首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diamond‐Blackfan anaemia (DBA) is an inherited disease characterized by pure erythroid aplasia that has been tagged as a ‘ribosomopathy’. We report a multi‐centre study focused on the analysis of rRNA processing of 53 Italian DBA patients using capillary electrophoresis analysis of rRNA maturation of the 40S and 60S ribosomal subunits. The ratio of 28S/18S rRNA was higher in patients with mutated ribosomal proteins (RPs) of the small ribosomal subunit. In contrast, patients with mutated RPs of the large ribosomal subunit (RPLs) had a lower 28S/18S ratio. The assay reported here would be amenable for development as a diagnostic tool.  相似文献   

2.
Impaired ribosome biogenesis in Diamond-Blackfan anemia   总被引:1,自引:1,他引:0  
The gene encoding the ribosomal protein S19 (RPS19) is frequently mutated in Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia. The consequence of these mutations on the onset of the disease remains obscure. Here, we show that RPS19 plays an essential role in biogenesis of the 40S small ribosomal subunit in human cells. Knockdown of RPS19 expression by siRNAs impairs 18S rRNA synthesis and formation of 40S subunits and induces apoptosis in HeLa cells. Pre-rRNA processing is altered, which leads to an arrest in the maturation of precursors to the 18S rRNA. Under these conditions, pre-40S particles are not exported to the cytoplasm and accumulate in the nucleoplasm of the cells in perinuclear dots. Consistently, we find that ribosome biogenesis and nucleolar organization is altered in skin fibroblasts from DBA patients bearing mutations in the RPS19 gene. In addition, maturation of the 18S rRNA is also perturbed in cells from a patient bearing no RPS19-related mutation. These results support the hypothesis that DBA is directly related to a defect in ribosome biogenesis and indicate that yet to be discovered DBA-related genes may be involved in the synthesis of the ribosomal subunits.  相似文献   

3.
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, congenital abnormalities, and cancer predisposition. Small ribosomal subunit genes RPS19, RPS24, and RPS17 are mutated in approximately one-third of patients. We used a candidate gene strategy combining high-resolution genomic mapping and gene expression microarray in the analysis of 2 DBA patients with chromosome 3q deletions to identify RPL35A as a potential DBA gene. Sequence analysis of a cohort of DBA probands confirmed involvement RPL35A in DBA. shRNA inhibition shows that Rpl35a is essential for maturation of 28S and 5.8S rRNAs, 60S subunit biogenesis, normal proliferation, and cell survival. Analysis of pre-rRNA processing in primary DBA lymphoblastoid cell lines demonstrated similar alterations of large ribosomal subunit rRNA in both RPL35A-mutated and some RPL35A wild-type patients, suggesting additional large ribosomal subunit gene defects are likely present in some cases of DBA. These data demonstrate that alterations of large ribosomal subunit proteins cause DBA and support the hypothesis that DBA is primarily the result of altered ribosomal function. The results also establish that haploinsufficiency of large ribosomal subunit proteins contributes to bone marrow failure and potentially cancer predisposition.  相似文献   

4.
5.
Diamond‐Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterized by red cell aplasia. Mutations in ribosomal genes are found in more than 50% of cases. Elevated erythrocyte adenosine deaminase (eADA) was first noted in DBA in 1983. In this study we determined the value of eADA for the diagnosis of DBA compared with other IBMFS; the association of eADA in DBA with age, gender or other haematological parameters; and the association with known DBA‐related gene mutations. For the diagnosis of DBA compared with non‐DBA patients with other bone marrow failure syndromes, eADA had a sensitivity of 84%, specificity 95%, and positive and negative predictive values of 91%. In patients with DBA there was no association between eADA and gender, age, or other haematological parameters. Erythrocyte ADA segregated with, as well as independent of, known DBA gene mutations. While eADA was an excellent confirmatory test for DBA, 16% of patients with classical clinical DBA had a normal eADA.  相似文献   

6.
Diamond-Blackfan anemia (DBA) typically presents with red blood cell aplasia that usually manifests in the first year of life. The only gene currently known to be mutated in DBA encodes ribosomal protein S19 (RPS19). Previous studies have shown that the yeast RPS19 protein is required for a specific step in the maturation of 40S ribosomal subunits. Our objective here was to determine whether the human RPS19 protein functions at a similar step in 40S subunit maturation. Studies where RPS19 expression is reduced by siRNA in the hematopoietic cell line, TF-1, show that human RPS19 is also required for a specific step in the maturation of 40S ribosomal subunits. This maturation defect can be monitored by studying rRNA-processing intermediates along the ribosome synthesis pathway. Analysis of these intermediates in CD34- cells from the bone marrow of patients with DBA harboring mutations in RPS19 revealed a pre-rRNA-processing defect similar to that observed in TF-1 cells where RPS19 expression was reduced. This defect was observed to a lesser extent in CD34+ cells from patients with DBA who have mutations in RPS19.  相似文献   

