首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule-associated protein MAP-2 is a neuronal phosphoprotein which modulates microtubule stability and spatial organization of signal transduction pathways. The functions of MAP-2 are modulated by phosphorylation. We studied the modulation of MAP-2 phosphorylation using the N-methyl- D-aspartate (NMDA) type of glutamate receptors and the signal transduction pathways mediating this modulation in primary cultures of rat cerebellar neurons. NMDA induced a rapid increase (330% of basal at 5 min) in MAP-2 phosphorylation which was not prevented by KN-62, indicating that it is not mediated by activation of Ca-calmodulin-dependent protein kinase. NMDA-induced phosphorylation of MAP-2 was inhibited by the nitric oxide synthase inhibitors nitroarginine and 7-nitroindazole and by PD098059 (an inhibitor of MAP kinase kinase), but was only slightly reduced by calphostin C or U-73122, inhibitors of protein kinase C and of phospholipase C, respectively. This indicates that the main pathway mediating NMDA-induced phosphorylation of MAP-2 is activation of nitric oxide synthase and subsequent activation of MAP kinase. We show that activation of NMDA receptors induces an activation of MAP kinase which is prevented by nitroarginine. The nitric oxide-generating agent (+/-)-S-nitroso-N-acetylpenicillamine (SNAP) also induced activation of MAP kinase and increased phosphorylation of MAP-2. Other nitric oxide-generating agents (NOC-18 and NOR-3) also increased MAP-2 phosphorylation. The interplay between NMDA receptors-associated signal transduction pathways and MAP-2 may be involved in the modulation of neuronal responses to extracellular signals and in the regulation of neuronal function.  相似文献   

2.
Kawasaki T  Kitao T  Nakagawa K  Fujisaki H  Takegawa Y  Koda K  Ago Y  Baba A  Matsuda T 《Glia》2007,55(13):1325-1333
Nitric oxide induces apoptosis-like cell death in cultured astrocytes, but the exact mechanism is not known. This study further characterized the mechanism of nitric oxide-induced cytotoxicity, and examined the effect of edaravone, a radical scavenger, on cytotoxicity. Treatment of cultured rat astrocytes with sodium nitroprusside (SNP), a nitric oxide donor, for 72 h, decreased cell viability by causing apoptosis-like cell death. The injury was accompanied by increases in the production of reactive oxygen species and in the level of nuclear apoptosis-inducing factor, but not in caspase activity. SNP-induced cytotoxicity was blocked by the c-jun N-terminal protein kinase (JNK) inhibitor SP600125 (20 microM), the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 (20 microM), and the extracellular signal-regulating kinase (ERK) inhibitor U0126 (10 microM), and the nitric oxide donor stimulated the phosphorylation of p38 MAP kinase, JNK, and ERK. Edaravone (10 microM) protected astrocytes against SNP-induced cell injury and it inhibited SNP-induced phosphorylation of p38 MAP kinase, JNK, and ERK, and the production of reactive oxygen species. Edaravone also attenuated SNP-induced increase in nuclear apoptosis-inducing factor levels. These results suggest that MAP kinase pathways play a key role in nitric oxide-induced apoptosis and that edaravone protects against nitric oxide-induced cytotoxicity by inhibiting nitric oxide-induced MAP kinase activation in astrocytes.  相似文献   

3.
4.
The Tat-NR2B9c peptide has shown clinical efficacy as a neuroprotective agent in acute stroke. Tat-NR2B9c is designed to prevent nitric oxide (NO) production by preventing postsynaptic density protein 95 (PSD-95) binding to N-methyl-D-aspartate (NMDA) receptors and neuronal nitric oxide synthase; however, PSD-95 is a scaffolding protein that also couples NMDA receptors to other downstream effects. Here, using neuronal cultures, we show that Tat-NR2B9c also prevents NMDA-induced activation of neuronal NADPH oxidase, thereby blocking superoxide production. Given that both superoxide and NO are required for excitotoxic injury, the neuroprotective effect of Tat-NR2B9c may alternatively be attributable to uncoupling neuronal NADPH oxidase from NMDA receptor activation.  相似文献   

