首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
'On-off' regulation of drug permeation through membranes in response to external temperature change has already been achieved using thermosensitive copolymers of N-isopropyl acrylamide (IPAAm) with butyl methacrylate (BMA). Increasing temperature induced formation of a dehydrated polymeric surface skin layer that stopped drug permeation. In this study, to control 'on-off' permeability of a drug, the polymer surface shrinking process was regulated by changing the length of alkyl side chain of the copolymer methacrylate component. Permeation experiments with indomethacin were performed in response to stepwise temperature changes between 20 and 30 degrees C with copolymers of IPAAm with BMA, hexyl methacrylate (HMA), and lauryl methacrylate (LMA). Burst permeation was found at the initial stage of the second 'on' period for both poly(IPAAm-co-HMA) and poly(IPAAm-co-LMA). These results suggest that drug diffuses during 'off' periods to change the concentration profile in the polymer gel. Polymer surface skin formation maintains a localized high water content inside the polymer gel even if drug permeation stops. The length of the alkyl side chain is an important parameter to control 'on-off' permeability of drug.  相似文献   

2.
Various micro cell culture systems have recently been developed. However, it is extremely difficult to recover cultured cells from a microchannel because the upper and lower substrates of a microchip are permanently combined. Therefore, we developed a cell culture and recovery system that uses a separable microchip with reversible combining that allows separation between closed and open channels. To realize this system, two problems related to microfluidic control-prevention of leakage and non-invasive recovery of cultured cells from the substrate-must be overcome. In the present study, we used surface chemistry modification to solve both problems. First, octadecyltrimethoxysilane (ODTMS) was utilized to control the Laplace pressure at the liquid/vapor phase interface, such that it was directed toward the microchannels, which suppressed leakage from the slight gap between two substrates. Second, a thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAAm) was used to coat the surface of the ODTMS-modified microchannel by UV-mediated photopolymerization. PNIPAAm substrates are well known for controlled cell adhesion/detachment by alteration of temperature. Finally, the ODTMS- and PNIPAAm-modified separable microchips were subjected to patterning, and human arterial endothelial cells (HAECs) were cultured in the resulting microchannels with no leakage. After 96 h of the culture, the HAECs were detached from the microchips by decreasing the temperature and were then recovered from the microchannels. This study is the first to demonstrate the recovery of living cells cultured in a microchannel, and may be useful as a fundamental technique for vascular tissue engineering.  相似文献   

3.
The permeability characteristics of a water-segmented polyurethane (Biomer) system under the conditions encountered in circulatory-assist devices were investigated. A diffusion cell and permeability system providing precise control of membrane boundary conditions and allowing continuous measurement of water vapor transmission was designed. Liquid water at 37 degrees C was used as the donor fluid and the system incorporated a constant-flow nitrogen carrier gas and an optical dew point sensor downstream to determine the water vapor mass flow rate as a function of time. The mass flow rate was then numerically integrated and plotted against time to allow calculation of effective diffusion coefficient (D) by the dynamic time lag method. Steady-state permeabilities were found to be insensitive to donor chamber hydrostatic pressure (50-200 mm Hg) indicating that bulk flow is not a transport mechanism in these membranes. The permeability coefficient (P) was independent of membrane thickness (H) over the four samples tested (0.0102, 0.0148, 0.0269, and 0.0366 cm), with an average value of 3.29 X 10(-4) cm2/s. Thus, diffusion was Fickian with negligible boundary layers. A plot of lag time versus H2 was linear (R = 0.98) yielding a value for D of 2.18 X 10(-7) cm2/s. A water-Biomer partition coefficient was determined for each sample with an average value of 1525, indicating a moderately hydrophilic membrane with a water sorption of 6.3% at 37 degrees C. Since water transport is by Fickian diffusion in the absence of bulk flow, liquid water cannot be expected to accumulate in circulatory-assist devices unless a condensing surface is maintained within the system.  相似文献   

