-aminotrismethylenephosphonato-diammineplatinum(II) (ADP),cis-diamminecyclohexano-aminotrismethylenephosphonato-platinum(II) (DAP), diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV) (DBT, budotitane),trans-imidazolium-bisimidazoletetrachlororuthenate(III) (ICR),trans-indazolium-tetrachlorobisindazoleruthenate(III) (IndCR),cis-triazolium-tetrachlorobistriazoleruthenate(III) (TCR) andtrans-pyrazolium-tetrachlorobispyrazoleruthenate(III) (PCR). Of the new metal complexes, CTDP was the most active compound in O-342, resulting in a percentage of control plating efficiency (±SE) of 1±1, 12±8 and 40±21 following continuous exposure to 10, 1 and 0.1 m, respectively, and was thus comparable to DDP at equimolar concentrations. In the resistant line, 10 m CTDP reduced colony growth to 18%±8%, whereas an equimolar concentration of DDP effected a reduction to 26%±9%. During short-term exposure, CTDP was inferior to DDP, which may be ascribed to the stability of the bis-dicarboxylate platinum ring system. The titanium compound DBT, in contrast, showed promising effects at its highest concentration (100 m) during short-term exposure in both lines; at this concentration the activity in O-342/DDP was higher than that in O-342 (7%±7% vs 34%±17% of control plating efficiency at 100 m). All ruthenium complexes showed higher activity in the resistant line O-342/DDP than in the sensitive counterpart. ICR was the most active compound. Following continuous exposure of O-342/DDP cells to 10 m ICR, colony growth was reduced to 18%±4% that of controls. Further studies should concentrate on CTDP and ICR for the following reasons: the activity of CTDP was equal to that of DDP at equimolar concentrations during continuous exposure; considering that the in vivo toxicity of DDP was 3-fold that of CTDP, an increase in the therapeutic index of CTDP would be expected. ICR showed the best effect of all ruthenium complexes; it was superior to DDP in the resistant line.  相似文献   

7.
Recent evidence suggests that 13-hydroxy metabolites of anthracyclines may contribute to cardiotoxicity. This study was designed to determine the pharmacokinetics of daunorubicin and the 13-hydroxy metabolite daunorubicinol in plasma and tissues, including the heart. Fisher 344 rats received 5 mg kg–1 daunorubicin i.v. by bolus injection. Rats were killed at selected intervals for up to 1 week after daunorubicin administration for determination of concentrations of daunorubicin and daunorubicinol in the plasma, heart, liver, kidney, lung, and skeletal muscle. Peak concentrations of daunorubicin were higher than those of daunorubicinol in the plasma (133±7 versus 36±2 ng ml–1;P<0.05), heart (15.2±1.4 versus 3.4±0.4 g g–1;P<0.05), and other tissues. However, the apparent elimination half-life of daunorubicinol was longer than that of daunorubicin in most tissues, including the plasma (23.1 versus 14.5 h) and heart (38.5 versus 19.3 h). In addition, areas under the concentration/time curves (AUC) obtained for daunorubicinol exceeded those found for daunorubicin in almost all tissues, with the ratios being 1.9 in plasma and 1.7 in the heart. The ratio of daunorubicinol to daunorubicin concentrations increased dramatically with time from <1 at up to 1 h to 87 at 168 h in cardiac tissue. Thus, following daunorubicin injection, cumulative exposure (AUC) to daunorubicinol was greater than that to daunorubicin in the plasma and heart. If daunorubicinol has equivalent or greater potency than daunorubicin in causing impairment of myocardial function, it may make an important contribution to the pathogenesis of cardiotoxicity.  相似文献   