5.
N-methyl-D-aspartate (NMDA) receptor activation comprises multiple regulatory sites controlling Ca2+ influx into the cell. NMDA-induced increases in intracellular [Ca(+2)] lead to nitric oxide (NO) production through activation of neuronal NO synthase (nNOS). Melatonin inhibits either glutamate or NMDA-induced excitation, but the mechanism of this inhibition is unknown. In the present study, the mechanism of melatonin action in the rat striatum was studied using extracellular single unit recording of NMDA-dependent neuronal activity with micro-iontophoresis. Melatonin inhibited neuronal excitation produced by either NMDA or L-arginine. The effects of both NMDA and L-arginine were blocked by nitro-L-arginine methyl ester, suggesting that nNOS participates in responses to NMDA. However, excitation of NMDA-sensitive neurones induced by the NO donor sodium nitroprusside was only slightly modified by melatonin. Melatonin iontophoresis also counteracted excitation induced by tris(2-carboxyethyl)phosphine hydrochloride, showing that the redox site of the NMDA receptor may be a target for melatonin action. The lack of effects of the membrane melatonin receptor ligands luzindole, 4-phenyl-2-propionamidotetralin and 5-methoxycarbonylamino-N-acetyltryptamine, and the nuclear melatonin ligand, CGP 52608, a thiazolidine dione, excluded the participation of known membrane and nuclear receptors for melatonin. The data suggest that inhibition of NMDA-dependent excitation by melatonin involves both nNOS inhibition and redox site modulation.  相似文献   

6.
7.
The basal ganglia of newborns are extremely vulnerable to hypoxic ischemia (HI). Striatal neurons undergo prominent necrosis after HI. The mechanisms for this degeneration are not well understood. Postasphyxic hypothermia ameliorates the striatal necrosis, but the mechanisms of hypothermia-induced neuroprotection are not known. We used a newborn piglet model of hypoxic-asphyxic cardiac arrest to test the hypotheses that N-methyl-d-aspartate receptor activation and free radical damage coexist, prior to neurodegeneration, early after resuscitation, and that these changes are attenuated with hypothermia. Piglets were subjected to 30min of hypoxia followed by 7min of airway occlusion, causing asphyxic cardiac arrest, and then were resuscitated and survived normothermically for 5min, 3h, or 6h, or hypothermically for 3h. By 6h of normothermic recovery, 50% of neurons in putamen showed ischemic cytopathology. Striatal tissue was fractionated into membrane or soluble proteins and was assayed by immunoblotting for carbonyl modification, phosphorylation of the N-methyl-d-aspartate receptor subunit NR1, and neuronal nitric oxide synthase. Significant accumulation of soluble protein carbonyls was present at 3h (196% of control) and 6h (142% of control). Phosphorylation of serine-897 of NR1 was increased significantly at 5min (161% of control) and 3h (226% of control) after HI. Phosphorylation of serine-890 of NR1 was also increased after HI. Membrane-associated neuronal nitric oxide synthase was increased by 35% at 5min. Hypothermia attenuated the oxidative damage and the NR1 phosphorylation in striatum. We conclude that neuronal death signaling in newborn striatum after HI is engaged rapidly through N-methyl-d-aspartate receptor activation, neuronal nitric oxide synthase recruitment, and oxidative stress. Postasphyxic, mild whole body hypothermia provides neuroprotection by suppressing N-methyl-d-aspartate receptor phosphorylation and protein oxidation.  相似文献   

8.
The protective effects of cholecystokinin (CCK) against glutamate-induced cytotoxicity were examined using cultured neurons obtained from the rat cerebral cortex. Cell viabiilty was significantly reduced when the cultures were briefly exposed to glutamate or (NMDA) and then incubated with normal medium for 60 min. A 60-min exposure to kainate also reduced cell viability. CCK protected cortical neurons against glutamate-, NMDA- and kainate-induced cytotoxicity. Glutamate- and NMDA-induced cytotoxicity was also reduced by , a nitric oxide (NO) synthase inhibitor. However, CCK did not prevent the cytotoxic effects of sodium nitroprusside (SNP) which spontaneously releases NO. Moreover, CCK did not affect NMDA-induced CA2+ influx measured with rhod-2, a fluorescent Ca2+ indicator. Therefore, release of a NO-like factor from the cerebral cortex was assayed using the thoracic artery in vitro. When the artery was incubated with minced cerebral tissues, glutamate elicited marked relaxation. SNP also elicited relaxation of the smooth muscle. CCK inhibited glutamate-induced relaxation but did not affect that induced by SNP. These results indicate that CCK prevents NMDA receptor-mediated cytotoxicity without reducing the Ca2+ influx. It is suggested that CCK inhibits NO-formation triggered by NMDA receptor activation.  相似文献   