4.
Polymer membranes are widely used in biomedical applications such as hemodialysis, membrane oxygenator, etc. When the membranes come in contact with blood or body fluids, protein adsorption and cell adhesion occur rapidly. Nonspecific protein adsorption and cell adhesion on the membranes induce not only various bio-rejections but also a decrease in their performance. We hypothesized that a blood compatible gas-permeable membrane could be prepared from polyethylene (PE) porous membranes modified with phospholipid polymers. In this study, poly[(2-methacryloyloxyethyl phosphorylcholine) (MPC)-co-dodecyl methacrylate] (PMD) skin film adhered to a PE porous membrane (PMD/PE porous membrane) was prepared. Elution of PMD was not detected meaning that the PMD film did not detach from the PE porous membrane even after soaking in water for more than 6 months. The permeation coefficient of oxygen gas through the PE membrane with the adhered PMD containing more than 0.20 mole fraction of the MPC unit, was the same as that of the original PE porous membrane. The PMD surface effectively reduced biofouling. We concluded that the PMD/PE porous membrane is useful as a novel membrane oxygenator due to its excellent gas-permeability and blood compatibility.  相似文献   

5.
This work compares the removal of bovine aortic endothelial cell (BAEC) monolayers via 1) low-temperature liftoff from a "smart polymer," plasma polymerized poly(N-isopropyl acrylamide) (ppNIPAM), 2) enzymatic digestion, and 3) mechanical dissociation from ppNIPAM surfaces. We examine the surfaces after cell removal by using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), immunostaining, and cell adhesion assay. Immunoassay results indicate that low-temperature liftoff nondestructively harvests the cell sheet and most of the underlying extracellular matrix (ECM), whereas enzymatic digestion and mechanical dissociation are damaging to both the cells and ECM. XPS results indicate that amide and alcohol groups attributed to proteins in the ECM are present on postliftoff surfaces. Principal component analysis (PCA) of ToF-SIMS data indicates that molecular ion fragments of amino acids are present on postliftoff surfaces. Finally, a cell adhesion assay seeding new cells on surfaces from which an initial layer of cells was removed via each of the three methods indicates that liftoff and mechanical dissociation leave behind surfaces that better promote cell adhesion. We conclude that the removal of BAEC cells via low-temperature liftoff from ppNIPAM-treated surfaces is less damaging to the ECM proteins remaining at the surface than the other methods.  相似文献   

6.
A novel approach is reported for cell patterning based on addressable microheaters and a poly(N-isopropyl acrylamide) (pNIPAM) themoresponsive coating. This thermoresponsive coating is created by a radio frequency NIPAM plasma and is denoted as plasma polymerized NIPAM (ppNIPAM). Films of ppNIPAM with a good retention of monomer side-chain functionality are produced using low-power continuous plasma deposition. Cell adhesion and cell detachment tests indicate that the surface switches between adhesive and nonadhesive behaviors as a function of temperature. The use of a photolithographically fabricated microheater array allows the ppNIPAM transition to occur spatially under the control of individual heaters. This localized change in the surface adhesive behavior is used to direct site-specific cell attachment. Patterned adhesion of two types of cells has been visualized on the array through fluorescent markers. Applications for diagnostic devices, cell-based sensors, tissue engineering, and cell transfection are envisioned.  相似文献   

7.
Polyacrylonitrile modified with N-vinyl-2-pyrrolidone (NVP) shows good hemocompatibility. This work, which aims to evaluate the cytocompatibility of membranes fabricated from poly(acrylonitrile-co-N-vinyl-2-pyrrolidone) (PANCNVP), studied the adhesion of macrophages and endothelial cell (EC) cultures. It was found that PANCNVP membranes with higher NVP content decreased the adhesion of both macrophages and ECs. Compared with polyacrylonitrile and tissue culture polystyrene control, however, these PANCNVP membranes promoted the proliferation of ECs. Furthermore, the viability of ECs cultured on the PANCNVP membrane surfaces was also relatively competitive. Both static and dynamic water contact angle measurements were conducted to explain the nature of cell adhesion to the PANCNVP membranes. On the basis of these results and the phenomena of water swelling and water states reported previously, it was presumed that the coexistence of large amounts of bound water and free water induced by NVP moieties are responsible for the lower adhesion and better function of cells adhering to the PANCNVP membranes.  相似文献   