8.
Summary The pharmacokinetics of high-dose etoposide (total dose, 2100 mg/m2 divided into three doses given as 30-min infusions on 3 consecutive days) were studied in ten patients receiving high-dose combination chemotherapy followed by autologous bone marrow transplantation. In addition to etoposide, all subjects received 2×60 mg/kg cyclophosphamide and either 6×1,000 mg/m2 cytosine arabinoside (ara-C), 300 mg/m2 carmustine (BCNU), or 1,200 mg/m2 carboplatin. Plasma etoposide concentrations were determined by252Cf plasma desorption mass spectrometry. In all, 27 measurements of kinetics in 10 patients were analyzed. According to graphic analysis, the plasma concentration versus time data for all postinfusion plasma ctoposide values were fitted to a biexponential equation. The mean values for the calculated pharmacokinetic parameters were:t1/2, 256±38 min; mean residence time (MRT), 346±47 min; AUC, 4,972±629g min ml–1 (normalized to a dose of 100 mg/m2); volume of distribution at steady state (Vdss), 6.6±1.2l/m2; and clearance (CL), 20.4±2.4 ml min–1 m–2. A comparison of these values with standard-dose etoposide pharmacokinetics revealed that the distribution and elimination processes were not influenced by the dose over the range tested (70–700 mg/m2). Also, the coadministration of carboplatin did not lead to significant pharmacokinetic alterations. Although plasma etoposide concentrations at the time of bone marrow reinfusion (generally at 30 h after the last etoposide infusion) ranged between 0.57 and 2.39 g/ml, all patients exhibited undelayed hematopoietic reconstitution.  相似文献   

9.
Summary A total of 14 patients, 7 male and 7 female, received in all 21 evaluable courses of cyclophosphamide administered by 5-day continuous infusion. Cyclophosphamide doses were escalated from 300 to 400 mg/m2 per day for 5 days and repeated every 21–28 days. The patient population had a median age of 55 years (range 38–76) and a median Karnofsky performance status of 80 (range 60–100). Only 1 patient had not received prior therapy; 5 patients had received only prior chemotherapy, 1 had received only prior radiotherapy, and 7 had received both. Tumor types were gastric (1), lung (2), colon (4), urethral adenocarcinoma (1), cervical (2), chondrosarcoma (1), melanoma (1), uterine leiomyosarcoma (1), and pancreatic (1). The dose-limiting toxicity was granulocytopenia, with median WBC nadir of 1700/l (range 100–4800) in 8 heavily pretreated patients treated at 350 mg/m2 per day for 5 days. One patient without heavy prior treatment received two courses at 400 mg/m2 and had WBC nadirs of 800/l and 600l. WBC nadirs occurred between days 9 and 21 (median 14). Drug-induced thrombocytopenia occurred in only one patient (350 mg/m2 per day, nadir 85000/l). Neither hyponatremia nor symptomatic hypoosmolality was observed. Radiation-induced hemorrhagic cystitis may have been worsened in one patient. Nausea and vomiting were mild. Objective remissions were not observed. The maximum tolerated dose for previously treated patients is 350 mg/m2 per day for 5 days. This dose approximates the doses of cyclophosphamide commonly used with bolus administration. Plasma steady-state concentrations (Css) of cyclophosphamide, measured by gas liquid chromatography, were 2.09–6.79 g/ml. Steady state was achieved in 14.5±5.9 h (mean ±SD). After the infusion, cyclophosphamide disappeared from plasma monoexponentially, with a t1/2 of 5.3±3.6 h. The area under the curve of plasma cyclophosphamide concentrations versus time (AUC) was 543±150 g/ml h and reflected a cyclophosphamide total-body clearance (CLTB) of 103±31.6 ml/min. Plasma alkylating activity, assessed by p-nitrobenzyl-pyridine, remained steady at 1.6–4.3 g/ml nor-nitrogen mustard equivalents. Urinary excretion of cyclophosphamide and alkylating activity accounted for 9.3%±7.6% and 15.1%±2.0% of the administered daily dose, respectively. The t1/2 and AUC of cyclophosphamide associated with the 5-day continuous infusion schedule are similar to those reported after administration of cyclophosphamide 1500 mg/m2 as an i.v. bolus. The AUC of alkylating activity associated with the 5-day continuous infusion of cyclophosphamide is about three times greater than the AUC of alkylating activity calculated after a 1500-mg/m2 bolus dose of cyclophosphamide. Daily urinary excretions of cyclophosphamide and alkylating activity associated with the 5-day continuous infusion schedule are similar to those reported after bolus doses of cyclophosphamide.  相似文献   