7.
Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA.  相似文献   

8.
We have isolated a cold-sensitive mutant of Saccharomyces cerevisiae in which there is a deficit of 60S ribosomal subunits. Cold sensitivity and the assembly defect are recessive and cosegregate, defining a single essential gene that we designated DRS1 (deficiency of ribosomal subunits). The wild-type DRS1 gene was cloned by complementation of the cold-sensitive phenotype of drs1. Sequence analysis reveals a high degree of similarity to a family of proteins that are thought to function as ATP-dependent RNA helicases. Pulse-chase analysis of ribosomal RNA synthesis and processing indicates that the drs1 mutant accumulates the 27S precursor of the mature 25S rRNA. These results suggest that, as in pre-mRNA splicing, RNA helicase activities are involved in ribosomal RNA processing.  相似文献   

9.
Processing of the 5'' end of Escherichia coli 16S ribosomal RNA.   总被引:12,自引:3,他引:12       下载免费PDF全文
We have isolated and partially characterized an endonuclease involved in processing the 5' end of 16S rRNA of Escherichia coli. A mutant strain that is deficient in this enzyme accumulates a new precursor of 16S rRNA, named 16.3S rRNA. This rRNA has the 3' end of mature 16S rRNA but is about 60 nucleotides longer at the 5' end. In vitro, the enzyme preparation cleaves an RNA fragment of about 60 nucleotides from the 5' end of 16.3S rRNA in 30S ribosomal subunits, yielding the mature 5' end of 16S rRNA. In the mutant strain the 16.3S rRNA is associated with a full complement of 21 ribosomal proteins in 30S subunits. These particles, which comprise 50% of the total 30S subunits, are present on polyribosomes.  相似文献   

10.
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Among these genes, ribosomal protein S19 (RPS19) is mutated most frequently. Generation of animal models for diseases like DBA is challenging because the phenotype is highly dependent on the level of RPS19 down-regulation. We report the generation of mouse models for RPS19-deficient DBA using transgenic RNA interference that allows an inducible and graded down-regulation of Rps19. Rps19-deficient mice develop a macrocytic anemia together with leukocytopenia and variable platelet count that with time leads to the exhaustion of hematopoietic stem cells and bone marrow failure. Both RPS19 gene transfer and the loss of p53 rescue the DBA phenotype implying the potential of the models for testing novel therapies. This study demonstrates the feasibility of transgenic RNA interference to generate mouse models for human diseases caused by haploinsufficient expression of a gene.  相似文献   

11.
《Seminars in hematology》2017,54(2):105-114
The inherited marrow failure syndromes (IBMFS) are a heterogeneous group of diseases characterized by failure in the production of one or more blood lineage. The clinical manifestations of the IBMFS vary according to the type and number of blood cell lines involved, including different combinations of anemia, leukopenia, and thrombocytopenia. In some IBMFS, systemic non-hematologic manifestations, including congenital malformations, mucocutaneous abnormalities, developmental delay, and other medical complications, may be present. Fanconi anemia (FA), caused by germline pathogenic variants in the DNA repair genes comprising the FA/BRCA pathway is associated with congenital anomalies, bone marrow failure, and increased risk of myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML), and solid tumors. Dyskeratosis congenita (DC) is a telomere biology disorder (TBD) caused by aberrations in key telomere biology genes. In addition to mucocutaneous manifestations, patients with DC are at increased risk of marrow failure, MDS, AML, pulmonary fibrosis, and other complications. Ribosomal biology defects are the primary causes of Diamond Blackfan anemia (DBA) and Shwachman Diamond syndrome (SDS). In addition to pure red blood cell aplasia, DBA is associated with elevated risk of solid tumors, AML, and MDS. Patients with SDS have pancreatic insufficiency, neutropenia, as well as MDS and AML risks. Patients with severe congenital neutropenia (SCN), caused by pathogenic variants in genes essential in myeloid development, have profound neutropenia and high risk of MDS and AML. Herein we review the genetic causes, clinical features, diagnostic modalities, predisposition to malignancies with focus on leukemogenic markers whenever available, and approaches to treatments of the classical IBMFS: FA, DC, SDS, DBA, and SCN.  相似文献   

