共查询到17条相似文献,搜索用时 62 毫秒
1.
目的 准确定位大圆肌神经入肌点(NEP)的体表位置和穿刺深度。 方法 12具中国成年人尸体。设计紧贴皮肤连接颈静脉切迹最低点至肩峰尖为横向参考线(H线)、颈静脉切迹最低点至剑胸结合处为纵向参考线(L线)。解剖暴露大圆肌NEP,涂抹硫酸钡,逐层复位缝合,CT扫描与三维重建。Syngo系统下确定大圆肌NEP的体表投影点(P);P通过NEP投影至背部皮肤上的点为P'点;经P的垂线与H线的交点记为PH,经P的水平线与L线的交点记为PL;分别测量PH和PL在H和L线上的百分位置及NEP的百分深度。 结果 大圆肌NEP的PH位于H线的(9.59±1.24)%处,PL位于L线的(39.37±2.45)%处;NEP深度位于PP'线的(41.83±2.98)%处。 结论 这些参数可为提高大圆肌痉挛的神经阻滞效率和疗效提供指导。 相似文献
2.
目的 准确定位成人前臂前群肌神经入肌点(NEP)的体表位置和深度。 方法 成人尸体12具,仰卧。紧贴皮肤连接肱骨外上髁和内上髁间的曲线为横向参考线(H),肱骨外上髁和桡骨茎突间的曲线为纵向参考线(L)。解剖暴露NEP,硫酸钡标记,螺旋CT扫描与三维重建。将NEP在体表上的投影点记为P点,P点通过NEP后投射至前臂后体表上的点为P'点。P点投射到H线与L线上的位置分别记为PH和PL。Syngo系统下确定PH和PL在H和L线上的位置及NEP的深度。 结果 旋前圆肌、桡侧腕屈肌、掌长肌、尺侧腕屈肌、指浅屈肌、拇长屈肌、指深屈肌(正中神经支)、指深屈肌(尺神经支)、旋前方肌NEP的PH分别位于H线上的58.08%、64.17%、75.14%、61.14%、62.26%、52.07%、50.81%、63.38%和51.37%处;PL分别位于L线上的9.79%、3.97%、16.37%、4.42%、17.88%、34.17%、30.27%、11.48%和75.32%处;穿刺深度分别位于PP'线的26.80%、25.06%、27.68%、28.13%、37.30%、39.85%、49.26%、70.86%和44.25% 处。以上数据均为平均值。 结论 这些NEP的体表穿刺位置与深度的界定可为提高前臂前群肌痉挛肌外神经溶解术靶点阻滞的效率、手术切断神经肌支治疗肌痉挛的微创切口设计、作为供肌的功能评估、以及肌移植术中对神经的保护等提供形态学指导。 相似文献
3.
目的:利用螺旋CT准确定位成人前臂后群肌神经入肌点(NEP)的位置。方法:成人尸体上肢,俯卧。紧贴皮肤连接肱骨外上髁至桡骨茎突间的曲线为纵向参考线(L);肱骨外上髁与内上髁间的连线为横向参考线(H)。大体解剖暴露NEP,硫酸钡标记,螺旋CT扫描,三维重建图像。NEP在体表上的投影点定为P点,P点通过NEP后投射至前臂前面体表上的点为P'点。经P点垂于H的线、水平线与L线的交点分别记为PH和PL。Syngo系统下确定PH和PL在H和L线上的位置及NEP的深度。结果:指伸肌、小指伸肌、尺侧腕伸肌、旋后肌、拇长展肌、拇短伸肌、拇长伸肌、示指伸肌的NEP的PH分别位于H线上的54.47%、39.26%、42.5%、21.24%、42.03%、44.39%、42.65%和54.47%处,PL分别位于L线上的31.99%、35.34%、31.18%、11.47%、53.08%、51.88%、55.71%和64.75%处,穿刺深度分别位于PP'线的34.82%、34.70%、28.75%、30.87%、26.81%、24.15%、31.34%和20.69%处。结论:这些NEP的定位可为提高前臂后群肌靶点阻滞的效率与疗效提供指导。 相似文献
4.