10.
Phase I and pharmacokinetic trial of liposome-encapsulated doxorubicin   总被引:2,自引:0,他引:2  
A total of 21 patients with advanced cancer were entered into a phase I study to determine the maximum tolerable dose (MTD) of liposome-encapsulated doxorubicin (LED) given weekly for 3 consecutive weeks at doses of 20, 30, or 37.5 mg/m2 per week. For a comparison of the pharmacokinetic behavior of LED with that of standard-formulation doxorubicin, 13 patients received a dose of standard-formulation doxorubicin 2 weeks prior to the first dose of LED. All doses were given by 1-h infusion through a central vein. Toxicity was evaluated in 22 courses delivered to 17 patients. The MTD with this schedule was 30 mg/m2 per week×3. The single patient treated at 37.5 mg/m2 weekly could not complete the entire course due to myelosuppression. At the dose of 30 mg/m2 per week, three of eight patients had grade 3 leukopenia. Other toxicities included mild to moderate thrombocytopenia, nausea, vomiting, fever, alopecia, diarrhea, fatigue, stomatitis, and infection. At the dose of 30 mg/m2 per week, the total doxorubicin AUC and peak total doxorubicin concentrations in plasma were 8.75±8.80 M h (mean±SD) and 3.07±1.45 M, respectively, after LED administration. The total doxorubicin AUC and peak total doxorubicin concentrations in plasma were 3.92±2.47 M h and 2.75±2.70 M, respectively, after the infusion of standard-formulation doxorubicin. The total body clearance of doxorubicin was 18.42±11.23 l/h after the infusion of LED and 31.21±15.48 l/h after the infusion of standard-formulation doxorubicin. The mean elimination half-lives of doxorubicin were similar: 8.65±5.16 h for LED and 7.46±5.16 h for standard-formulation doxorubicin. Interpatient variability in pharmacokinetic parameters as demonstrated by the percentage of coefficients of variation was 33%–105%. There was no relationship between the percentage of WBC decrease or the duration of WBC suppression and the total doxorubicin or doxorubicinol AUC. There was no correlation between the duration of leukopenia and drug exposure as reflected by the AUC of liposome-associated doxorubicin. LED can be given in doses similar to those of standard-formulation doxorubicin and produces acute toxicities similar to those caused by standard doxorubicin.Abbreviations MTD maximum tolerable dose - LED liposome-encapsulated doxorubicin - AUC area under the plasma concentration x time curve - WBC white blood cell count - PLT platelet count - ECOG Eastern Cooperative Oncology Group - EKG electrocardiogram - MUGA multigated nuclide scan - CLTB total body clearance - PC phosphatidylcholine: PG, phosphatidylglycerol - PEG-DSPE polyethylene glycol conjugated to distearoyl phosphatidylethanolamine - HSPC hydrogenated soy phosphatidylcholine - chol cholesterol This work was supported by DHHS, NCl NO-l-CM 07 303 and by a Career Development Award from the American Cancer Society (to B. A. C.)  相似文献   

11.
Summary Radiochemically pure 14C-labeled carboplatin, cis-diammine [1,1-cyclobutane (1-14C) dicarboxylato (2-)-0,0'] platinum (II), was added to fresh human, dog and rat plasma, at concentrations ranging from 1 to 100 g 14C-carboplatin/ml. After 10 min incubation at ambient temperature, the plasma was ultrafiltered in Amicon Centrifree micropartition units to generate protein-free plasma ultrafiltrate (PU). Total radioactivity was determined by liquid scintillation counting. A mean (±SD) of 102%±2.0%, 99.5%±1.9%, and 99.0%±1.0% of the 14C-carboplatin added to fresh human, dog and rat plasma respectibely was recovered in the PU. 14C-carboplatin was incubated at 37°C with fresh plasma (60g/ml) and urine (200 g/ml) from humans and dogs for 120 h, and samples were removed at appropriate times for analysis of carboplatin, 1,1-cyclobutane dicarboxylic acid and cyclobutane carboxylic acid. The latter were separated by HPLC on a C-18 column with a mobile phase of H2O/CH3CN/0.3 M tetrabutylammonium phosphate (880:50:20 v/v/v), and the column eluants at the retention time of each compound were collected and counted for total radioactivity. Carboplatin degraded in each of the matrices with a corresponding release of 1,1-cyclobutane dicarboxylic acid. 14C-carboplatin (50 g/ml) was incubated at 37°C with fresh human, dog and rat blood and the distribution of radioactivity into the cellular fraction was determined. Radioactivity did not distribute into the blood cells of humans or dogs, but after 5 h, 44% of the radioactivity in rat blood was associated with the cellular fraction. These results show that carboplatin, at physiological concentrations, does not bind instantaneously and reversibly to the plasma proteins of rat, dog or human, and that the molecule slowly degrades in plasma and urine in vitro with the release of 1,1-cyclobutane dicarboxylic acid. The remaining diammine platinum (II) portion of the molecule therefore accounts for the essentially irreversible protein binding of the platinum from carboplatin.  相似文献   

