首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 801 毫秒
1.
Ifenprodil, a non-competitive NMDA-receptor antagonist, has been shown to exhibit marked cytoprotective activities in animal models for focal ischemia and Parkinson's disease. To test the hypothesis that the cytoprotective effect is due to the release of neurotrophic factors (NTFs), we examined the effects of ifenprodil on the NTF contents in mouse astrocyte cultures. The results revealed that ifenprodil strongly enhanced the production of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) in these cultures. The ifenprodil-induced NGF secretion was found to be partially mediated by the activation of protein kinase C (PKC) and p42/p44 mitogen-activated protein (MAP) kinase cascade pathways. These findings suggest that the cytoprotective effects of ifenprodil are probably attributed to enhanced secretion of these NTFs from astrocytes.  相似文献   

2.
Chen Z  Chai Y  Cao L  Huang A  Cui R  Lu C  He C 《Neuroscience》2001,104(2):593-598
PC12-GFRalpha1 cells, a clonal cell line engineered to express glial cell line-derived neurotrophic factor receptor alpha1 were constructed. Given glial cell line-derived neurotrophic factor could induce the differentiation and promote the survival of PC12-GFRalpha1 cells at low concentrations, the cells provide an unlimited source of monoclonal cells for studies on the signal transduction pathway of glial cell line-derived neurotrophic factor. To characterize the involvement of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in the biological effect of glial cell line-derived neurotrophic factor, we used the mitogen-activated protein kinase kinase inhibitor PD98059 and the phosphatidylinositol 3-kinase inhibitor LY294002. PD98059 blocked glial cell line-derived neurotrophic factor-induced PC12-GFRalpha1 cells neurite formation in a dose-dependent manner, without significantly altering cell viability. LY294002 reversed the survival-promoting effect of glial cell line-derived neurotrophic factor on the PC12-GFRalpha1 cells in serum-deprived medium.The present study demonstrates that phosphatidylinositol 3-kinase pathway seems to mediate the survival-promoting effect of glial cell line-derived neurotrophic factor on PC12-GFRalpha1 cells, while the activation of mitogen-activated protein kinase pathway could be an important step in mediating PC12-GFRalpha1 cells differentiation induced by glial cell line-derived neurotrophic factor. Therefore, it is inferred that similar intracellular signaling components are used by distinct growth factors toward a common biological effect.  相似文献   

3.
We have established a new line of immortalized rat astrocytes through transfection of plasmid pSV3-neo encoding the large T antigen of simian virus 40 into normal astrocytes. One of these immortalized astrocytes (ACT-57) with a flat and polygonal cell shape, exhibited stable growth in a chemically defined medium (modified N-2 medium) as well as in medium containing ordinary serum. ACT-57, retained a detectable level of expression of glial fibrillary acidic protein (GFAP) and its mRNA, and exhibited a stronger expression of nerve growth factor (NGF) mRNA than that of normal rat astrocytes or C6 glioma cells. NGF mRNA was significantly up-regulated by phorbol ester (12-O-tetradecanoylphorbol 13-acetate, TPA) and gamma-amino-n-butyric acid (GABA) but not by hydrocortisone. None of stimulants (TPA, dibutyryl cyclic AMP (db-cAMP), hydrocortisone, L-glutamate, carbacol, GABA, dopamine, or isoproterenol) changed the expression level of either brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). There was a discrete difference between ACT-57 and normal astrocytes in the response to GABA and isoproterenol. These findings imply that normal cortical astrocytes possess a functional heterogeneity whereas the clonal astrocyte, ACT-57, does not, indicating that ACT-57 cells may be useful for in vitro studies of neuron-astrocyte interactions involving the induction of neurotrophic factors such as NGF.  相似文献   