12.
13.
Flygare J  Karlsson S 《Blood》2007,109(8):3152-3154
Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents as macrocytic anemia during infancy. Linkage analysis suggests that at least 4 genes are associated with DBA of which 2 have been identified so far. The known DBA genes encode the ribosomal proteins S19 and S24 accounting for 25% and 2% of the patients, respectively. Herein, we review possible links between ribosomal proteins and erythropoiesis that might explain DBA pathogenesis. Recent studies and emerging findings suggest that a malfunctioning translational machinery may be a cause of anemia in patients with DBA.  相似文献   

14.
Within the decade following the demonstration that mutations in the RPS19 gene can lead to Diamond-Blackfan anemia (DBA), this disease has become a paradigm for an emerging group of pathologies linked to defects in ribosome biogenesis. DBA patients exhibit abnormal pre-rRNA maturation patterns and the majority bear mutations in one of several ribosomal protein genes that encode structural components of the ribosome essential for the correct assembly of the ribosomal subunits. Extensive study of the most frequently mutated gene, RPS19, has shown that mutations prevent the assembly of the ribosomal protein into forming pre-ribosomal particles. This defect in ribosome production triggers nucleolar stress pathways, the activation of which appears to be central to pathophysiological mechanisms. Why mutations in ribosomal protein genes so strongly and specifically affect erythropoiesis in DBA remains a challenging question, especially given the fact that defects in genes encoding nonstructural ribosome biogenesis factors have been shown to cause diseases other than DBA. A major problem in understanding the pathophysiological mechanisms in DBA remains the lack of a suitable animal model. Despite this, considerable strides have been made over that past few years demonstrating that several factors involved in the synthesis of ribosomes are targets of disease-causing mutations.  相似文献   

15.
Diamond Blackfan anemia (DBA) is a lineage-selective inherited bone marrow failure syndrome characterized primarily by anemia and physical malformations. Recent advances in identifying the genetic abnormalities underlying DBA have demonstrated involvement of genes encoding both large (RPL) and small (RPS) ribosomal subunit proteins, including mutations of RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26 in 50% to 60% of affected patients. Despite significant progress, identification of gene abnormalities in the remaining patients remains an important question since present data suggest that mutations in other members of the ribosomal protein gene complement do not explain those cases without an identified genetic lesion in these genes. Genetic studies have also raised new questions with the recognition of substantial variability in the manifestations of DBA, ranging from ribosomal protein mutations in otherwise asymptomatic individuals to those with classic severe red blood cell aplasia with characteristic malformations, at times within the same kindred. In this review, we summarize the genetic basis of DBA and discuss mechanisms by which the phenotype of DBA might be modified.  相似文献   

16.
We have characterized a temperature-sensitive (ts) mutant of the hamster cell line BHK 21 that appears to have a defect in the processing of ribosomal RNA precursors at 39 degrees . Mutant ts 422E grows at a normal rate at 33 degrees , but upon shift to 39 degrees growth stops after about one cell doubling. The appearance of 28S rRNA and large ribosomal subunits in the cytoplasm of ts 422E at 39 degrees is inhibited by about 95%, when compared to wild-type BHK cells. Production of 18S rRNA and small ribosomal subunits is unaffected. Shift-up experiments show that the defect in 28S rRNA production can be detected as early as 2-3 hr after the shift to 39 degrees . Synthesis of the larger rRNA precursor is normal at high temperature, but the processing appears to be arrested after the formation of 32S rRNA. 32S rRNA accumulates to some extent in the nucleoli of ts 422E. ts 422E cells appear to have a single mutation, directly affecting the conversion of 32S to 28S rRNA. The reduced amount of 28S rRNA in the cytoplasm of ts 422E cells at 39 degrees seems therefore responsible for their inability to grow at this temperature.  相似文献   

17.

Background

Diamond-Blackfan anemia and Shwachman-Diamond syndrome are inherited bone marrow failure syndromes linked to defects in ribosome synthesis. The purpose of this study was to determine whether yeast models for Diamond-Blackfan anemia and Shwachman-Diamond syndrome differed in the mechanism by which ribosome synthesis was affected.