12.
Summary The availability of uridine can alter the sensitivity of tumor cells to antimetabolites such as N-phosphonacetyl-l-aspartic acid (PALA) and acivicin by virtue of the cell's ability to salvage preformed metabolites from its environment. We investigated the pharmacokinetics of physiologically relevant amounts of uridine in cancer patients in a pilot study to further our understanding of uridine metabolism in the human body. Four cancer patients, two males and two females, were given an i.v. bolus of a trace amount of radiolabeled uridine. The nucleoside disappeared from the plasma in a triphasic manner, with initial half-lives of 0.57±0.28 and 1.79±0.62 min and a terminal half-life of 17.5±7.3 min. The volume of distribution was 481±70 ml/kg, and the plasma uridine clearance was calculated to be 1.70±0.42 l/min. Simultaneous plasma and bone marrow uridine concentrations were measured in a separate group of seven healthy volunteers. The uridine concentration in plasma was 2.32±0.58 M, and that in the bone marrow plasma was 10.44±5.06 M. These results suggest a very rapid turnover of uridine in the plasma when the nucleoside is present at physiologic concentrations, and that there is a locally high concentration of uridine available for salvage in the bone marrow.Supported by grants CA 23334 and CA 23100 from the NCI and a grant from Boehringer Ingelheim Ltd. Presented as an abstract at the American Association for Cancer Research Meeting in Los Angeles, CA, May 7–10, 1986. This research is conducted in part by the Clayton Foundation for Research, California Division. Dr. Howell is a Clayton Foundation Investigator  相似文献   

13.
This paper describes the relationship between 5-fluorouracil (FUra)-derived toxicities and plasma levels of the FUra anabolites 5-fluorouridine (FUrd) and 5-fluoro-2-deoxyuridine (FdUrd) monitored in patients receiving continuous infusions of FUra (1000 mg/m2 per 24 h) over 5 days preceded by the administration of cisplatin (100 mg/m2). A total of 63 courses of this treatment were given as second-line chemotherapy to 17 patients with metastatic breast cancer. The active FUra anabolites FUrd and FdUrd were monitored twice daily in the plasma by highperformance liquid chromatography. Data were analyzed using multiple analysis of variance (ANOVA). Only a low proportion of patients exhibited measurable plasmatic levels of FUrd (43%) and FdUrd (70%). The areas under the plasma concentration-time curves (AUC) determined over 120 h for FUrd (AUCFUrd) and for FdUrd (AUCFdUrd) were found to be statistically significantly different for chemotherapy cycles with and those without myelosuppression. Chemotherapy cycles without neutropenia were associated with low AUCFUrd values (mean±SEM, 2.9±0.7 g ml–1 h) and high AUCFdUrd values (14.1±2.7 g ml–1 h), respectively, whereas courses with myelosuppression (WHO grades 2–4) showed inverse profiles with high AUCFUrd values (16.3±2.3 g ml–1 h) and low AUCFdUrd values (3.1±1.0 g ml–1 h), respectively. A statistically significant difference in AUCFdUrd values was also observed between cycles with and those without mucositis (P=0.0027), with AUCFdUrd values being 22.6±5.6 and 7.8±1.9 g ml–1 h, respectively. Whereas hematotoxicity could be correlated with both AUCFUrd and AUCFdUrd values, mucositis was associated with high AUCFdUrd levels. Moreover, a negative correlation was found between the AUCs determined for FUrd and FdUrd (P=0.002), indicating that activation of FUra via FUrd or via FdUrd may involve competitive processes. Therefore, to follow the development of the major FUra-derived toxicities, measurement of FUrd and FdUrd plasma levels appeared very attractive.  相似文献   