8.
Xu ZK  Nie FQ  Qu C  Wan LS  Wu J  Yao K 《Biomaterials》2005,26(6):589-598
To improve the surface biocompatibility, asymmetric membranes fabricated from poly(acrylonitrile-co-maleic acid)s (PANCMAs) synthesized by water-phase precipitation copolymerization were tethered (or immobilized) with poly(ethylene glycol)s (PEGs) by esterification reaction. Chemical changes on the membrane surface were characterized by Fourier transform infrared spectroscopy and elemental analysis to confirm the immobilization of PEG onto the PANCMA membranes. The hydrophilicity and blood compatibility of the PEG-tethered PANCMA membrane were investigated by water contact angle, water absorption, protein adsorption, plasma platelets adhesion and cell adhesion measurements, and the results were compared with the corresponding PANCMA membranes. It was found that, after the tethering of PEG, the hydrophilicity of the membrane can be improved significantly, and the protein adsorption, platelets adhesion and macrophage attachment on the membrane surface are obviously suppressed. Furthermore, not only the content of maleic acid in PANCMA, which influences the tethering density of PEG, but also the molecular weight of PEG has great effect on the surface modification of PANCMA membranes for biocompatibility.  相似文献   

9.
Poly(acrylic acid) modified polyurethane (AA/PU) membranes were prepared by UV radiation without degassing. The chemical composition of the AA/PU membrane was studied by IR spectroscopy. In addition to those absorption peaks associated with pure PU, the absorption peak at 2400 cm-1 of poly(AA) was also found. The morphology of AA/PU membrane was studied by optical polarizing microscopy. We also measured the glass transition temperature and the decomposition temperature of the AA/PU membrane by differential scanning calorimetry and thermogravimetric analysis. A significant domain was found in the AA/PU membrane, which resulted in different glass transition temperature and decomposition temperature between AA/PU and pure PU membrane. The effect of AA content on the contact angle and water absorption of the AA/PU membrane was determined. It was found that the water content of AA/PU membrane increased with increasing AA content, whereas the contact angle decreased. By using Kaeble's equation and the contact angle data, the surface free energy of AA/PU membrane was determined. The increase of surface free energy resulted from the increase of the dispersion (gammad) term and polar (gammap) term. In order to evaluate the biocompatibility of these membranes, a cytotoxicity test and a cell adhesion and proliferation assay were conducted in cell culture. Immortal cells and primary lymphocytes were both used in this study. The results showed that these AA/PU membranes exhibited very low cytotoxicity and could support cell adhesion and growth. An animal primary test was also done in this study. It was found that the AA/PU membrane could possibly be employed in the treatment of bowel defect.  相似文献   

10.
An acrylamide derivative of a thrombin inhibitor was synthesized and graft polymerized to the surfaces of polymer membranes. The thrombin-inhibitor activity was unaffected by the introduction of an acryloyl group. The surface-graft membrane deactivated thrombin markedly and suppressed adhesion of platelets, resulting in a high nonthrombogenicity. Immersion of polymer membranes blended with the thrombin inhibitor in phosphate-buffered saline for 10 d resulted in the loss of nonthrombogenicity, while the polymer membranes grafted with the thrombin inhibitor derivative maintained the nonthrombogenicity over a long period.  相似文献   

11.
Polymer nano-composite membranes, based on aliphatic biodegradable polyurethane (PU) elastomers and nano-hydroxyapatite (n-HA), were prepared by solvent casting and freeze-drying. The PU matrix was synthesized from 4,4′-dicyclohexylmethane diisocyanate (H12 MDI), poly(ethylene glycol) (PEG), castor oil (CO) and 1,4-butandiol (BDO). The n-HA/PU membranes were characterized by SEM, XRD, IR, TG, mechanical test and in vitro biocompatibility. The results revealed that incorporation of 30 wt% n-HA into the PU matrix increased the tensile strength nearly by 186% and the elongation-at-break by 107% compared to pure PU. The addition of n-HA had the slight positive effect on the thermal stability of PU. Cell culture and MTT assays showed that the incorporation of n-HA into the PU matrix provided a favourable environment for initial cell adhesion, maintained cell viability and cell proliferation. These results suggested that the n-HA/PU composite membrane might be a prospective biodegradable guided bone regeneration (GBR) membrane for future applications.  相似文献   