4.
The stromal compartment of the bone marrow is composed of various cell types that provide trophic and instructive signals for hematopoiesis. The mesenchymal stem cell is believed to give rise to all major cellular components of the bone marrow microenvironment. Nemo‐like kinase, Nlk, is a serine‐threonine kinase that connects MAP kinase and Wnt signaling pathways; its in vivo function in mouse is unknown. We have generated mice with a targeted disruption of Nlk and find that the complex phenotype significantly varies with the genetic background. Whereas C57BL/6 mice lacking Nlk die during the third trimester of pregnancy, the 129/Sv background supports survival into adolescence; such mice are growth retarded and suffer from various neurological abnormalities. We show here that the Nlk deficiency syndrome includes aberrant differentiation of bone marrow stromal cells. Varying degrees of morphological abnormality, such as increased numbers of adipocytes, large blood sinuses and absence of bone‐lining cells are observed in the bone marrow of mutant mice. Nlk deficient mice thus provide a novel model to study the genetic requirements for bone marrow stromal differentiation.  相似文献   

5.
The mitogen-activated protein kinase (MAPK) is known to be involved in the differentiation of various types of cells. To understand the role of p44/42 MAPK (ERK1/2) in astrocyte differentiation, we investigated the effects of U0126 and PD98059, specific inhibitors of the MAPK-activating enzyme MEK, on astrocyte morphology in culture. Cultured rat cortical astrocytes exhibited flattened, polygonal morphology in the absence of stimulation, but differentiated into process-bearing stellate cells in response to the membrane-permeable cyclic AMP analog dibutyryl cyclic AMP (dBcAMP) or the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA). dBcAMP-induced astrocyte stellation was not affected by MEK inhibitors, while PMA-induced astrocyte stellation was significantly blocked by U0126 (0.1-10 microM) and PD98059 (10-30 microM). Western blot analysis with an antibody specific for phosphorylated ERK1/2 revealed that PMA, but not dBcAMP, induced phosphorylation of ERK1/2 in a time- and concentration-dependent manner. The PMA-induced astrocyte stellation and ERK1/2 phosphorylation were blocked by specific PKC inhibitors, GF-109203X (0.01-1 microM) and calphostin C (1 microM). In addition, when U0126 or PD98059 was added after treatment with PMA, stellate astrocytes returned to polygonal. These results suggest that the MEK/ERK cascade is involved in the induction and maintenance of astrocyte stellation mediated by PKC, but not by cyclic AMP signaling.  相似文献   

6.
7.
8.
ErbB-4 activation inhibits apoptosis in PC12 cells.   总被引:4,自引:0,他引:4  
Neuregulins, a large family of polypeptide growth factors, exert various distinctive effects in the nervous system. neuregulins and their receptors are widely expressed in neurons implying important roles in neuronal cell functions. Recently, we have shown that ErbB-4 receptors expressed in PC12 cells mediate neuregulin-induced differentiation. In the present study we demonstrate that in the PC12-ErbB-4 cells, neuregulin rescues cells from apoptosis induced by serum deprivation or tumor necrosis factor (TNF)alpha treatment. The neuregulin-induced survival is comparable to the effect mediated by the neurotrophic factor nerve growth factor (NGF). Both neuregulin and NGF protect cells from apoptosis induced by serum deprivation and TNF alpha treatment. Moreover, neuregulin like NGF induces the survival of neuronal differentiated PC12-ErbB-4 cells. The survival effect of neuregulin is probably mediated by the phosphoinositide 3-kinase (PI3K) and protein kinase B/Akt signaling pathways. Neuregulin induces the activation of PI3K and prolonged activation of protein kinase B/Akt. In addition, inhibition of the PI3K activity prevented the neuregulin-induced survival effect.Taken together, these results indicate that survival induced by neuregulin in PC12-ErbB-4 cells requires PI3K signaling networks.  相似文献   