14.
Purpose 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) is a water-soluble analogue of 17-(allylamino)-17-demethoxygeldanamycin (17AAG), a compound currently in clinical trials. These preclinical studies: (1) characterized 17DMAG concentrations in plasma, normal tissues, and tumor after i.v. delivery to mice; and (2) correlated tumor and normal tissue 17DMAG concentrations with alterations in heat shock protein 90 (HSP90) and selected HSP90-chaperoned proteins.Methods At specified times after i.v. administration of 75 mg/kg 17DMAG, SCID mice bearing s.c. MDA-MB-231 human breast xenografts were killed and plasma and tissues were retained. 17DMAG concentrations were determined by HPLC. Raf-1, heat shock protein 70 (HSP70), and HSP90 in tissues were determined by Western blotting.Results Peak plasma 17DMAG concentration was 15.4±1.4 g/ml. The area under the plasma 17DMAG concentration versus time curve was 1072 g/ml min, corresponding to a total body clearance of 70 ml/kg/min. Peak 17DMAG concentrations in liver (118.8±5.7 g/g), kidney (122.9±10.6 g/g), heart (81.3±8.1 g/g), and lung (110.6±25.4 g/g) occurred at 5–10 min, while peak concentrations in spleen (70.6±9.6 g/g) and tumor (9.0±1.0 g/g) occurred at 30–45 min. At 48 h, 17DMAG was detectable in tumor but not in any normal tissue. Raf-1 in tumors of 17DMAG-treated mice killed at 4, 7, 24 and 48 h was about 20% lower than in tumors from vehicle-treated mice. HSP90 and HSP70 in tumors of 17DMAG-treated animals were significantly lower than in tumors of control animals at 4, 7, and 24 h. Hepatic Raf-1 was decreased by more than 60% at all times after 17DMAG treatment; however, hepatic HSP90 was not affected. HSP70 was undetectable in livers of vehicle-treated mice or mice killed at 2 or 4 h after 17DMAG treatment, but was detected in livers at 7, 24 and 48 h. 17DMAG did not affect renal Raf-1. In contrast, renal HSP70 and HSP90 were decreased by more than 50% at 2 and 4 h after 17DMAG treatment. Renal HSP70 increased approximately twofold above that in kidneys from vehicle-treated control mice at 7 and 24 h, while HSP90 relative protein concentration was no different from that in controls.Conclusions Plasma pharmacokinetics of 17DMAG in tumor-bearing mice were similar to those previously reported in nontumor-bearing mice. 17DMAG was distributed widely to tissues but was retained for longer in tumors than normal tissues. Raf-1, HSP90, and HSP70 were altered to different degrees in tumors, livers, and kidneys of 17DMAG-treated animals. These data illustrate the complex nature of the biological responses to 17DMAG.This work was supported by contract NO1-CM07106 and Grant 2P30 CA47904, awarded by the National Cancer Institute.  相似文献   

15.
In the present study, cisplatin (cDDP) and carboplatin (CBDCA) were combined in different in vitro and in vivo assays to determine whether combined cDDP and CBDCA treatment would eventually lead to a better antitumor response. Co-incubation of CC531 cells with cDDP and CBDCA led to higher intracellular Pt concentrations (30.5±3.4 ng Pt/106 cells) than did cDDP (16.9±9.4 ng Pt/106 cells) or CBDCA (1.28±0.72 ng Pt/106 cells) incubation alone. In survival assays an additive cell kill was seen after combined treatment with cDDP and CBDCA. DNA binding experiments using isolated salmon-sperm DNA exposed to the drugs separately or in combination were in agreement with the survival studies (for cDDP a binding of 12.42 g Pt/mg DNA; for CBDCA, 0.49 g Pt/mg DNA at 76 h). Toxicity studies in rats treated with cDDP plus CBDCA required a dose reduction for cDDP amounting to 20% of the MTD, whereas the CBDCA dose could be maintained. Pharmacokinetics studies showed higher AUCs andt 1/2 in plasma as well as the peritoneal cavity after combined treatment with cDDP and CBDCA (both given i.p.) or following cDDP given i.p. and CBDCA given i.v. Pt concentrations in peritoneal tumors corresponded with these observations, with higher Pt concentrations following combined treatment than after single-agent injection. In addition, combined adminstration of cDDP i.p. and CBDCA i.v. led to higher Pt concentrations in peritoneal tumors than did administration of both drugs i.p. (3.93±0.9 vs 2.76±0.2 mg Pt/g tissue). The higher Pt concentrations in the peritoneal tumors after combined treatment was associated with a significantly better antitumor response in comparison with that observed after single-agent treatment (a growth delay of 30.2±5.6 days for cDDP i.p. plus CBDCA i.v. vs 16.1±5.4 days for cDDP alone and 10.8±4.2 days for CBDCA alone).  相似文献   