9.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants present in human blood and milk. Exposure to PCBs during pregnancy and lactation leads to cognitive impairment in children. Perinatal exposure to PCB 153 or PCB 126 impairs the glutamate–nitric oxide–cGMP pathway in cerebellum in vivo and learning ability in adult rats. The aims of this work were: (1) to assess whether long-term exposure of primary cultures of cerebellar neurons to PCB 153 or PCB 126 reproduces the impairment in the function of the glutamate–nitric oxide–cGMP pathway found in rat cerebellum in vivo; (2) to provide some insight on the steps of the pathway affected by these PCBs; (3) to assess whether the mechanisms of interference of the pathway are different for PCB 126 and PCB 153. Both PCB 153 and PCB 126 increase basal levels of cGMP by different mechanisms. PCB 126 increases the amount of soluble guanylate cyclase while PCB 153 does not. PCB 153 reduces the amount of calmodulin while PCB 126 does not. Also both PCBs impair the function of the glutamate–nitric oxide–cGMP pathway by different mechanisms, PCB 153 impairs nitric oxide-induced activation of soluble guanylate cyclase and increase in cGMP while PCB 126 does not. PCB 126 reduces NMDA-induced increase in calcium while PCB 153 does not. When PCB 153 and PCB 126 exhibit the same effect, PCB 126 was more potent than PCB 153, as occurs in vivo.  相似文献   

10.
Nitric oxide is generated by a Ca2+/calmodulin-stimulated nitric oxide synthase and activates soluble guanylyl cyclase. Using NADPH diaphorase (NADPHd) staining as a marker for the enzyme nitric oxide synthase and an antiserum against cGMP, we investigated the cellular organization of nitric oxide donor and target cells in olfactory pathways of the brain of the locust ( Schistocerca gregaria ). A small subset of neuronal and glial cells expressed cGMP immunoreactivity after incubation of tissue in a nitric oxide donor. Nitric oxide-induced increases in cGMP immunoreactivity were quantified in a tissue preparation of the antennal lobe and in primary mushroom body cell cultures. The mushroom body neuropil is a potential target of a transcellular nitric oxide/ cGMP messenger system since it is innervated by extrinsic NADPHd-positive neurons. The mushroom body-intrinsic Kenyon cells do not stain for NADPHd but can be induced to express cGMP immunoreactivity. The colocalization of NADPHd and cGMP immunoreactivity in a cluster of interneurons of the antennal lobe, the principal olfactory neuropil of the insect brain, suggests a role of the nitric oxide/cGMP system in olfactory sensory processing. Colocalization of NADPHd staining and cGMP immunoreactivity was also found in certain glial cells. The cellular organization of the nitric oxide/cGMP system in neurons and glia raises the possibility that nitric oxide acts not only as an intercellular but also as an intracellular messenger molecule in the insect brain.  相似文献   

11.
We tested the hypothesis that the release of glutamate following activation of N-methyl-d-aspartate (NMDA) receptors is mediated by nitric oxide (NO) production, using slices of the guinea pig hippocampus. The NMDA-induced glutamate release from slices of dentate gyrus or CA1, which was both concentration-dependent and Ca2+-dependent, was also Mg2+-sensitive and abolished by MK-801, a selective non-competitive NMDA receptor antagonist. In dentate gyrus, the NMDA-induced glutamate release was inhibited non-significantly by tetrodotoxin, whereas the NO synthase (NOS) inhibitor NG-nitro-l-arginine (l-NNA) blocked the NMDA-induced release of glutamate in a concentration-dependent manner, but not a high K+-evoked release of glutamate. In addition, the l-NNA blockade of NMDA-induced release of glutamate was recovered by pretreatment with l-arginine, the normal substrate for NOS. These results suggest that activation of NMDA receptors in dentate gyrus, as well as subsequent Ca2+ fluxes, is required for the neuronal glutamate release mediated by NO production. On the other hand, the NMDA-evoked glutamate release from CA1 region was tetrodotoxin-sensitive and was not inhibited by l-NNA, thereby suggesting that activation of NMDA receptors in CA1 results in increased glutamate release in an NO-independent manner. Taken together, the NMDA receptor-mediated neuronal release of glutamate from the guinea pig dentate gyrus likely involves the recruitment of NOS activity.  相似文献   