9.
Zhang C  Li Y  Chen J  Gao Q  Zacharek A  Kapke A  Chopp M 《Neuroscience》2006,141(2):687-695
Bone morphogenetic proteins play a key role in astrocytic differentiation. Astrocytes express the gap junctional protein connexin-43, which permits exchange of small molecules in brain and enhances synaptic efficacy. Bone marrow stromal cells produce soluble factors including bone morphogenetic protein 2 and bone morphogenetic protein 4 (bone morphogenetic protein 2/4) in ischemic brain. Here, we tested whether intra-carotid infusion of bone marrow stromal cells promotes synaptophysin expression and neurological functional recovery after stroke in rats. Adult male Wistar rats were subjected to 2 h of right middle cerebral artery occlusion. Rats were treated with or without bone marrow stromal cells at 24 h after middle cerebral artery occlusion via intra-arterial injection (n=8/group). A battery of functional tests was performed. Immunostaining of 5-bromo-2-deoxyuridine, Ki67, bone morphogenetic protein 2/4, connexin-43, synaptophysin, glial fibrillary acidic protein, neuronal nuclear antigen, and double staining of 5-bromo-2-deoxyuridine/glial fibrillary acidic protein, 5-bromo-2-deoxyuridine/neuronal nuclear antigen, glial fibrillary acidic protein/bone morphogenetic protein 2/4 and glial fibrillary acidic protein/connexin-43 were employed. Rats treated with bone marrow stromal cells significantly (P<0.05) improved functional recovery compared with the controls. 5-Bromo-2-deoxyuridine and Ki67 positive cells in the ipsilateral subventricular zone were significantly (P<0.05) increased in bone marrow stromal cell treatment group compared with the controls, respectively. Administration of bone marrow stromal cells significantly (P<0.05) promoted the proliferating cell astrocytic differentiation, and increased bone morphogenetic protein 2/4, connexin-43 and synaptophysin expression in the ischemic boundary zone compared with the controls, respectively. Bone morphogenetic protein 2/4 expression correlated with the expression of connexin-43 (r=0.84, P<0.05) and connexin-43 expression correlated with the expression of synaptophysin (r=0.73, P<0.05) in the ischemic boundary zone, respectively. Administration of bone marrow stromal cells via an intra-carotid route increases endogenous brain bone morphogenetic protein 2/4 and connexin-43 expression in astrocytes and promotes synaptophysin expression, which may benefit functional recovery after stroke in rats.  相似文献   

10.
11.
Senescence marker protein 30 (SMP30) was recently identified as gluconolactonase, which is involved in vitamin C (VC) biosynthesis. Therefore, the antioxidant property of SMP30 is thought to be mediated by its gluconolactonase function. However, pathologic effects of SMP30 deficiency independent of VC biosynthesis have not been studied in models of neurodegenerative diseases. In the present study, we evaluated the effect of SMP30 deficiency on Parkinson’s disease (PD) in SMP30 knockout (KO) mice. Wild type and SMP30 KO mice supplemented with VC were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our results showed that MPTP-induced dopaminergic neuronal loss and motor function impairment were more significant in the SMP30 KO mice. Reactive oxygen species generation and microglia activation were higher in MPTP-treated SMP30 KO mice. However, SMP30 deficiency mitigated MPTP-induced astrocyte activation and glia-derived neurotrophic factor production. Cultures of astrocytes recovered from wild type and SMP30 KO mice revealed that SMP30 deficiency abolished 1-methyl-4-phenyl-pyridinium-induced astroglial activation by blocking the extracellular signal-regulated kinase pathway. Taken together, our findings demonstrate for the first time that SMP30 deficiency increases the severity of PD and suggest a beneficial role of SMP30 in protective astrocyte activation in response to neurodegeneration. The present study shows that modulation of astrocytic SMP30 can be a promising target for treating PD.  相似文献   

12.
13.
Sun R  Yan J  Willis WD 《Neuroscience》2007,144(1):286-294
Protein kinase B (PKB/Akt) is a member of the second-messenger regulated subfamily of protein kinases. It is implicated in signaling downstream of growth factors, insulin receptor tyrosine kinases and phosphoinositide 3-kinase (PI3K). Current studies indicate that nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and PI3K help mediate inflammatory hyperalgesia. However, little is known about the role of PKB/Akt in the nociceptive system. In this study, we investigated whether PKB/Akt in primary sensory neurons is activated after noxious stimulation and contributes to pain behavior induced in rats by capsaicin. We demonstrated that phospho-PKB/Akt (p-PKB/Akt) is increased in dorsal root ganglia (DRG) at 5 min after intradermal injection of capsaicin. p-PKB/Akt is distributed predominantly in small- and medium-sized DRG cells. After capsaicin injection, p-PKB/Akt (473) is colocalized with isotectin-B4 (IB4), tyrosine kinase A (TrkA), and calcitonin gene-related peptide (CGRP). Furthermore, most transient receptor potential vanilloid type 1 (TRPV1) positive DRG neurons double label for p-PKB/Akt. Behavioral experiments show that intradermal injection of a PI3K (upstream of PKB/Akt) inhibitor, wortmannin, dose-dependently inhibits the changes in exploratory behavior evoked by capsaicin injection. The PKB/Akt inhibitor, Akt inhibitor IV, has the same effect. The results suggest that the PKB/Akt signaling pathway in the periphery is activated by noxious stimulation and contributes to pain behavior.  相似文献   