目的 准确定位枕下肌的神经入肌点(NEP),为枕下肌肌张力增高所致疾病的肌外神经阻滞提供解剖学基础。方法 24具成人尸体。解剖暴露枕下肌(头后小直肌、头后大直肌、头上斜肌和头下斜肌)的NEP,硫酸钡标记,原位缝合。螺旋CT扫描与三维重建。经皮连接枕外隆突与第7颈椎棘突的曲线为纵向(L)参考线,乳突与第7颈椎棘突的曲线为横向(H)参考线,NEP在项部和相反侧皮肤上的点分别记为P点和P’点,经P点分别向H线和L线作垂线,其交点分别记为PH点和PL点。Syngo系统下确定PH点和PL点分别在H线和L线上的百分位置及NEP的深度。结果 每块枕下肌(头后小直肌、头后大直肌、头上斜肌和头下斜肌)常只有1个NEP,其NEP的PH分别位于H线上的46.29%、35.85%、28.88%和32.29%处;PL分别位于L线上的27.39%、39.06%、35.06%和40.42%处。NEP的深度分别位于PP’线上的21.21%、24.02%、14.59%和21.44%处。上述... 相似文献
5.
利用神经入肌点定位小腿三头肌痉挛的神经阻滞靶点 总被引:1,自引:0,他引:1
目的 准确定位小腿三头肌的神经入肌点(N点)位置,为临床该肌痉挛神经阻滞提供解剖学基础。 方法 10具20侧成年人尸体下肢,俯卧。紧贴皮肤连接股骨外上髁与内上髁和股骨外上髁与外踝的线分别为N点的横向参考线(H线)和纵向参考线(L线)。解剖暴露小腿三头肌各神经肌支的N点,涂抹硫酸钡,CT扫描。Syngo系统下确定N点在体表的投影点(P点);P点通过N点后投射至对侧皮肤上的P'点;经P点的垂线与H线、水平线与L线的交点分别记为PH和PL。分别测量PH和PL在H和L线上的百分位置及N点的深度。 结果 腓肠肌内侧头、外侧头和比目鱼肌的PH分别位于H线的(46.89±2.73)%、(40.90±3.05)%和(42.56±2.59)%处,PL分别位于L线的(7.58±2.88)%、(8.15±2.52)%和(17.42±3.31)%处;N点深度分别位于PP'线的(16.32±2.52)%、(13.83±1.77)%和(29.93±2.89)%处。 结论 这些参数可提高小腿三头肌痉挛神经溶解术的疗效和效率。 相似文献
6.
目的 准确定位小腿外侧群肌的神经入肌点(NEP)和肌梭丰度最高区中心(CHRMSA)的位置。 方法 12具成人尸体,侧卧。经皮肤连接股骨外上髁与内上髁和股骨外上髁与外踝的连线分别为横向参考线(H)和纵向参考线(L)。解剖暴露NEP;Sihler's染色显示肌内神经分支密集区;HE染色肌梭,计算肌梭丰度;硫酸钡标记NEP和CHRMSA,CT扫描。NEP在体表的投影点为P,P通过NEP后投射至相反侧皮肤上的点为P',经P的垂线与H线、水平线与L线的交点分别记为PH 和PL,确定PH和PL在H和L线上的百分位置及NEP的深度。 结果 腓骨长、短肌的NEP的PH分别位于H线的13.41%和10.35%处,PL分别位于L线的21.81%和52.6%处;深度分别位于PP'线的50.89%和25.7%处。腓骨长、短肌的CHRMSA的PH分别位于H线的14.45%和12.86%处,PL分别位于L线的35.11%和71.49%处;深度分别位于PP'线的18.16%和20.40%处。 结论 这些结果可为小腿外侧群肌痉挛治疗中准确定位阻滞靶点提供解剖学指导。 相似文献
7.
目的 准确定位肩胛下肌神经入肌点(NEP)的体表位置和穿刺深度,为实现肩胛下肌痉挛乙醇或苯酚注射的化学神经溶解术提供指导。方法 20具中国成年人尸体,仰卧。紧贴皮肤连接颈静脉切迹最下点与肩峰尖和颈静脉切迹最下点与剑胸结合处的曲线分别为NEP的横向参考线(H线)和纵向参考线(L线)。解剖暴露肩胛下肌各神经肌支的NEP,涂抹硫酸钡,螺旋计算机断层扫描(CT)与三维重建。Syngo系统下确定NEP在体表的投影点(P),P通过NEP投射至背部皮肤上的P’点;经P的垂线与H线、经P的水平线与L线的交点分别记为PH和PL,测量PH和PL在H和L线上的百分位置及NEP的深度。结果 肩胛下肌上神经支和下神经支的PH分别位于H线的(46.89±2.73)%和(42.56±2.59)%处,PL分别位于L线的(7.58±2.88)%和(17.42±3.31)%处;NEP深度分别位于PP’线的(16.32±2.52)%和(29.93±2.89)%处。结论 上述结果可为提高肩胛下肌痉挛化学神经溶解术的疗效和效率提供指导。 相似文献
8.