12.
Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.  相似文献   

13.
Ubiquitin-specific protease 8 (USP8) regulates inflammation in vitro; however, the mechanisms by which USP8 inhibits neuroinflammation and its pathophysiological functions are not completely understood. In this study, we aimed to determine whether USP8 exerts neuroprotective effects in a mouse model of lipopolysaccharide (LPS)-induced cognitive and motor impairment. We commenced intracerebroventricular USP8 administration 7 days prior to i.p. injection of LPS (750 μg/kg). All treatments and behavioral experiments were performed once per day for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. USP8 attenuated LPS-induced cognitive and motor impairments in mice. Moreover, USP8 downregulated several pro-inflammatory cytokines [nitric oxide (NO), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and interleukin-1β (IL-1β)] in the serum and brain, and the relevant protein factors [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)] in the brain. Furthermore, USP8 upregulated the anti-inflammatory mediators interleukin (IL)-4 and IL-10 in the serum and brain, and promoted a shift from pro-inflammatory to anti-inflammatory microglial phenotypes. The LPS-induced microglial pro-inflammatory phenotype was abolished by TLR4 inhibitor and in TLR4−/− mice; these effects were similar to those of USP8 treatment. Mechanistically, we found that USP8 increased the expression of neuregulin receptor degradation protein-1 (Nrdp1), potently downregulated the expression of TLR4 and myeloid differentiation primary response protein 88 (MyD88) protein, and inhibited the phosphorylation of IκB kinase (IKK) β and kappa B-alpha (IκBα), thereby reducing nuclear translocation of p65 by inhibiting the activation of the nuclear factor-kappaB (NF-κB) signaling pathway in LPS-induced mice. Our results demonstrated that USP8 exerts protective effects against LPS-induced cognitive and motor deficits in mice by modulating microglial phenotypes via TLR4/MyD88/NF-κB signaling.  相似文献   

14.
The hippocampus rapidly inhibits its response to repetitive auditory stimulation, an example of an auditory sensory gating mechanism involved in human psychopathology. The neuronal basis of this inhibitory gating mechanism has been investigated in rats. Activation of the alpha 7 nicotinic receptor is required. alpha 7 nicotinic receptor activation also releases nitric oxide in the hippocampus and blockade of nitric oxide synthase reduces inhibitory gating of auditory response. There has not been a direct demonstration that blockade of nitric oxide synthase specifically prevents alpha 7 nicotinic receptor activation of the inhibition of auditory response. Therefore, the goal of the present study was to determine whether this functional effect of alpha 7 receptor activation requires release of nitric oxide. Lesions of the fimbria-fornix disrupt auditory gating by preventing cholinergic stimulation of the hippocampus. Following recovery from this surgery, rats were administered 3-(2,4-dimethoxybenzylidene) anabaseine (DMXB-A; 10 mg/kg, sc), an agonist at the alpha 7 receptor. DMXB-A restored auditory gating in the fimbria-fornix-lesioned rats, indicating that activation of the alpha 7 nicotinic receptor alone is sufficient to restore auditory gating following lesions of the fimbria-fornix. However, intracerebroventricular infusion of N(omega)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase, blocked the DMXB-A-mediated restoration of auditory gating; infusion of the inactive D-enantiomer did not. Restoration of auditory gating by DMXB-A in the fimbria-fornix-lesioned rats was blocked by intracerebroventricular infusion of alpha-bungarotoxin, but not by mecamylamine or dihydro-beta-erythroidine. Together, these data support the hypothesis that nitric oxide mediates alpha 7 nicotinic receptor activation of gating of auditory response in rat hippocampus.  相似文献   