14.
A rat model of complete sciatic nerve transection was used to evaluate the effect of bone marrow mononuclear cells (BMMC) transplanted to the injury site immediately after lesion. Rats treated with BMMC had both sensory and motor axons reaching the distal stump earlier compared to untreated animals. In addition, BMMC transplantation reduced cell death in dorsal root ganglia (DRG) compared to control animals. Transplanted BMMC remained in the lesion site for several days but there is no evidence of BMMC differentiation into Schwann cells. However, an increase in the number of Schwann cells, satellite cells and astrocytes was observed in the treated group. Moreover, neutralizing antibodies for nerve growth factor (NGF) (but not for brain-derived neurotrophic factor and ciliary-derived neurotrophic factor) added to the BMMC-conditioned medium reduced neurite growth of sensory and sympathetic neurons in vitro, suggesting that BMMC release NGF, improve regeneration of the sciatic nerve in the adult rat and stimulate Schwann and satellite cell proliferation or a combination of both.  相似文献   

15.
背景:通过细胞移植重建损伤脑组织成为治疗脑梗死的新途径,骨髓间充质干细胞成为近年来细胞移植治疗领域的研究热点。 目的:探讨银杏达莫注射液联合骨髓间充质干细胞移植对脑梗死大鼠神经功能的改善作用及相关机制。 方法:利用线栓法制作大鼠大脑中动脉闭塞模型,建模成功后60只SD大鼠随机分为对照组、细胞移植组及联合组。对照组尾静脉注射PBS、细胞移植组尾静脉注射2.5×109 L-1的骨髓间充质干细胞悬液、联合组尾静脉注射2.5×109 L-1的骨髓间充质干细胞悬液和银杏达莫2 mL/kg,1次/d,连续注射5 d。于移植后的1,3 d及1,2 周进行mNSS行为学评分,以观察大鼠神经功能缺损状况。移植后2周RT-PCR检测脑组织中脑源性神经生长因子、生长相关蛋白43基因表达变化,TUNEL法检测细胞凋亡情况,免疫组化法检测BrdU阳性细胞数。 结果与结论:移植后的1,3 d各组大鼠神经功能缺损评分差异无显著性意义(P > 0.05),在移植后1,2周,联合组神经功能缺损评分低于细胞移植组及对照组(P < 0.05);移植后2周,联合组脑源性神经生长因子、生长相关蛋白43 mRNA表达明显高于细胞移植组及对照组(P < 0.05),联合组凋亡细胞数目明显少于细胞移植组及对照组(P < 0.05),联合组BrdU阳性细胞数量明显多于细胞移植组及对照组(P < 0.05)。结果表明骨髓间充质干细胞联合银杏达莫干预能促进脑梗死组织脑源性神经生长因子、生长相关蛋白43 mRNA的表达,抑制细胞凋亡,改善大鼠神经功能。  中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程   相似文献   