三角肌神经入肌点定位及肌内神经分布的研究 总被引:2,自引:0,他引:2
目的 揭示三角肌神经入肌点和肌内神经分支分布 ,为其临床应用提供较为详尽的形态学资料。方法 ①用经甲醛固定 2年以上的成人尸体 (2 0~ 5 0岁 ) 12具 (男 9,女 3)共 2 4侧。以肩峰后角为骨性标志 ,测量三角肌各亚部神经支入肌点的位置。②用经甲醛固定 1年以内的童尸 3具 (3~ 10岁 )及成人尸体 2具 (2 0、4 0岁 )完整取下三角肌 ,采用Sihler′s肌内神经染色法观察肌内神经分支分布。结果 ①三角肌各亚部神经入肌点的体表投影 :三角肌前亚部、中亚部、后亚部的神经入肌点分别在距肩峰后角下方 (5 7± 0 7)cm、(5 9± 0 8)cm、(4 8± 0 5 )cm处的水平线上 ,距三角肌前缘外后方 (3 6± 0 4 )cm处及距三角肌后缘外前方 (3 5± 0 6 )cm、(2 3± 0 3)cm处 ,上述三点均在肌的中 1/3部。②肌内神经分布 :三角肌前、后亚部的肌内神经支在肌内为直接横过肌纤维中部 ,沿途再发出分支与肌纤维并行走行 ;而中亚部肌内神经支在各个羽内 ,与肌纤维相交 ,行向短肌纤维的起止端。结论 ①三角肌的神经入肌部位及入肌形式与该肌的形态和功能有关联 ;②三角肌的肌内神经分支分布可能与该肌的肌纤维长度及肌纤维型有关 ;③三角肌中亚部的肌内神经吻合网较宽而致密 ,推测有着更精细的神经调节。 相似文献
9.
目的 对人腹外斜肌的神经入肌点定位和肌内神经染色观察,为其临床应用提供形态学资料。 方法 成尸11具定位神经入肌点和5具行Sihler’s 肌内神经染色。 结果 腹外斜肌受下8对肋间神经外侧肌支支配,各个肌齿的神经入肌点距离相应肌齿起端中点(1.54±0.33)cm,位于锁骨中线与第5肋下缘的交界处至腋后线与第11肋下缘交界处的连线上。Sihler’s染色显示支配腹外斜肌的肋间神经外侧肌支入肌后分出小分支分布到各肌齿的起端1/3,然后约在各肌齿的近、中1/3交界处分出2支二级神经分支,即上支与下支,它们分出小分支分布到各肌齿的中间1/3,相邻两个肌齿的上支与下支在各肌齿中远部形成“U”形吻合,从“U”形吻合弓上分出小分支分布到各肌齿的止端1/3。在腹外斜肌上半部,各肌齿的神经分支分布到相应的肌齿,但在腹外斜肌下半部,上一肌齿的远侧下份是由下一肌齿的神经分支(上支)分布。 结论 ①为临床上腹壁局部麻醉和术后切口疼痛的神经阻滞提供指导意义;②腹外斜肌中远部从上至下形成“波浪形”的神经分支密集区;③腹部手术切口建议不要超过四个肌齿。 相似文献
10.