12.
Block copolymers of poly(ethylene glycol) (PEG) as a hydrophilic block and N-isopropylacrylamide (PNIPAAm) or poly (NIPAAm-co-N-(2-hydroxypropyl) methacrylamide-dilactate) (poly(NIPAAm-co-HPMAm-dilactate)) as a thermosensitive block, are able to self-assemble in water into nanoparticles above the cloud point (CP) of the thermosensitive block. The influence of processing and the formulation parameters on the size of the nanoparticles was studied using dynamic light scattering. PNIPAAm-b-PEG 2000 polymers were not suitable for the formation of small and stable particles. Block copolymers with PEG 5000 and 10000 formed relatively small and stable particles in aqueous solutions at temperatures above the CP of the thermosensitive block. Their size decreased with increasing molecular weight of the thermosensitive block, decreasing polymer concentration and using water instead of phosphate buffered saline as solvent. Extrusion and ultrasonication were inefficient methods to size down the polymeric nanoparticles. The heating rate of the polymer solutions was a dominant factor for the size of the nanoparticles. When an aqueous polymer solution was slowly heated through the CP, rather large particles (> or = 200 nm) were formed. Regardless the polymer composition, small nanoparticles (50-70 nm) with a narrow size distribution were formed, when a small volume of an aqueous polymer solution below the CP was added to a large volume of heated water. In this way the thermosensitive block copolymers rapidly pass their CP ('heat shock' procedure), resulting in small and stable nanoparticles.  相似文献   

13.
The gas analogy of the van't Hoff equation for osmotic pressure deltapi = RT/V, where R is gas constant, T absolute temperature and V mole volume of water, remained unexplained for a century because of a few misconceptions: (1) Use of supported membranes prevented the recognition that osmotic forces exert no effect on the solid membrane. During osmotic flow frictional force of solvent within membrane channels equals osmotic kinetic force pi at the interface against the solution containing impermeant solute. (2) Retrograde diffusion of water is much less than osmotic flow even when dx in the gradient dc/dx approaches zero. (3) The gas analogy was thought to be accidental. Actually, the internal kinetic pressure is P = RT/V, because intermolecular forces cancel out at the liquid interface, just as within a gas. The kinetic osmotic pressure is the difference in solvent pressure across the interface: pi = RT/V-(RT/V)X1 = (RT/V)X2, where X1 and X2 are the mole fractions of water and impermeant solute, respectively. Integration gives pi = -(RT/V)lnX1, identical to the thermodynamic equation. This equation is correct up to 25 atmospheres, and up to 180 atmospheres by assuming that a sucrose molecule binds 4 and a glycerol molecule 2.5 water molecules. For solute-permeable membranes, the reflection coefficient sigma can be calculated by formulas proposed for ultrafiltration. Because the fraction (1-sigma) of solute concentration behaves as solvent, osmosis may well proceed against the chemical potential gradient for water. The analogy to an ideal gas applies because pi = -(RT/V)lnX1 is the small difference between enormous internal solvent pressures.  相似文献   

14.
《Acta biomaterialia》2014,10(1):234-243
A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy.  相似文献   

15.
A surface modification technique based on poly(dopamine) deposition developed from oxidative polymerization of dopamine is known to promote cell adhesion to several cell-resistant substrates. In this study this technique was applied to articular cartilage tissue engineering. The adhesion and proliferation of rabbit chondrocytes were evaluated on poly(dopamine)-coated polymer films, such as polycaprolactone, poly(L-lactide), poly(lactic-co-glycolic acid) and polyurethane, biodegradable polymers that are commonly used in tissue engineering. Cell adhesion was significantly increased by merely 15 s of dopamine incubation, and 4 min incubation was enough to reach maximal cell adhesion, a 1.35-2.69-fold increase compared with that on the untreated substrates. Cells also grew much faster on the poly(dopamine)-coated substrates than on untreated substrates. The increase in cell affinity for poly(dopamine)-coated substrates was demonstrated via enhancement of the immobilization of serum adhesive proteins such as fibronectin. When the poly(dopamine)-coating technique was applied to three-dimensional (3-D) polyurethane scaffolds, the proliferation of chondrocytes and the secretion of glycosaminoglycans were increased compared with untreated scaffolds. Our results show that the deposition of a poly(dopamine) layer on 3-D porous scaffolds is a simple and promising strategy for articular cartilage tissue engineering, and may be applied to other types of tissue engineering.  相似文献   