16.
Neurturin and glial cell line-derived neurotrophic factor are novel mitogens for normal adult rat chromaffin cells in vitro. These neurotrophic factors differ from the previously described adult chromaffin cell mitogens, nerve growth factor and basic fibroblast growth factor, in that their effects are potentiated by depolarization and activation of protein kinase C. Neurturin and glial cell line-derived neurotrophic factor signal via the receptor tyrosine kinase, ret, but may also act independently of ret. Both depolarization and phorbol esters act synergistically with neurturin to up-regulate ret protein expression in chromaffin cell cultures, suggesting a mechanism for potentiation of mitogenesis. However, a direct role for ret in mitogenesis has not been established. Stimulation by neurturin causes increased phosphorylation of extracellular signal-regulated kinases 1 and 2 in cultured chromaffin cells, and mitogenesis is prevented by inhibitors of their phosphorylation. Inhibitors of phosphatidylinositol 3-kinase also prevent mitogenesis.The present findings suggest the hypothesis that neurotrophic factors and neurally derived signals might cooperatively regulate chromaffin cell proliferation in vivo in the rat. In addition, trans-synaptic stimulation might provide a route by which epigenetic factors could influence the development of adrenal medullary hyperplasia in humans with hereditary multiple endocrine neoplasia syndromes 2A and 2B by affecting expression and/or activation of ret.  相似文献   

17.
18.
Dose-escalated chemotherapy has proven utility in a variety of treatment settings, including preparative regimens before bone marrow or hematopoietic stem cell transplantation. However, the potential damage imposed by aggressive regimens on the marrow microenvironment warrants further investigation. In the present study, we tested the hypothesis that dose-escalated chemotherapy, with etoposide as a model chemotherapeutic agent, activates the transforming growth factor beta-1 (TGF-beta1) signaling pathway in bone marrow stromal cells. After high-dose etoposide exposure in vitro, Smad3 protein was phosphorylated in a time-and dose-dependent manner in marrow-derived stromal cells, coincident with the release of active and latent TGF-beta1 from the extracellular matrix. Phosphorylation was modulated by p38 kinase, with translocation of Smad3 from the cytoplasm to the nucleus subsequent to its phosphorylation. Etoposide induced activation of TGF-beta1 followed the generation of reactive oxygen species and required matrix metalloproteinase-2 (MMP-2) protein availability. Chemotherapy effects were diminished in MMP-2(-/-) knockout stromal cells and TGF-beta1 knockdown small interfering RNA-transfected stromal cells, in which phosphorylation of Smad3 was negligible after etoposide exposure. Stable transfection of a human MMP-2 cDNA into bone marrow stromal cells resulted in elevated phosphorylation of Smad3 during chemotherapy. These data suggest TGF-beta1/p38/Smad3 signaling cascades are activated in bone marrow stromal cells after dose-escalated chemotherapy and may contribute to chemotherapy-induced alterations of the marrow microenvironment.  相似文献   

19.
20.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by excessive deposition of amyloid-beta (Abeta) peptides in the brain. One of the earliest neuropathological changes in AD is the presence of a high number of reactive astrocytes at sites of Abeta deposition. Disturbance of glutamatergic neurotransmission and consequent excitotoxicity is also believed as implicated in the progression of this dementia. Therefore, the study of astrocyte responses to Abeta, the main cellular type involved in the maintenance of synaptic glutamate concentrations, is crucial for understanding the pathogenesis of AD. This study aims to investigate the effect of Abeta on the astrocytic glutamate transporters, glutamate transporter-1 (GLT-1) and glutamate-aspartate transporter (GLAST), and their relative participation to glutamate clearance. In addition we have also investigated the involvement of mitogen-activated protein (MAP) kinases in the modulation of GLT-1 and GLAST levels and activity and the putative contribution of oxidative stress induced by Abeta to the astrocytic glutamate transport function. Therefore, we used primary cultures of rat brain astrocytes exposed to Abeta synthetic peptides. The data obtained show that Abeta(1-40) peptide decreased astroglial glutamate uptake capacity in a non-competitive mode of inhibition, assessed in terms of tritium radiolabeled d-aspartate (d-[(3)H]aspartate) transport. The activity of GLT-1 seemed to be more affected than that of GLAST, and the levels of both transporters were decreased in Abeta(1-40)-treated astrocytes. We demonstrated that MAP kinases, extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase, were activated in an early phase of Abeta(1-40) treatment and the whole pathways differentially modulated the glutamate transporters activity/levels. Moreover it was shown that oxidative stress induced by Abeta(1-40) may lead to the glutamate uptake impairment observed. Taken together, our results suggest that Abeta peptide downregulates the astrocytic glutamate uptake capacity and this effect may be in part mediated by oxidative stress and the differential activity and complex balance between the MAP kinase signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号