人股二头肌肌内神经分布和神经入肌点定位 总被引:1,自引:0,他引:1
目的查清人股二头肌长头和短头的肌内神经分布和神经入肌点定位,为其肌移植提供形态学依据。方法(1)观察20具尸体股二头肌长头和短头的神经分支数量,拟将坐骨结节与股骨外上髁连线分4等份,观测神经入肌点水平。(2)用3具童尸股二头肌做Sihler's肌神经染色,观察肌内神经分布。结果(1)长头神经来自坐骨神经胫侧,神经肌支一支型占22.5%,两支型72.5%,三支型5.0%,入肌点位于1/4区占22.1%,2/4区57.1%,3/4区20.8%。短头神经来自坐骨神经腓侧,一支型占95.0%,两支型5.0%,入肌点在肌的近部浅面。(2)长、短头肌内神经分支各形成一条神经支配带,横过各肌束中段。结论股二头肌长头和短头有单独神经支配。长头神经支配多见于两支型,神经入肌点多见于2/4区。 相似文献
11.
Localization of nerve entry points as targets to block spasticity of the deep posterior compartment muscles of the leg 下载免费PDF全文
Shuaiyu Hu Lifan Zhuo Xiaoming Zhang Shengbo Yang 《Clinical anatomy (New York, N.Y.)》2017,30(7):855-860
To identify the optimal body surface puncture locations and the depths of nerve entry points (NEPs) in the deep posterior compartment muscles of the leg, 60 lower limbs of thirty adult cadavers were dissected in prone position. A curved line on the skin surface joining the lateral to the medial epicondyles of the femur was taken as a horizontal reference line (H). Another curved line joining the lateral epicondyle of the femur to the lateral malleolus was designated the longitudinal reference line (L). Following dissection, the NEPs were labeled with barium sulfate and then subjected to spiral computed tomography scanning. The projection point of the NEP on the posterior skin surface of the leg was designated P, and the projection in the opposite direction across the transverse plane was designated P'. The intersections of P on H and L were identified as PH and PL, and their positions and the depth of the NEP on PP' were measured using the Syngo system and expressed as percentages of H, L, and PP'. The PH points of the tibial posterior, flexor hallucis longus and flexor digitorum longus muscles were located at 38.10, 46.20, and 55.21% of H, respectively. The PL points were located at 25.35, 41.30, and 45.39% of L, respectively. The depths of the NEPs were 49.11, 54.64, and 55.95% of PP', respectively. The accurate location of these NEPs should improve the efficacy and efficiency of chemical neurolysis for treating spasticity of the deep posterior compartment muscles of the leg. Clin. Anat. 30:855–860, 2017. © 2017 Wiley Periodicals, Inc. 相似文献
12.
This study examined the anatomic location of the motor entry point (MEP) and branching point at the proximal and distal points of the tendon of the peroneal muscle by visual observation. Forty-three fresh legs of 25 adult bodies which had been donated to science were investigated in this study. The mean length of the reference line between the most proximal point of the head of the fibula (PHF) and the most distal point of the malleolus of the fibula (DMF) was 33.4 ± 2.5 cm. The MEPs of the peroneus longus (PL) and peroneus brevis (PB) gathered from 20 to 40% (7.0-13.0 cm) and 40 to 60%, respectively. The branching point where the nerve was divided to innervate the PL and PB was 10% and 28% from the PHF, respectively. These anatomic results suggest appropriate areas where to inject phenol or other agents for a MEP block in the case of a spastic lower extremity as well as guidelines for an electromyography conduction test. 相似文献
13.
14.
Melissa T. Hooijmans Laura E. Habets Sandra A. M. van den Berg-Faay Martijn Froeling Fay-Lynn Asselman Gustav J. Strijkers Jeroen A. L. Jeneson Bart Bartels Aart J. Nederveen W. Ludo van der Pol 《NMR in biomedicine》2022,35(7):e4696
Quantitative magnetic resonance imaging (qMRI) is frequently used to map the disease state and disease progression in the lower extremity muscles of patients with spinal muscular atrophy (SMA). This is in stark contrast to the almost complete lack of data on the upper extremity muscles, which are essential for carrying out daily activities. The aim of this study was therefore to assess the disease state in the upper arm muscles of patients with SMA in comparison with healthy controls by quantitative assessment of fat fraction, diffusion indices, and water T2 relaxation times, and to relate these measures to muscle force. We evaluated 13 patients with SMA and 15 healthy controls with a 3-T MRI protocol consisting of DIXON, diffusion tensor imaging, and T2 sequences. qMRI measures were compared between groups and related to muscle force measured with quantitative myometry. Fat fraction was significantly increased in all upper arm muscles of the patients with SMA compared with healthy controls and correlated negatively with muscle force. Additionally, fat fraction was heterogeneously distributed within the triceps brachii (TB) and brachialis muscle, but not in the biceps brachii muscle. Diffusion indices and water T2 relaxation times were similar between patients with SMA and healthy controls, but we did find a slightly reduced mean diffusivity (MD), λ1, and λ3 in the TB of patients with SMA. Furthermore, MD was positively correlated with muscle force in the TB of patients with SMA. The variation in fat fraction further substantiates the selective vulnerability of muscles. The reduced diffusion tensor imaging indices, along with the positive correlation of MD with muscle force, point to myofiber atrophy. Our results show the feasibility of qMRI to map the disease state in the upper arm muscles of patients with SMA. Longitudinal data in a larger cohort are needed to further explore qMRI to map disease progression and to capture the possible effects of therapeutic interventions. 相似文献
15.