16.
Temozolomide is a prodrug that undergoes spontaneous chemical degradation at physiologic pH to form the highly reactive alkylating agent, methyl-triazenyl imidazole carboxamide (MTIC). In clinical trials, temozolomide has activity in gliomas and is approved for recurrent anaplastic astrocytoma. We, therefore, studied the penetration of temozolomide into the cerebrospinal fluid (CSF) as a surrogate for blood–brain barrier penetration in a non-human primate model. Three Rhesus monkeys with indwelling Ommaya reservoirs received 7.5mg/kg (150mg/m2) of temozolomide as a 1h intravenous infusion. Frequent blood and CSF samples were obtained over 24h, plasma was immediately separated by centrifugation at 4°C, and plasma and CSF samples were acidified with HCl. Temozolomide concentration in plasma and CSF was measured by reverse-phase high-pressure liquid chromatography. Plasma temozolomide concentration peaked 0.5h after the end of the infusion and was 104±3M. The mean peak CSF temozolomide concentration was 26±4M at 2.5h. The mean areas under the temozolomide concentration–time curves in plasma and CSF were 392±18 and 126±18Mh, respectively, and the CSF:plasma ratio was 0.33±0.06. Clearance of temozolomide was 0.116±0.004l/kg/h, and the volume of distribution at steady state was 0.254±0.033l/kg. In this non-human primate model, temozolomide penetrated readily across the blood–brain barrier. These findings are consistent with the activity of temozolomide in brain tumors.  相似文献   

17.
Summary Doxorubicin is metabolized extensively to doxorubicinol by the ubiquitous aldoketoreductase enzymes. The extent of conversion to this alcohol metabolite is important since doxorubicinol may be the major contributor to cardiotoxicity. Aldoketoreductases are inhibited in vitro by phenytoin. The present study was conducted to examine the effect of phenytoin on doxorubicin pharmacokinetics. Doxorubicin single-dose pharmacokinetic studies were performed in 10 New Zealand White rabbits after pretreatment with phenytoin or phenytoin vehicle (control) infusions in crossover fashion with 4–6 weeks between studies. Infusions were commenced 16 h before and during the course of the doxorubicin pharmacokinetic studies. Phenytoin infusion was guided by plasma phenytoin estimation to maintain total plasma concentrations between 20 and 30 g/ml. Following doxorubicin 5 mg/kg by i.v. bolus, blood samples were obtained at intervals over 32 h. Plasma doxorubicin and doxorubicinol concentrations were measured by HPLC. The mean plasma phenytoin concentrations ranged from 17.4 to 33.9 g/ml. Phenytoin infusion did not alter doxorubicin pharmacokinetics. The elimination half-life and volume of distribution were almost identical to control. Clearance of doxorubicin during phenytoin administration (60.9±5.8 ml/min per kg, mean±SE) was similar to that during vehicle infusion (67.5±5.4 ml/min per kg). Phenytoin administration was associated with a significant decrease in doxorubicinol elimination half-life from 41.0±4.8 to 25.6±2.8 h. The area under the plasma concentration/time curve (AUC) for doxorubicinol decreased significantly from 666.8±100.4 to 491.5±65.7 n.h.ml-1. These data suggest that phenytoin at clinically relevant concentrations does not alter the conversion of doxorubicin to doxorubicinol in the rabbit. The reduction in the AUC for doxorubicinol caused by phenytoin appears to be due to an increased rate of doxorubicinol elimination. Phenytoin or similar agents may have the effect of modifying doxorubicinol plasma concentrations by induction of doxorubicinol metabolism rather than by inhibition of aldoketoreductase enzymes.  相似文献   