16.
Lin DT  Young TH  Fang Y 《Biomaterials》2001,22(12):1521-1529
To study the effect of surface properties on the biocompatibility of biomaterials based on the same material, polyurethane membranes with different surface properties were prepared. Myoblast culture and interleukin-1 (IL-1) generation in an air pouch model and in vitro monocyte culture were used to examine biocompatibility of different polyurethane membranes. Polyurethane membranes were found to exhibit significant differences depending on their surface properties prepared by different fabrication processes. When myoblasts were cultured on polyurethane surfaces, the smooth and hydrophobic membrane (F1), prepared by the solvent evaporation process, showed the greatest inhibition of myoblast adhesion compared with other porous and hydrophilic membranes (F2, F3 and F4), prepared by immersing the polymer solution into a precipitation bath. In contrast, IL-1 generation by monocytes/macrophages on the membrane F1 was more severe than those on the porous and hydrophilic membranes. Based on our results, the interaction of biomaterials with various cells is discussed.  相似文献   

17.
Diamond-like carbon (DLC) coating is a convenient means of modifying material surfaces that are sensitive to wear, such as titanium and silica substrates. This work aims to evaluate the osteoblast-like cells' response to DLC-coated Si (Si-DLC), which was treated under different conditions. DLC and deuterated DLC films were deposited by plasma-enhanced chemical vapor deposition to obtain a 200-nm-thick layer on all the samples. Three types of precursor gas were applied for deposition: pure methane (CH(4)), pure deuterated methane (CD(4)) and their half/half mixture. All surface treatments were performed under two different self-bias voltages (V(sb)): -400 and -600V. The modified surfaces were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Rutherford backscattering spectroscopy, elastic recoil detection analysis, X-ray reflectometry and the sessile-drop method. MC3T3-E1 osteoblasts were cultured on the Si-DLC wafers for 3 and 6 days. Biological tests to measure cell proliferation, cell vitality, cell morphology and cell adhesion were performed. All DLC coatings produced a slightly more hydrophobic state than non-treated Si. Certain types of amorphous DLC coating, such as the surface treated under the V(sb) of -600V in pure methane (600CH(4)) or in pure deuterated methane (600CD(4)), offered a significantly higher cell proliferation rate to Si substrate. Scanning electron microscopy observations confirmed that the optimal cell adhesion behavior, among all the treated surfaces, occurred on the surface of the 600CH(4) and 600CD(4) groups, which showed increased amounts of filopodia and microvilli to enhance cell-environment exchange. In conclusion, DLC coating on Si could produce better surface stability and improved cellular responses.  相似文献   

18.
One of the most important inconveniences of the pH- and temperature-sensitive hydrogels is the loss of thermosensitivity when relatively large amounts of a pH-sensitive monomer are co-polymerized with N-isopropylacrylamide (NIPAAm). In order to overcome this drawback, we propose here a method to prepare thermosensitive poly(vinyl alcohol) (PVA) microspheres with a higher content of carboxylic groups that preserve thermosensitive properties. Moreover, PVA possesses excellent mechanical properties, biocompatibility and non-toxicity. PVA microspheres were obtained by suspension cross-linking of an acidified aqueous solution of the polymer with glutaraldehyde. Poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide) (poly(NIPAAm-co-HMAAm)), designed to have a lower critical solution temperature (LCST) corresponding to that of the human body, was grafted onto PVA microspheres in order to confer them with thermosensitivity. Then, the pH-sensitive functional groups (COOH) were introduced by reaction between the un-grafted OH groups of PVA and succinic anhydride. The pH- and temperature-sensitive PVA microspheres display a sharp volume transition under physiological conditions around the LCST of the linear polymer. The microspheres possess good drug-loading capacity without losing their thermosensitive properties. Under simulated physiological conditions, the release of drugs is controlled by temperature.  相似文献   