Design and Methods

Northern blotting, pulse-chase analysis, and polysome profiling were used to study ribosome synthesis in yeast models. Localization of 60S ribosomal subunits was assessed using RPL25eGFP.

Results

Relative to wild-type controls, each disease model showed defects in 60S subunit maturation, but with distinct underlying mechanisms. In the model of Diamond-Blackfan anemia, 60S subunit maturation was disrupted at a relatively early stage with abortive complexes subject to rapid degradation. 5S ribosomal RNA, unlike other large subunit ribosomal RNA in this model, accumulated as an extra-ribosomal species. In contrast, subunit maturation in the Shwachman-Diamond syndrome model was affected at a later step, giving rise to relatively stable pre-60S particles with associated 5S ribosomal RNA retained in the nucleus.

Conclusions

These differences between the yeast Diamond-Blackfan anemia and Shwachman-Diamond syndrome models have implications for signaling mechanisms linking abortive ribosome assembly to cell fate decisions and may contribute to the divergent clinical presentations of Diamond-Blackfan anemia and Shwachman-Diamond syndrome.  相似文献   

18.
Ribosomal RNA (rRNA) is a component of the ribosomes. Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5,8S, 28S and 5S rRNA. rRNA is the most conserved (least variable) gene in all cells. For this reason, genes that encode the rRNA (rDNA) are sequenced to identify an organism's taxonomic group, calculate related groups, and estimate rates of species divergence. Especially the internal transcribed spacers (ITS) are very useful for molecular diagnostic of parasite. They are noncoding regions of DNA sequence that separate genes coding for the 28S, 5.8S, and 18S ribosomal RNAs. These ribosomal RNA (rRNA) genes are highly conserved across taxa while the spacers between them may be species-specific. In this paper authors describe practical using of rRNA gene to parasite diagnostic.  相似文献   

19.
Diamond-Blackfan anemia (DBA) is a rare congenital hypoplastic anemia that usually presents early in infancy and is inherited in 10% to 20% of cases. Linkage analysis has shown that DBA in many of both dominant and recessive DBA families mapped to chromosome 19q13.2 leading to the cloning of a gene on chromosome 19q13.2 that encodes a ribosomal protein, RPS19. However, subsequently, mutations of the RPS19 gene have only been identified in 25% of all patients with DBA. This study analyzed 14 multiplex DBA families, 9 of which had 19q13.2 haplotypes inconsistent with 19q linkage. A genome-wide search for linked loci suggested the presence of a second DBA locus in a 26.4-centimorgan (cM) interval on human chromosome 8p. Subsequently, 24 additional DBA families were ascertained and all 38 families were analyzed with additional polymorphic markers on chromosome 8p. In total, 18 of 38 families were consistent with linkage to chromosome 8p with a maximal LOD score with heterogeneity of 3.55 at D8S277 assuming 90% penetrance. The results indicate the existence of a second DBA gene in the 26.4-cM telomeric region of human chromosome 8p23.3-p22, most likely within an 8.1-cM interval flanked by D8S518 and D8S1825. Seven families were inconsistent with linkage to 8p or 19q and did not reveal mutations in the RPS19 gene, suggesting further genetic heterogeneity. (Blood. 2001;97:2145-2150)  相似文献   

20.
Fanconi anaemia (FA), dyskeratosis congenita (DC), Diamond‐Blackfan anaemia (DBA), and Shwachman‐Diamond syndrome (SDS) comprise major inherited bone marrow failure syndromes (IBMFS). Adverse events include severe bone marrow failure (BMF), myelodysplastic syndrome (MDS), acute myeloid leukaemia (AML), and solid tumours (ST). The natural history of FA is well characterised; hazard rates in the other syndromes have not yet been quantified. An open cohort was established at the National Cancer Institute (NCI) in 2002. Patients enrolled prior to December, 2007 were followed up to December, 2008. Diagnoses were confirmed with standard tests. Age‐associated risks of adverse events were calculated. Most patients in each syndrome survived to young adulthood. Patients with FA had earlier onset of cancers, need for stem cell transplant, and death; followed by DC; DBA and SDS were mildest. While FA and DC patients had markedly increased risks of cancer, AML and MDS, there were no cases of leukaemia in DBA or SDS patients. The NCI cohort provides the first direct quantitative comparison of timing and magnitude of cancer risk in the IBMFS. The findings demonstrate that both FA and DC are major cancer susceptibility syndromes. The IBMFS, historically considered paediatric disorders, have important management implications for physicians treating adult patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号