18.
The cerebrospinal fluid (CSF) pharmacokinetics of topotecan were studied in a nonhuman primate model following intraventricular administration of 0.1 mg. Lactone and total drug concentrations were measured using a reverse-phase HPLC method with fluorescence detection. The mean peak concentrations of lactone and total drug in ventricular CSF were 83±18 M and 88±25 M, respectively. CSF drug elimination of the lactone was bi-exponential with a terminal half-life of 1.3 h. The mean clearance from ventricular CSF was 0.075 ml/min for the lactone and 0.043 ml/min for total drug. The ventricular CSF drug exposure (AUC) to lactone was 450-fold greater following intraventricular administration of 0.1 mg topotecan than after systemic intravenous administration of a 40-fold higher dose (10 mg/m2). Peak lumbar concentrations (n=1), which occurred 2 h after intraventricular drug administration, were 0.98 M and 2.95 M for the lactone and total drug, respectively. A transient CSF pleocytosis was observed in one animal following intraventricular topotecan administration and in one animal following intralumbar topotecan administration. No other acute or chronic neurologic or systemic toxicities were observed following a single intraventricular dose or weekly (×4) intralumbar topotecan. Compared with systemic topotecan, intrathecal administration provided a significant pharmacokinetic advantage in terms of CSF drug exposure and did not produce any significant neurotoxicity in a nonhuman primate model. Intrathecal topotecan should be evaluated clinically as a potential alternative therapy for refractory meningeal tumors.Pediatric Branch, National Cancer Institute, Building 10 Room 13N240, 9000 Rockville Pike, Bethesda, MD 20892, USA  相似文献   

19.
Summary Adozelesin is a derivative of an extremely cytotoxic compound, CC1065. This entirely new class of drug binds preferentially to DNA and facilitates alkylation reaction. In the present study, we used the adenosine triphosphate (ATP) chemosensitivity assay to compare the cytotoxic potency of Adozelesin with that of common chemotherapeutic agents in ten gynecologic-cancer cell lines. Flow cytometry was also used to study its effects on cell-cycle kinetics. The mean drug concentrations required to produce a 50% reduction in ATP levels as compared with controls [IC50] were: Adriamycin, 0.17±0.06 m; 4OH-Cytoxan, 18±3 m; cisplatin, 17±7 m; 5-fluorouracil, 183±116 m; and Adozelesin, 11.0±5.4pm. Thus, Adozelesin was 104–107 times more potent than Adriamycin, cisplatin, 5-fluorouracil, and Cytoxan. Cell kinetics studies revealed significant S and G2 blocks such as those previously reported for other alkylating agents.Supported in part by an American Cancer Society Clinical Oncology Fellowship and an American Cancer Society/Florida Division Startup Grant (both awarded to H. N. N.)  相似文献   

20.
Summary In experimentally-induced F98 glioma of rat brain, regional blood flow and glucose transfer were assessed by means of double tracer autoradiography to measure Michaelis-Menten constants for the determination of unidirectional glucose transport across the blood-tumor and blood-brain barrier. In brain regions opposite the tumor hemisphere, the maximal glucose transport rate constant, Tm, ranged from 1.41 ± 0.12 to 3.22 ± 0.29 mol/g/min and the half saturation transport constant of glucose, Kt, varied from 2.78 ± 0.83 to 5.6 ± 1.94 mol/ml (estimate ± standard error of the estimate) yielding a normoglycemic unidirectional glucose inward transport which ranged from 1.24 ± 0.24 to 1.97 ± 0.13 mol/g/min (mean ± standard deviation). In the tumor periphery, the Tm and the Kt values were 3.64 ± 0.56 mol/g/ml and 7.32 ± 2.12 mol/min, and in the tumor center, 1.77 ± 0.25 mol/ml and 2.76 ± 1.13 mol/min, respectively. The unidirectional glucose influx of tumor periphery and center in normoglycemia was 1.98 ± 0.22 and 1.34 ± 0.16 mol/g/min, respectively. Despite comparable unidirectional glucose influxes, however, glucose metabolism of tumor tissue located in the periphery (0.83 ± 0.12 mol/g/min) and the center (0.41 ± 0.10 mol/g/min) of the tumor mass exceeded that of normal gray matter by about 68% and 100% which indicates uncoupling between glucose transport and phosphorylation in experimentally-induced F98 glioma of rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号