15.
The aim of this work was to assess whether ammonia concentrations similar to the increase found in the brain of hyperammonemic rats (100 μm ), impair N-methyl-d -aspartate (NMDA) receptor-mediated signal transduction. We first measured glutamate neurotoxicity, which in these neurons is mediated by activation of NMDA receptors, as an initial parameter reflecting activation of NMDA receptor-mediated pathways. Long-term treatment of cultured neurons with ammonia prevents glutamate-induced neuronal death. The EC50 was 20 μm , and at 100 μm the protection was complete. The induction of the protective effect was not immediate, but took several hours. Treatment with 100 μm ammonia did not prevent a glutamate- or NMDA-induced rise of intracellular calcium. Ammonia impaired the glutamate–nitric oxide–cGMP (3′,5′-cyclic guanosine monophosphate) pathway in a dose- and time-dependent manner. Glutamate-induced formation of cGMP was reduced by 42%, while activation of nitric oxide synthase was not affected. Ammonia reduced by 31% cGMP formation induced by S-nitroso-N-acetyl-penicillamine (SNAP), a NO-generating agent, confirming that the interference occurs at the level of guanylate cyclase activation by nitric oxide. To assess whether chronic moderate hyperammonemia in vivo also impairs the glutamate–nitric oxide–cGMP pathway, we determined by in vivo brain microdialysis in freely moving rats the formation of cGMP induced by NMDA. In hyperammonemic rats, the formation of cGMP induced by NMDA and SNAP was reduced by ca. 60 and 41%, respectively, indicating that chronic hyperammonemia in the animal in vivo also impairs the glutamate–nitric oxide–cGMP pathway. Impairment of this pathway can contribute to the neurological alterations found in hyperammonemia and hepatic encephalopathy.  相似文献   

16.
Excitotoxic neuronal cell death is characterized by an overactivation of glutamate receptors, in particular of the NMDA subtype, and the stimulation of the neuronal nitric oxide synthase (nNOS), which catalyses the formation of nitric oxide (NO) from l-arginine (L-Arg). At low L-Arg concentrations, nNOS generates NO and superoxide (O2(.)(-)), favouring the production of the toxin peroxynitrite (ONOO-). Here we report that NMDA application for five minutes in the absence of added L-Arg induces neuronal cell death, and that the presence of L-Arg during NMDA application prevents cell loss by blocking O2(.)(-) and ONOO- formation and by inhibiting mitochondrial depolarization. Because L-Arg is transferred from glial cells to neurons upon activation of glial glutamate receptors, we hypothesized that glial cells play an important modulator role in excitotoxicity by releasing L-Arg. Indeed, as we further show, glial-derived L-Arg inhibits NMDA-induced toxic radical formation, mitochondrial dysfunction and cell death. Glial cells thus may protect neurons from excitotoxicity by supplying L-Arg. This potential neuroprotective mechanism may lead to an alternative approach for the treatment of neurodegenerative diseases involving excitotoxic processes, such as ischemia.  相似文献   

17.
Little is known about the morphological effects of alcoholism on the developing adolescent brain and its consequences into adulthood. We studied here the relationship between two neurotransmitter systems (the serotoninergic and nitrergic) and the astrocytic and neuronal cytoskeleton immediately and long after drinking cessation of a chronic, but low, ethanol administration. Adolescent male Wistar rats were exposed to ethanol 6.6% (v/v) in drinking water for 6 weeks and studied after ending exposure or after a 10-week recovery period drinking water. Control animals received water. Brain sections were processed by immunohistochemistry using antibodies to serotonin (5-HT); glial fibrillary acidic protein (GFAP); astroglial S-100b protein; microtubule associated protein-2 (MAP-2); 200 kDa neurofilaments (Nf-200); and neuronal nitric oxide synthase (nNOS). The mesencephalic dorsal and median raphe nucleus (DRN; MRN) and three prosencephalic areas closely related to cognitive abilities (CA1 hippocampal area, striatum and frontal cortex) were studied by digital image analysis. 5-HT immunoreactivity (-ir) decreased in the DRN and recovered after abstinence and was not changed in the MRN. In the three prosencephalic areas, astrocytes' cell area (GFAP-ir cells) increased after EtOH exposure and tended to return to normality after abstinence, while cytoplasmic astroglial S100b protein-ir, relative area of MAP-2-ir and Nf-200-ir fibers decreased, and later partially recovered. In the striatum and frontal cortex, nNOS-ir decreased only after abstinence. In conclusion, in the adolescent brain, drinking cessation can partially ameliorate the ethanol-induced morphological changes on neurons and astrocytes but cannot fully return it to the basal state.  相似文献   