The aim of this study was to elucidate the anatomical location of the motor entry point (MEP) and intramuscular motor point (IMP) of the tibialis posterior muscle for effective motor point block. Thirty-six fresh specimens from 20 adult Korean cadavers (11 males and 9 females) were investigated. The reference line between the most proximal-medial articular margin of the tibia (MPM) at the level of the knee joint and the most distal point of the malleolus of the tibia (MDM) on the surface were identified. The mean length of the reference line was 326.5 ± 27.1 mm. There were 82.5% of the total number of MEPs located at 10-30% and 67.9% of the total IMPs were 10-40% from the MPM. The safety zone for botulinum toxin (BTX) injections on the medial approach was 10-40% from the MPM. In addition, insertion of the needle to a depth of 3.5 cm from the surface of the skin was effective. These results may assist in determining more accurate localization of injection sites. 相似文献
16.
骨间前神经转位重建鱼际肌功能 总被引:2,自引:1,他引:2
前臂或腕部正中神经断裂,直接吻合后鱼际肌功能的恢复常常令人失望,为了解决这一难题,本文在120侧成人上肢解剖学研究的基础上,采用骨间前神经转位术修复鱼际肌支9侧,获得成功. 相似文献
17.
Yanrong Li Meng Wang Shaohua Tang Xiankun Zhu Shengbo Yang 《Journal of anatomy》2021,239(5):1123-1133
The aims of this study were to localize the body surface position and depth of nerve entry points, and the center of the intramuscular nerve-dense regions of the pectoralis major and pectoralis minor in order to provide guidance for blocking muscle spasticity. Formalin-fixed adult cadavers (66.3 ± 5.2 years) were used. The curved line on the skin from the acromion to the most inferior point of the jugular notch was defined as the horizontal reference line (H). The line from the most inferior point of the jugular notch to the xiphisternal joint was defined as the longitudinal reference line (L). The nerve entry points was anatomically exposed. Sihler's staining, barium sulfate labeling, and computed tomography were employed to determine the projection points (P) on the body surface. The intersection of the longitudinal line through the P point and the H line and the horizontal line through the P point and the L line were recorded as PH and PL, respectively. The projection of the nerve entry points or the center of the intramuscular nerve-dense regions were in the opposite direction across the transverse plane and were recorded as P'. The percentage positions of PH and PL on the H and L lines, as well as the nerve entry points and the center of the intramuscular nerve-dense regions depths, were determined using the Syngo system. The pectoralis major had two nerve entry points, while the pectoralis minor had only one. In addition, two intramuscular nerve-dense regions were found in the pectoralis major, while only one region was found in the pectoralis minor. The PH of the nerve entry points were located at 47.83%, 32.31%, and 34.31%, while the PH of the center of the intramuscular nerve-dense regions were at 41.95%, 55.88%, and 32.58% of line H, respectively. The PL of the nerve entry points were at −9.84%, 36.16%, and 2.44%, while the PL for each of three center of the intramuscular nerve-dense regions was at −3.87%, 25.29%, and −7.13% of line L, respectively. The depth for each of the nerve entry points was at 17.76%, 17.53%, and 25.51% of line P-P′’, respectively, and the depth of the center of the intramuscular nerve-dense regions was at 5.23%, 6.75%, and 13.73% of line P-P′, respectively. These percentage values are all means. The definition of the surface position and depth of these nerve entry points and center of the intramuscular nerve-dense regions can improve the localization efficiency and efficacy of target blocking for pectoralis major and minor spasticity. 相似文献