19.
In the development of a new generation of totally implantable artificial hearts and left ventricular assist devices (VADs) for long-term use, the selection of an acceptable material for the fabrication of the ventricles probably represents one of the greatest challenges. Segmented polyether urethanes used to be the material of choice due to their superior flexural performance, acceptable blood compatibility, and ease of processing. However, because they are known to degrade and to be readily permeable to water, they cannot meet the rigorous requirements needed for a new generation of implantable artificial hearts and VADs. Therefore, the objective of the present study was to identify alternative polymeric materials that would be satisfactory for fabricating the ventricles, and in particular, to determine the water permeability through membranes made from four commercial polycarbonate urethanes (Carbothane PC3570A, Chronoflex AR, Corethane 80A, and Corethane 55D) in comparison to those made from two traditional polyether urethanes (Tecoflex EG80A and Tecothane TT-1074A). In addition to determining the rate of water transmission through the six membranes by exposing them to deionized water, saline, and albumin-Krebs solution under pressure and measuring the displacement of liquid by means of a recently developed capillary method, the inherent surface and chemical properties of the six membranes were characterized by SEM, contact angle measurements, FTIR, DSC, and GPC techniques. The results of the study demonstrated that the rate of water transmission through the four polycarbonate urethane membranes was significantly lower than through the two polyether urethanes. In fact the lowest values were recorded with the two Corethane membranes, and the harder type 55D polymer had a lower value (2.7 x 10(-7) g/s cm2) than the softer 80A version (3.3 x 10(-7) g/s cm2). This level of water vapor permeability, which appears to be controlled primarily by a Fickian diffusion mechanism, is between 2 and 4 times lower than that obtained with traditional polyether urethane membranes of equivalent thickness. The superior performance of the polycarbonate urethanes is likely due to the inherently lower chain mobility of the carbonate structure in the soft segment phase. In addition, the study shows that additional impermeability to water vapor can be achieved by selecting a polyurethane polymer with a high hard segment content, an aromatic rather than aliphatic diisocyanate comonomer, and a more hydrophobic surface. The use of a higher molecular weight polyurethane is not necessarily efficacious if the above requirements are not met. As expected by Raoult's Law, the study found that the use of physiological media instead of deionized water further decreases the rate of water vapor transmission. Because none of today's commercial polyurethanes are totally impervious to water vapor transmission, additional work is needed to develop permeable polymers or to apply additional treatments to existing candidates to achieve an acceptable impermeable ventricle material.  相似文献   

20.
The biological properties of four different membranes were studied regarding their possible application in biohybrid liver support systems. Two of them, one made of polyetherimide (PEI), and a second based on polyacrylonitrile-N-vinylpyrollidone co-polymer (P(AN-NVP)), were recently developed in our lab and studied for the first time. Together with pure polyacrylonitrile (PAN) membranes, the three preparations were characterised as ultra-filtration membranes. Their ability to support cell attachment, morphology, proliferation and function of human hepatoblastoma C3A cells was studied. The role of surface morphology for the interaction with hepatocytes was highlighted using a commercial, moderately wettable polyvinylidendifluoride (PVDF) membrane with micro-filtration properties. Comparative investigations showed strongest interaction of C3A cells with PAN membranes, as the focal adhesion contacts were more expressed and cell growth was also high. However, the functional activity in terms of albumin synthesis was reduced. Very similar results were obtained with the most hydrophobic PEI membrane. In contrast, the most hydrophilic membrane P(AN-NVP) was found to provoke stronger homotypic adhesion (E-cadherin expression) of C3A cells and less substratum attachment (focal adhesions), but enhanced albumin secretion. However, proliferation of C3A cells was lowered. Micro-porous PVDF membrane showed very good initial attachment, but the resulting cell material and cell-cell interaction were relatively poor developed. Among four membranes tested, PEI seems to be the most attractive membrane for biohybrid liver devices, as it provides good surface properties for hepatocytes interaction, but in addition it is highly thermostable, which would permit steam sterilisation. No simple relationship, however, between the wettability of the membranes and their ability to support hepatocyte adhesion and function was found in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号