18.
Alzheimer’s disease is a neurodegenerative disorder characterized by progressive cognitive impairment and neuropathology. Recent preclinical and epidemiological studies proposed statins as a possible therapeutic drug for Alzheimer’s disease, but the exact mechanisms of action are still unknown. Biliverdin reductase-A is a pleiotropic enzyme involved in cellular stress responses. It not only transforms biliverdin-IX alpha into the antioxidant bilirubin-IX alpha but its serine/threonine/ tyrosine kinase activity is able to modulate cell signaling networks. We previously reported the beneficial effects of atorvastatin treatment on biliverdin reductase-A and heme oxygenase-1 in the brains of a well characterized pre-clinical model of Alzheimer’s disease, aged beagles, together with observed improvement in cognition. Here we extend our knowledge of the effects of atorvastatin on inducible nitric oxide synthase in parietal cortex, cerebellum and liver of the same animals. We demonstrated that atorvastatin treatment (80 mg/day for 14.5 months) to aged beagles selectively increased inducible nitric oxide synthase in the parietal cortex but not in the cerebellum. In contrast, inducible nitric oxide synthase protein levels were significantly decreased in the liver. Significant positive correlations were found between biliverdin reductase-A and inducible nitric oxide synthase as well as heme oxygenase-1 protein levels in the parietal cortex. The opposite was observed in the liver. Inducible nitric oxide synthase up-regulation in the parietal cortex was positively associated with improved biliverdin reductase-A functions, whereas the oxidative-induced impairment of biliverdin reductase-A in the liver negatively affected inducible nitric oxide synthase expression, thus suggesting a role for biliverdin reductase-A in atorvastatin-dependent inducible nitric oxide synthase changes. Interestingly, increased inducible nitric oxide synthase levels in the parietal cortex were not associated with higher oxidative/nitrosative stress levels. We hypothesize that biliverdin reductase-A-dependent inducible nitric oxide synthase regulation strongly contributes to the cognitive improvement observed following atorvastatin treatment.  相似文献   

19.
Astrocyte swelling is observed in different types of brain injury. We studied a potential contribution of swelling to protein tyrosine nitration (PTN) by using cultured rat astrocytes exposed to hypoosmotic (205 mosmol/L) medium. Hypoosmolarity (2 h) increases total PTN by about 2-fold in 2 h. The hypoosmotic PTN is significantly inhibited by the NMDA receptor antagonist MK-801, the nitric oxide synthase (NOS) inhibitor L-NMMA, the extracellular Ca2+ chelator EGTA and the calmodulin antagonist W13, suggesting the involvement of NMDA receptor activation, influx of extracellular Ca2+ and Ca2+/calmodulin-dependent NO synthesis. Further, superoxide dismutase plus catalase and uric acid strongly inhibit hypoosmotic PTN, suggesting the involvement of the toxic metabolite peroxynitrite (ONOO-) as a nitrating agent. Hypoosmotic astrocyte swelling rapidly stimulates generation of reactive oxygen intermediates; this process is prevented by MK-801 and EGTA. In addition, MK-801 inhibits the hypoosmotic elevation of [Ca2+]i. The findings support the view that astrocyte swelling as induced, for example, by toxins relevant for hepatic encephalopathy is sufficient to produce oxidative stress and PTN and thus contributes to altered astroglial and neuronal function.  相似文献   

20.
Axonal degeneration contributes to the transient and permanent neurological deficits seen in multiple sclerosis, an inflammatory disease of the central nervous system. To study the immunological mechanisms causing axonal degeneration, we induced experimental autoimmune encephalomyelitis (EAE) in wildtype Lewis rats and Lewis rats with a slowly progressive myelin degeneration due to proteolipid protein (PLP) overexpression. EAE was triggered either by the transfer of encephalitogenic T-cells alone or by the co-transfer of T-cells with demyelinating antibodies. Inducible nitric oxide synthase (iNOS) expression in perivascular macrophages was associated with a transient functional disturbance of axons, reflected by the focal and reversible accumulation of amyloid precursor protein. Clinical disease correlated with the numbers of APP positive axon spheroids. Demyelination was associated with a further increase of iNOS expression in macrophages and with a higher degree of axonal injury. Our studies suggest that nitric oxide and its metabolites contribute to axonal pathology and possibly also to subsequent neurological dysfunction in EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号